
Journal of Information Assurance and Security 3 (2008) 185-194

Received August 20, 2008. 1554-1010 $03.50 © Dynamic Publishers, Inc

The Dalì Attack on Digital Signature1

Francesco Buccafurri, Gianluca Caminiti and Gianluca Lax

DIMET dept., Università “Mediterranea” di Reggio Calabria,
via Graziella, loc. Feo di Vito, 89122 Reggio Calabria, Italy

{bucca,gianluca.caminiti,lax}@unirc.it

1 An abridged version of this paper appeared in F. Buccafurri, G. Caminiti, and G. Lax, “Signing the Document Content is not Enough: A new Attack on

Digital Signature” in Proc. of the IEEE International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2008), August 4-
6, 2008, Ostrava, Czech Republic, pp. 520-525, IEEE Press. The reader may find some more information about this result as well as a demonstration of the attack
at http://www.unirc.it/firma.

Abstract:

The problem of ambiguous presentation of electronic documents
has been deeply investigated in the recent literature mainly in the
context of digital signature. Indeed, despite the intended goal of

digital signature to guarantee the integrity of any signed document,
the above problem demonstrates that the visualization of its
content might vary, depending on the context. The main source of
ambiguity known in the literature is the feature of many document

formats to have a dynamic presentation depending on the execution
of some embedded instruction. This is for example the case of PDF
files which may incorporate java scripts. A similar problem may

occur whenever a document can import external fonts. It is widely
accepted that some formats like image (bitmap, tiff, etc.) and plain
text (beside some specific format like PDF/A) are extremely safe

from this point of view, since documents in these formats cannot
be dynamic. As a consequence they are strongly recommended by
technical rules of most countries for documents being signed in
case a high level of trust is required. In this paper we present a

new source of ambiguity of electronic documents which may
regard also image files, allowing us to implement a new type of
attack on digital signature aimed to obtain signed documents with

potential (legal) effects different from those desired by the signer.
The paper proves the attack by example and gives a possible way
to contrast it.

Keywords: digital signature, ambiguous document presentation,

non-static visualization, cryptographic message, PKCS#7.

1. Introduction

Digital signature is the key issue of a number of innovative

processes involving different components of the economic-

social-administrative system. In particular, e-government

activities should receive from digital signature a strong hint

to enlarge significantly their action and their effectiveness.

However, the basic property digital signature has to satisfy is

that, at least as handwritten signature, it is a non-repudiable

proof of both the identity of the signer of an electronic

document and the statement of what such a document

represents. As a consequence, every form of vulnerability

should be carefully considered in order to understand

whether digital signature may represent for electronic

documents what handmade signature represents for

traditional ones. The most critical point of the digital

signature protocol is the secretness of the private key. This

should be guaranteed against even sophisticated attacks,

since compromising it could have disastrous consequences.

The usage of enough secure smart cards (the EU law fixes to

the standard ITSEC E3-high [16] the security lower bound)

is a reasonable measure solving in practice the above

problem. Indeed, a smart card can be considered a trusted

platform even because it is not realistic to imagine that

external attacks might have success. Unfortunately, digital

signature is not free from serious weaknesses.

The most known weakness is strictly related to the fact

that a smart card is a handicapped computer [36], since it

misses I/O devices. As a consequence, the overall digital

signature generation process cannot be considered trusted in

general, since the PC, which the smart card is (necessarily)

interfaced to, used to generate the digest of the document to

sign, is potentially untrusted. The concrete risk is that,

eventually, the PC can obtain a signature from the smart

card on an arbitrarily chosen document different from the

one displayed on the screen and actually chosen by the user.

Clearly the user might not be aware about the existence of

this signed document, so that the above problem can be

considered really very severe. According to Rivest [32] there

is an intrinsic contrast between having a secure device and

having a ‘reasonable customizable user interface’ that

supports downloading of applications. In other words, one

could think of a very secure digital signature application

running on a stand-alone (portable) computer not allowing

us to run other software (i.e., a closed machine). Otherwise,

in a more realistic case, the digital signature process

remains inherently insecure, since PCs cannot be considered

trusted platforms. Rivest [32] suggests that digital signature

should not be considered as a non-repudiable proof, but

simply as a plausible evidence. Thus users should have well-

defined possibilities to repudiate such signatures. The

problem, well known in the literature [1], [21], [39] is thus

very hard, and does not admit a full solution whenever the

PC is involved in the signature generation process.

However, heuristic solutions aimed to mitigate it have been

recently proposed [5], [7], [8], [9], [28], [29], [37].

Another well-known weakness is related to the possibility

of documents to embed macro-instructions or executable

code (for example, think about macros of Word documents

or Javascript code of PDF documents). The problem is that a

document containing instructions is not static, in the sense

that the visualization of its content might vary as the

variables, which these instructions exploit, change. For

example, suppose that a contract includes an amount that is

186 Buccafurri, Caminiti and Lax

displayed as a result of a macro-instruction that is

conditioned by the system date, in such a way that, after a

given date, the amount is changed. Hopefully, digital

signature should be able to avoid the modification of what a

document shows to the user, in order to guarantee the

information integrity not only in technical terms, but also

from the perspective of the effects that the bits composing

digital documents produce. In the above case, for example,

clearly the bits of the digital contract do not vary, but their

effect, in terms of knowledge they represent, does.

