
Journal of Information Assurance and Security 2 (2007) 275-287

Received December 14, 2007. 1554-1010 $03.50 © Dynamic Publishers, Inc.

Minimality Quality Criterion Evaluation for
Integrated Schemas

Maria da Conceição Moraes Batista and Ana Carolina Salgado

Centro de Informática, Universidade Federal de Pernambuco,

Av. Professor Luis Freire s/n, Cidade Universitária, 50740-540 Recife – PE, Brasil
{mcmb, acs}@cin.ufpe.br

Abstract: Integrated access to distributed data is an important
problem faced in scientific and commercial applications. A data
integration system provides a unified view for users to submit
queries over multiple autonomous data sources. The queries are
processed over a global schema that offers an integrated view of the
data sources. Much work has been done on query processing and
choosing plans under cost criteria. However, not so much is known
about incorporating Information Quality analysis into data
integration systems, particularly in the integrated schema. In this
work we present an approach of Information Quality analysis of
schemas in data integration environments. We discuss the
evaluation of schema quality focusing in the minimality aspect and
define some schema transformations to be applied in order to
improve schema design.

Keywords: Data Integration, Information Quality, Data

Quality, Schema Quality, Minimality.

1. Introduction

Information Quality (IQ) has become a critical aspect in
organizations and, consequently, in Information Systems
research [11, 33, 40, 15, 16, 17]. IQ is a multidimensional
aspect and it is based in a set of dimensions or criteria. The
role of each one is to assess and measure a specific IQ aspect
[32, 37, 40, 4, 3, 1, 41, 12, 13, 38, 42, 43].

The main feature of a data integration system is to free the
user from knowing about specific data sources and interact
with each one. Instead, the user submits queries to a global or
integrated schema, which is a set of views, over a number of
data sources, designed for a particular data integration
application. Commonly, the tasks of query processing
involving query submission, planning, decomposition and
results integration are performed by a software module called
mediator [44]. Each source publishes a data source schema
with the representation of its contents. The mediator
reformulates a user query into queries that refers directly to
schemas on the sources. To successfully reformulate a query,
the mediator uses a set of correspondences, called schema

mappings. There are also the user schemas that represent the
requirements of information defined for one user or a group
of users.

To the best of our knowledge, IQ criteria concerning
global schemas quality in data integration systems are not
defined in literature. As earlier discussed in Kesh [18], we
believe that an alternative to optimize query execution would
be the construction of good schemas, with high quality

scores, and we have based our approach in this affirmative.

In a data integration system, we consider the schemas as
the structures exported by the data sources (source schemas),
the structures that are used by users to build queries (users’
schema) and the integrated schema.

As a starting point, we have compiled IQ classifications
proposed in previous works [1, 14, 32, 33, 40, 41, 26, 27, 42]
and adapted them to address schema quality in data
integration systems. After this analysis we proposed some
variations: some criteria are not considered (not applicable),
and some were adapted to our environment. Consequently,
we obtained a list of three IQ criteria presented in Table 1.

Table 1. IQ Criteria for schema quality analysis

IQ Criteria Definition Metrics