Unfortunately, digital signature is not able to eliminate this

drawback, since it is obtained from just the bits composing

the document by transforming it, first by a cryptographic

hash function and then by an asymmetric cryptographic

algorithm (typically RSA [33]). As a consequence, digital

signature is not able to detect the dynamic behavior of the

document, and thus its dangerously dynamic legal effect.

This vulnerability is well-known [26] and the general way

to contrast it is either trivially to force the user to check the

document before signing, assuming that he is aware about

the tools able to detect and remove possible dangerous

instructions in the document, or to automatically check the

document by a parser in order to remove dynamic contents.

A different source of ambiguities was discussed in [25],

where the authors show how font substitution can be used to

display the same digital document with different meanings

on different computers.

All the above vulnerabilities, based on the ambiguous

presentation of the document, can be fully contrasted if we

restrict the permitted document formats to those not

supporting the inclusion of instructions and external fonts,

like plain text, image formats, PDF/A [31], etc. Technical

rules typically take into account this problem, stating that

the signature has not probative value when applied to

documents embedding instructions able to modify what they

represent or limiting permitted formats (see for example the

Italian law [11], [34]).

We present in this paper a new result about a very

insidious attack, never documented neither in the scientific

literature nor in technical/legal/practitioner environments2,

whose effects are the same as the inclusion of macro-

instructions or scripts in digital documents, but operating

without the insertion in the tampered document of such

components, thus not covered by the cases considered by law

provisions, and possibly applicable also to those formats

(like bitmap, tiff, pdf with no javascripts) considered

extremely safe. We can folksy call this attack Dalì attack,

from the name of the famous painter Salvator Dalì. The idea

of this name is not from the authors of this paper, but from

the journalist Luca dello Iacovo, who has written a nice

2 We observe that a somewhat related (one-page) article on this attack was

actually published in the national Czech journal CryptoWorld, Vol. 5, p. 2,
May 15, 2008, authored by Peter Rybar. The paper, written in Czech and titled
“Príklad útoku na podpisovaný dokument, ktorého typ nie je chránený
samotným podpisom”, very synthetically describes some issue related to our
attack, and was published about 1 month later than our submission to the IEEE
International Conference on the Applications of Digital Information and Web
Technologies (Czech Republic) and our (direct and indirect) notification of our
research (and our proof of concept) to governmental organizations, as
witnessed by [12].

article about this research on a national weekly magazine,

very famous in Italy (Panorama, edited by Mondadori). The

journalist relates the attack to some paints of the famous

painter like The Image Disappears (1938), where a

somewhat mysterious image of a bearded man (Dalì

himself) and a scene with a woman appear: Dalì’s

moustache is her arm, his eye is her head and his beard is

her skirt.

The attack is in fact based on the capability of a file of

having a static polymorphic behavior. Thus a file that

includes at the same time two different contents, with

different encodes, each enabled by the application suitable

for the respective format.

The contribution of the paper is thus simple yet net and

unquestionably relevant from a practical point of view, since

(1) the attack here presented succeeds against the technical

infrastructure currently used and widely accepted both from

law provisions and from industry standards, and, (2) it

jeopardizes a trust mechanism used in many real contexts.

A witness of the above argumentation is that in [12] the

Italian National Agency for Digital Administration

(CNIPA) [10] has considered the results presented in this

paper very significant, claiming the intention of addressing

the problem here discussed in the preparation of the revised

technical rules also by submitting our results to the Forum

of European Supervisory Authorities for Electronic

Signatures [19], which CNIPA is member of.

The structure of the paper is the following. In the next

section how the digital signature mechanism proceeds is

presented. The attack is described in Section 3. Section 4

describes how the problem can be solved. Finally, in Section

5 the conclusions are drawn.

2. Digital Signature

This paper refers to strong digital signature, which is digital

signature based on both asymmetric cryptographic

techniques and the usage of a secure external device (like a

smart card or an USB token) for the generation process. In

this section how the mechanism proceeds is briefly recalled,

without going in depth about cryptographic aspects that are

outside the scope of this work. These preliminary notions

represents the background necessary to the reader to

understand technical features of the attack.

The first step of the signature generation process is the

computation, on the document to sign, of a cryptographic

hash function, like SHA-1 [30] or RIPEMD-160 [14]. The

result is called digest (typically 160 bits wide) of the

document. The properties of the hash function guarantee

that the digest can substitute the original document in the

signature generation process since the probability of having

two distinct documents producing the same digest is

negligible. Consequently, the problem of finding a

document colliding on a digest of another distinct document

is unfeasible, so that an attacker cannot corrupt a signed

document without the signature detects it. The digest is

computed on the PC by the signature software (typically

supplied by the certification authority) and sent to the smart

The Dalì Attack on Digital Signature 187

card embedding the private key of an asymmetric

cryptographic cipher, typically RSA. The smart card is then

enabled by the user (typically by inserting a secret PIN) to

encrypt the digest by RSA with the private key, thus

producing the digital signature. It is finally sent by the smart

card to the signature software running on the PC in order to

produce the cryptographic message (typically in PKCS#7

[27] format3). The robustness of RSA [13] (used with

enough large keys, typically 1024 bits) and the security used

to manage the private key, allow us to give the so-obtained

digital signature the power of non-repudiable proof of both

the identity (guaranteed by a public-key X.509 certificate

[23] granted by a trusted certification authority – included

into the PKCS#7 message) of the provenance of the signed

document and the statement of what the document itself

represents. PKCS#7 is a standard defined by RSA

describing a general syntax for data that may have

cryptography applied to it, such as digital signature and

digital envelope data. PKCS#7 and X.509 guarantee the

interoperability of software for verifying signed documents.

Indeed, the verification of a document D is done by (1) re-

computing the digest I of the document D using the same

hash function as exploited in the signature generation

process (this information is included in the PKCS#7

message), (2) computing J as the result of the decryption of

the signature F done by means of the same algorithm as the

generation step (as indicated in the PKCS#7 message) with

the public key of the subscriber (included in the X.509

certificate, which is another component of the PKCS#7

message), and (3) checking that the decrypted digest J

coincides with the computed digest I. Clearly, the complete

verification has to check both validity, trustworthiness and

non-revocation of the certificate, but we do not focus on this

step since it is not involved in the attack here presented.

3. The Attack

Whenever a user applies a digital signature to a document,

he is aware about the document meaning because he sees the

document as it is shown (typically on the screen of the PC

where he applies the signature). Clearly, digital signature

operates over the sequence of bits (i.e., the file) which

composes the document being digitally signed. However, the

meaning of the document depends on the way the document

is shown to the user and thus on the software used to decode

it. In other words, we can say that whereas traditional

documents satisfy the nice property of direct observability,

since they can be interpreted by humans using their senses

(viewing and touching the document) mediated only by their

capability of understanding the information contained in the

document, digital documents are not similarly observable, in

the sense that their bits become meaningful to humans only

when correctly interpreted by an application and presented

for instance through a computer screen. This is in fact a

direct consequence of the immateriality of electronic

documents, on the one hand, and of its machine-level

3 Even though a number of different signature formats exist, we refer

throughout this paper only to PKCS#7-signature, which is a widely used
format.

essence, on the other hand, not allowing us to directly

observe and understand their content. The nice consequence

is that digital signature may be both immaterial and

support-independent, like the document content itself, so

that it has to be necessarily linked to the bits composing the

document, apparently overcoming the weakness of

handwritten signature as a proof of integrity. Even though

this is technically true, as far as the detection of bit-level

modification of signed documents is concerned, it is more

weakly satisfied whenever the integrity of the information

presented to humans is considered. Indeed, we cannot

exclude the possibility that the bits composing the document

produce ambiguous tangible contents. This is actually the

source of the vulnerability which our attack relies on, as it

can be understood from the next description.

Consider two different file formats, denoted by A and B,

such that both:

(1) A is recognized by a distinguished file header, say

H,

(2) A includes an end-of-content mechanism allowing

the viewer to detect the portion of the file being

processed in order to display the content. For the

sake of simplicity, in the sequel of the section, we

refer to the existence of an end-of-content command

trivially implementing the above mechanism.

However, in real cases, this is not the only possible

case, since the content portion could be identified

through some suitable meta-data.

(3) B does not require the presence of any header at the

beginning of the file, and

(4) B permits user comments that are skipped by any

viewer of B.

Now we denote by D the sequence of bits of a given file

being digitally signed, assuming that such a file is compliant

with the format A. The attacker must suitably incorporate in

D (for instance, by modifying some bytes using an

hexadecimal editor) an opening comment command

(denoted by OC) compliant with the format B, placing it just

after the file header H. Call D* the sequence of bits so

obtained. Then, the attacker creates a file E, compliant with

the format B. Finally, he juxtaposes the bits D*, the closing

comment B-command (denoted by CC), and the bits E to the

file, obtaining thus the polymorphic file F. Figure 1 depicts

the construction of the file F.

188 Buccafurri, Caminiti and Lax

Figure 1. The bitmap image resulting from the scan

Why the file F obtained as a concatenation of D*, CC,

and E is actually polymorphic?

Let us denote by CF(A) and CF(B) the presentation of the

file F displayed by the viewers associated to the formats A

and B, respectively.

Observe that CF(B) will be the result of the interpretation

of just the bits of F compliant with the format B, that is E,

since the other bits D* plus the closing comment command

just preceding the bits E, are skipped by the B-viewer, since

they are interpreted as a comment in that format (we assume

that the few bytes of the header H, which precede the

comment, produce a negligible distortion of the presentation

of E).

What about the presentation of F produced by the A-

viewer?

The A-viewer will not take into account both D*, the

closing comment B-command, and the portion E of the file

F, since such bits are appended after the end-of-content A-

command. Thus, CF(A) will be the result of the

interpretation compliant with the format A of the sequence

D*. Observe that D* is a slight modification of the original

sequence D, since it incorporates the opening comment

command (again we assume that the format A is such that

the few bytes differentiating D* from D produces a

negligible distortion of the presentation of D – actually, we

will see that in the real cases this distortion is null, since the

slight modification of D might involve bits encoding some

meta-data).

Therefore, the result is that (modulo some slight

approximation), the A-viewer will present to the user the

information encoded into D (in the A encoding), whereas

the B-viewer will present to the user the information

encoded into E (in the B encoding). In this sense, the file F

is inherently polymorphic, and its ambiguity is activated by

the switching between the utilized viewer. Observe that in

most Operating Systems (like Microsoft Windows,

Linux/KDE, FreeBSD/KDE, MacOs X, etc.), the viewer

type is in fact established by the file extension. Thus, in

these cases, the ambiguity is activated just by suitably

modifying the file extension. To be more concrete, in any of

the mentioned Operating Systems, if the format A of the

scheme above is bitmap, and the format B is HTML, then

the polymorphic file F will be displayed as D if its name has

extension .bmp, as E if its name has extension .htm.

We have to spend some words about the concrete formats

that can match A and B in the scheme above. In the previous

example we have mentioned the formats bitmap and HTML.

As we will see in the next sections, this choice reflects one

of the possible concrete implementations of the attack

schematized above. However, whereas it is feasible to find a

number of formats satisfying the properties stated before for

the format A, we argue that the only (widely) known format

holding the properties required for B is HTML.

What happen when a user signs the polymorphic file F?

Clearly digital signature is not able to detect these

ambiguous nature of F, so that even though it guarantees

integrity of F intended as sequence of bits, it is not able to

inhibit its polymorphic behavior. From a practical point of

view the above argumentation is definitely more meaningful

whenever the extension indicates the content type (like for

those Operating Systems mentioned above).

Indeed, suppose that in any of these Operating Systems

the name of F is contract.aaa, where the extension

aaa is associated to the format A. The content presented to

the user is that displayed by the A-viewer, that is D. After

the application of the digital signature, the file

contract.aaa is included into the PKCS#7-compliant

cryptographic message, which is a file named

contract.aaa.p7m, because the digital signature

software adds the further extension .p7m to the original

document filename. Now, if the user extracts the document

from the cryptographic message, the original filename is

restored by discarding the previously added extension

(.p7m). If the information about the file type is not stored

inside the cryptographic message, then the verification

software will be vulnerable w.r.t. the following treat: In case

the file contract.aaa.p7m is renamed (either by

mistake or maliciously) to contract.bbb.p7m (where

bbb is the extension associated to the format B) the digital

signature verification process still succeeds on it, but the

extracted document will be named contract.bbb.

Consequently, the content presented to the user (by the

signature verification software) is that displayed by the B-

viewer, that is E. Hence, the user has signed the content D,

but the receiver will read the content E.

It is worth noting that the scheme of this attack could be

weakly related to steganography techniques [38]), only

concerning the feature of hiding a content into another

content. However, the main properties required for a

steganography technique are not satisfied by our files.

Among others, observe that contents in our case are hidden

only from the presentation point of view, but their presence

results evident when a simple file analysis is done.

Now we show how we have applied the attack to concrete

formats. In particular, we have considered (for the format A)

.bmp, .tif, and .pdf. Actually, we have proven that the

attack can be done also on other formats like .ps, .rtf,

.doc, but for the sake of presentation we did not present

here the description of these cases. We start by a leading

example, introducing a typical scenario and choosing .bmp

as the format A and Windows as Operating System (recall

that the format B is always HTML).

3.1 Attack on BMP

Prof. Buccafurri wants to delegate his assistant Mr. Mario

Rossi to sign sales contracts on behalf of himself with

amount below $1,000. Prof. Buccafurri commissions Mr.

Rossi to produce the electronic document to be signed.

In order to avoid the possible insertion of macro-

instructions or executable code into the document, Prof.

Buccafurri asks his assistant to obtain the document as a

scan of a printed document (we consider this case as the

least advantageous case w.r.t. the attempts of generating

documents having non-static visualization).

The Dalì Attack on Digital Signature 189

Mr. Rossi (who is actually a thief), in order to carry out

the attack, behaves as follows: He generates a bitmap file

named delegation.bmp representing the image I

resulting from the scan (see Figure 2).

Figure 2. The bitmap image resulting from the scan

Then, by using an hexadecimal editor, understanding the

bitmap format [6], he modifies some bytes of the .bmp file

by inserting an opening HTML comment (<!--) just after

the two first bytes of the file (encoding the bitmap format),

as reported in Figure 3. Note that the file portion following

the opening comment is skipped by any HTML interpreter.

Figure 3. Bitmap tampering

Afterwards, he creates a suitable HTML file including a

given text T, allowing the visualization of the desired

(malicious) content. Such a HTML file begins with a closing

HTML comment (-->). For the sake of presentation, the

HTML code is only sketched (see Figure 4).

--><HTML><BODY><STYLE>#l1

{background-color:#FFFFFF;

POSITION:absolute;

VISIBILITY:visible; TOP:0px;

LEFT:0px; Z-INDEX:1}</STYLE><DIV

ID="l1"><table border="2" width="70%"

bgcolor="#C0C0C0" style="border-

collapse: collapse"

id="table3"><tr><td><i>Il

sottoscritto Tizio, delega Caio a

sottoscrivere contratti di acquisto

in sua vece per un valore non

superiore a <u>100.000</u>

Euro</i><p align="right"><i>In

Fede
Tizio

</i></td></tr></table></DIV></BODY></

HTML>

Figure 4. The HTML code containing the malicious content

At this point, he appends this HTML file to the previously

tampered picture file. Note that, in order to contrast the

possibility that the victim could detect the attack by

checking the HTML source, the text T inside the HTML

code can be obscured by using escape sequences (Figure 5).

The resulting file is correctly opened by a bitmap-viewer

that shows the original image I (recall Figure 2). Indeed, the

insertion of the opening HTML comment (<!--) modifies

only bits encoding (redundant) meta-data, not the image I.

Observe that the document so created by Mr. Rossi is

polymorphic. Indeed if the filename extension is changed

from .bmp to .htm, the file will be opened by the

associated application (the HTML browser) and shows the

text T instead of the image I (see Figure 6).

Figure 5. Appending the HTML code to the bitmap file

Afterwards, the attacker sends the document

delegation.bmp to Prof. Buccafurri in order to be

signed.

Figure 6. The result of opening the file delegation.htm

In Figure 7, the file delegation.bmp is shown by the

corresponding application software (i.e. Microsoft Paint).

Prof. Buccafurri signs the file delegation.bmp thus

190 Buccafurri, Caminiti and Lax

producing the cryptographic message in PKCS#7 format,

whose filename is delegation.bmp.p7m. Since it has

been correctly generated and no alteration has been done,

the signature verification of this document clearly succeeds.

Now, the assistant completes the attack simply by

changing the filename of the cryptographic message from

delegation.bmp.p7m to delegation.htm.p7m.

Since the signature verification is done only on the basis of

the bit stream included in the PKCS#7 message, which does

not contain the document filename, its change does not

affect the result of the signature verification. In fact, the

execution of the verification software on the renamed file

succeeds, as shown in Figure 8, reporting a snapshot of the

verification procedure.

Figure 7. The result of opening the file delegation.bmp

For the signature verification, the official software4

distributed by the CNIPA [10] has been exploited. The same

result is obtained by any signature verification software (like

Aloaha Sign [4]).

Figure 8. The result of the verification process

Moreover, by clicking on “Display document”, the signed

document is shown (Figure 9). Surprisingly, the document

appears dramatically different from the signed one. It

contains the text T, giving the assistant the delegation to

sign sales contracts with amount below $100,000, instead of

the $1,000 approved by Prof. Buccafurri.

In the next two sections, we prove that the attack succeeds

also if we replace the bitmap format by other widely used

image formats, like TIFF and PDF.

4 Since the language of the software is Italian, we have translated into

English the most relevant information supplied by the software.

3.2 Attack on TIFF

Now, we describe how the attack is performed in case the

format A is TIFF, an image file format widely supported by

scanning, faxing, image-manipulation, word processing and

optical character recognition (OCR) applications. TIFF files

support many features such as compression, multi-page

graphics and so on.

Figure 9. The document shown by the verification software

In order to support such features, the TIFF format relies

on a very flexible file structure, in such a way that the

information about the image is referenced by an Image File

Directory (IFD), that is an array of fields describing the

features of the image, i.e. resolution, number of colors used,

compression, image data, etc. Each feature is then suitably

encoded in a separate IFD entry. Moreover, IFDs are

arranged in a linked list, hence in case the file includes

multiple images (such as pages of facsimile transmission, or

scanned book pages), each is represented by a subfile

described by a different IFD.

In detail, a TIFF file [3] begins with a 4-byte header,

(either 49492A00 or 4D4D002A, in hexadecimal)

specifying the byte order (either little-endian or big-endian,

respectively) used to encode numeric values. The header is

followed by two bytes representing a pointer to the first IFD

(For the sake of simplicity, assume that the file has just one

IFD).

The attacker proceeds as follows: he inserts the opening

HTML comment (<!--) just after these two bytes and then

modifies them by increasing the encoded value by 4, in

order to take into account the insertion of the 4-byte string

<!--. Clearly, he has to be aware of the byte order

(encoded in the header) in order to tamper the file correctly.

Then, the attacker finds the IFD entries containing the

offsets (with respect to the beginning of the file) of the

locations where the bytes representing the actual data of the

image (i.e. the pixelmap and the colormap) are stored.

Hence, he increases each of these offsets by 4 in order to

make them point to the correct locations. This operation has

to be iterated for the entries encoding the following tags

The Dalì Attack on Digital Signature 191

StripOffsets, XResolution, YResolution, ColorMap and, in

case the image pixels are encoded in more than one location

within the file, for all the IDF entries encoding any image

data offset.

Finally, the attacker concatenates the HTML code

containing the malicious content at the end of the tampered

file.

3.3 Attack on PDF

We have implemented the attack also in case the format A is

PDF, a file format created by Adobe Systems in 1993 for

document exchange and used for representing two-

dimensional documents in a way that is independent of the

application software, hardware, and operating system.

According to [2], the structure of a PDF file (here we

consider the simple and common case of a PDF file with no

incremental update) is the following:

• Header. The file begins with an ASCII one-line header

identifying the version of the PDF specification to

which the file conforms.

• Body. The body contains the document objects included

in the file.

• Xref. A cross-reference table containing pointers and

other information about the objects included in the body

of the file.

• Trailer. A closing section, ending with the sequence

%%EOF, giving the location of both the cross-reference

table and special objects within the body of the file.
The attacker behaves as follows: He starts by inspecting

the header. It is of the form %PDF-X.Y, that is a Postscript

language comment, i.e. an ASCII sequence starting with the

symbol % and ending with an End-of-Line (EOL) ASCII

code, where the sequence X.Y specifies the version of the

PDF format. The current version is 1.7 (corresponding to

Adobe Acrobat 8). Observe that our attack is not dependent

on the version of the PDF file, i.e. it can be used also on

older versions of PDF.

The attacker embeds the opening HTML comment in a

Postscript comment %<!-- (ending with a non-printable

EOL character) and inserts it just after the header. In case a

PDF file contains binary data, the header should be followed

by a Postscript comment line containing at least four bytes,

each having a value 128 or greater. In such a case, the

comment %<!-- (including the final EOL code) should

follow it. This ensures proper behavior of file transfer

applications that inspect data near the beginning of a PDF

file in order to determine whether to treat the file’s contents

as text or as binary.

Then, the attacker finds the location of the cross-reference

table by inspecting the tail of the file. There, the Trailer

includes two lines just before the end of the file, marked by

the sequence %%EOF. The former is the keyword

startxref, the latter is the offset (encoded as an ASCII

string) of the cross-reference table. The attacker increases

the offset value by 6 (in order to take into account the

previous insertion of the opening HTML comment) and then

changes all the in-use entries of the cross-reference table by

adding 6 to the value encoded by the offset field. This

ensures that the PDF viewer will correctly decode the file.

Finally, the HTML code containing the malicious content is

concatenated to the tampered file.

4. A Possible Solution

In this section a discussion on a possible solution to the

attack scheme described above is given.

Basically, we propose to include the MIME Content-type

of the document to be signed into the cryptographic message

in such a way that the integrity of both the document (the

file) and the file format (associating the file with the

intended viewer) is guaranteed.

First, we need to give some detail about the PKCS#7

format. It supports several different content types: data,

signed data, enveloped data, signed-and-enveloped data,

digested data, and encrypted data.

The data content type represents a sequence of bytes. The

encrypted-data content type consists of encrypted content of

any type. The digested-data content type consists of content

of any type and a message digest of the content. The signed-

data content type consists of content of any type and

encrypted message digests of the content for zero or more

signers and it is used to represent digital signatures. The

enveloped-data content type is intended to represent digital

envelopes, combining encrypted data sent to one or more

recipients and the information (the content-encryption keys)

needed by each recipient in order to decrypt the content.

Finally, the signed-and-enveloped-data content type

represents digital envelopes providing data with “double

encryption”, i.e. an encryption with a signer’s private key

followed by an encryption with the content-encryption key.

Any of the content types defined in PKCS#7 can be

enveloped for any number of recipients and signed by any

number of signers in parallel. The signed-data content type

is intended to be used for digital signatures, and it

constitutes the basis upon the cryptographic message is

built. Such a content type consists of (i) a given content of

any of the types defined in PKCS#7 and, for each signer, (ii)

both an encrypted message digest of the content (i.e. of the

document) representing the signer’s digital signature on the

content, and (iii) other signer-specific information

(concerning, for example, certificates and certificate-

revocation lists). Additional information can be signed in

order to authenticate attributes other than the content, such

as the signing time.

In detail, the signed-data content type consists of the

following information:

a. A list of the message-digest algorithms used by the

signers (this information is optional and it is used

to make one-pass signature verification easy).

b. The content that is signed. It can have any of the

defined content types.

c. An optional set of X.509 certificates and PKCS#6

extended certificates.

d. An optional set of certificate-revocation lists used

to determine whether or not the certificates

referenced by the above item are “hot listed”

192 Buccafurri, Caminiti and Lax

(because, for instance, they have been either

revoked or suspended for some reason and thus

they are not trustable anymore).

e. A set of per-signer information:

(1) The certificate issuer’s distinguished name

and serial number;

(2) An identifier specifying the message-digest

algorithm (e.g. SHA-1) used by the signer

under which the content and authenticated

attributes (if any, see the next item) are

digested;

(3) An optional set of PKCS#9-compliant

attributes that are signed by the signer (e.g.

the signing time);

(4) An identifier specifying the encryption

algorithm under which the message digest

and the associated information are encrypted

with the signer's private key;

(5) The result of encrypting the message digest

and the associated information with the

signer’s private key (this information is the

signer’s digital signature);

(6) An optional set of PKCS#9-compliant

attributes that are not signed such as

countersignatures, i.e. signatures to be

associated with another signature.

The simple solution here proposed is to choose a suitable

MIME Content-type value [20], i.e. corresponding to the

intended format of the document to be signed. For instance,

if it is a TIFF image (.tif) the correct value is image/tiff5.

Such a value must be included into the PKCS#7

cryptographic message by suitably encoding it into the

authenticated attributes (item e.3 above).

In detail, according to [35], the chosen MIME Content-

type value corresponding to the format of the file to be

signed should be encoded into the PKCS#9-compliant

attribute type allegedContentType. Next, both the document

digest and such authenticated attributes are encrypted with

the signer’s private key. Finally, a suitable digital-signature

verification software should be aware of such an additional

information in order to check the integrity of both the

document and the file format. Hence, if an attacker renames

the cryptographic message file, the verification software, by

extracting the signed Content-type value, will correctly

display the document, thus disarming the attack.

In case the cryptographic message is formed according to

Cryptographic Message Syntax (CMS) [24], then our

proposal is that the information about the document format

(represented by the MIME Content-type value) should be

included into the content-hints attributes [22]. Such

attributes are only intended for encoding optional

information (such as the MIME type) defining the document

format [15].

In detail, according to [15], the contentType field should

be set as “id-data” and the contentDescription should

contain the MIME Content-Type header value specifying the

intended presentation format.

5 The list of Content-types is maintained by the Internet Assigned Numbers

Authority (IANA), at http://www.iana.org/assignments/media-types/.

Observe that, though technical specifications and security

recommendations [15], [17], [18] address the theoretical

problem of misunderstanding (during the verification task)

the format of the document which has been digitally signed,

they consider no concrete attack scheme which is based on

the filename-dependent vulnerability presented in the paper.

Moreover, they regard content-hints attributes as optional

ones. Likewise, PKCS#7 syntax considers authenticated

attributes as optional parameters.

However, a technically simple solution does not

correspond in general to a practically simple solution.

Indeed, in this case, what about technical rules about the

usage of PKCS#7 in the signature process? What about

signature generation and verification software currently

provided by Certification Authorities?

Maybe a less simple, more heuristic, solution could be

more feasible, like a parser-based approach allowing us to

detect patterns identifying the attack.

5. Conclusions

The importance of encryption-based digital signature is

nowadays universally known, due to the revolution that such

a mechanism has induced on the role of electronic

documents in both public and private organizations. In fact,

digital signature represents at the moment the only valid

method to give signed electronic documents probative value

at least as traditional documents with handwritten signature.

The above claim has a full counterpart with the current law

system of most countries, so that the process of document

dematerialization has been already started relying on the

current infrastructures as well as the current juridical

regulations, with strong attention towards common

interoperability rules. On the basis of the above observations

we may easily realize that the issue regarding the

vulnerabilities of digital signature is particularly important.

This paper presents a new attack on digital signature

succeeding when the signature is generated just from the

bits contained into the document. Indeed, the integrity of

their intended meaning, corresponding to what the user

have signed, is not guaranteed. The conclusion is thus that

the encryption transformation, in order not to suffer from

the presented vulnerability, should process more than the

document content. The paper presents a basic yet effective

solution, based on mandatorily signing also the MIME

Content-type. Stronger solutions, based on the parsing of the

document being signed could be of course considered.

References

[1] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson.

“Authentication and delegation with smart-cards”. In

TACS’91: Selected papers of the conference on

Theoretical aspects of computer software, pages 93–

113. Elsevier, 1993.

[2] Adobe Systems Inc. “PDF reference, fifth edition:

Adobe portable document format version 1.6”, 2004.

http://www.adobe.com/devnet/pdf/pdf_reference.html.

The Dalì Attack on Digital Signature 193

[3] Adobe Systems Inc. “TIFF 6.0 specification”, 1992.

http://partners.adobe.com/public/developer/en/tiff/TIFF

6.pdf.

[4] Aloaha Sign. http://www.aloaha.com/.

[5] I. Z. Berta, L. Buttyan, and I. Vajda. “Mitigating the

untrusted terminal problem using conditional

signatures”. In ITCC ’04: Proc. of the Int. Conf. on

Inf. Technology: Coding and Computing, Vol. 2, page

12. IEEE Computer Society, 2004.

[6] BMP file format entry from Wikipedia.

http://en.wikipedia.org/wiki/BMP_file_format/.

[7] F. Buccafurri and G. Lax. “Hardening digital signatures

against untrusted signature software”. In Proceedings

of the 2nd IEEE International Conference on Digital

Information Management (ICDIM’07), pages 159–164,

2007, IEEE Press.

[8] F. Buccafurri and G. Lax. “Signing digital documents

in hostile environments”. Int. J. Internet Technology

and Secured Transactions, (to appear).

[9] D. Clarke, B. Gassend, T. Kotwal, M. Burnside, M. van

Dijk, S. Devadas, and R. Rivest. “The untrusted

computer problem and camera-based authentication”.

In Proc. of the 1st Int. Conf. on Pervasive Computing,

volume 2414 of LNCS, pp. 114–124. Springer, 2002.

[10] CNIPA. http://www.cnipa.gov.it.

[11] CNIPA. “Italian technical rules (DPCM 13/01/2004)”.

http://www.cnipa.gov.it/site/_files/DPCM%20040113_

v2.pdf.

[12] CNIPA. Personal communication, April 2008.

[13] R. Cramer and V. Shoup. “Signature schemes based on

the strong RSA assumption”. In CCS ’99: Proceedings

of the 6th ACM conference on Computer and

communications security, pages 46–51, New York,

NY, USA, 1999. ACM Press.

[14] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-

160: “A strengthened version of RIPEMD”. In Fast

Software Encryption, pages 71–82, 1996.

[15] ETSI. “Electronic Signatures and Infrastructures (ESI);

CMS Advanced Electronic Signatures (CAdES)”.

Technical Specification TS 101 733 V1.7.4., 2008.

[16] European Commission. “ITSEC - Information

technology security evaluation criteria: Preliminary

harmonised criteria”. Document COM(90) 314,

Version 1.2, 1991.

[17] European Committee for Standardization. “Security

requirements for signature creation applications”.

CWA14170, 2004.

[18] European Committee for Standardization. “General

guidelines for electronic signature verification”.

CWA14171, 2004.

[19] FESA. http://www.fesa.eu.

[20] N. Freed, N. Borenstein. “Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet

Message Bodies”. IETF RFC 2045, 1996.

[21] H. Gobioff, S. Smith, D. Tygar, and B. Yee. “Smart

cards in hostile environments”. In Proceedings of the

2nd USENIX Workshop on Electronic Commerce,

pages 23–28, 1996.

[22] P. Hoffman. “Enhanced Security Services for S/MIME”.

IETF RFC 2634, 1999.

[23] R. Housely, W. Ford, W. Polk, D. Solo. “Internet X.509

Public Key Infrastructure”. IETF RFC 2459, 1999.

[24] R. Housley. “Cryptographic Message Syntax”. IETF

RFC 3852, Vigil Security, 2004.

[25] A. Jøsang, D. Povey and A. Ho, “What You See is Not

Always What You Sign”. In Proceedings of the

Australian Unix User Group Symposium (AUUG2002),

Melbourne, 4-6 September, 2002.

[26] K. Kain, S.W. Smith and R. Asokan. “Digital

signatures and electronic documents: a cautionary

tale”. In Proceedings of The Sixth Joint Working

Conference on Communications and Multimedia

Security, September 26-27, Portoroz, Slovenia, pp.

293–308, Kluwer, 2002.

[27] B. Kaliski. “PKCS#7: Cryptographic Message Syntax”.

IETF RFC 2315, RSA Laboratories, 1998.

[28] B. Lee and K. Kim. “Fair exchange of digital signatures

using conditional signature”. In Symposium on

Cryptography and Information Security, 2002.

[29] T. Matsumoto. “Human-computer cryptography: An

attempt”. In ACM Conference on Computer and

Communications Security, pages 68–75, 1996.

[30] NIST/NSA. “Fips 180-2 secure hash standard (SHS)”,

2002.

[31] PDF/A Competence Center. http://www.pdfa.org.

[32] R. L. Rivest. “Issues in cryptography”. In Computers,

Freedom, and Privacy Conference, 2001.

[33] R. L. Rivest, A. Shamir, and L. Adleman. “A method

for obtaining digital signatures and public-key

cryptosystems”. Commun. ACM, 21(2):120–126, 1978.

[34] P. Rybar. “Specifying the content and formal

specifications of document formats for QES”. National

Security Authority, Department of Information

Security and Electronic Signature, 2007.

http://www.nbusr.sk.

[35] RSA Laboratories. “PKCS #9 v2.0 Amendment 1”,

2003.

[36] B. Schneier and A. Shostack. “Breaking up is hard to

do: Modelling security threats for smartcards”. In

Proc. USENIX Workshop Smart Card Technology,

1999.

[37] T. Stabell-Kulo, R. Arild, and P. H. Myrvang.

“Providing authentication to messages signed with a

smart card in hostile environments”. In Proceedings of

the USENIX Workshop on Smartcard Technology,

1999.

[38] P. Wayner. Disappearing Cryptography, - Information

Hiding: Steganography and Watermarking. Software

Engineering and Programming. Morgan Kaufmann

Publishers, 2002.

[39] B. Yee and J. D. Tygar. “Secure coprocessors in

electronic commerce applications”. In Proceedings of

the first USENIX Workshop on Electronic Commerce,

pages 155–170, 1995.

Author Biographies

Francesco Buccafurri is a full professor of computer science at the University
“Mediterranea” of Reggio Calabria, Italy. In 1995 he took the PhD degree in
computer science at the University of Calabria. His research interests include
deductive-databases, knowledge-representation and non-monotonic reasoning,
model checking, information security, data compression, data streams, agents,

194 Buccafurri, Caminiti and Lax

P2P systems. He has published several papers in top-level
international journals and conference proceedings. He
serves as a referee for international journals and he is
member of a number of conference PCs.

Gianluca Caminiti holds a PhD degree, received in
March 2006 from the University “Mediterranea” of
Reggio Calabria, Italy. In 2002 he took the Laurea degree
in Electronics Engineering. His research interests cover the
field of artificial intelligence, including multi-agent

systems, logic programming, knowledge representation and non-monotonic
reasoning. He has published a number of papers in top-level international
conference proceedings. He has been involved in several national and
international research projects.

Gianluca Lax is an Assistant Professor of computer science at
the University “Mediterranea” of Reggio Calabria. In 2005 he
took the PhD degree in computer science at University of
Calabria. His research interests include data reduction, data
streams, user modelling, P2P systems, e-commerce and
information security. He is also author of a number of papers
published in top-level international journals and conference

proceedings.

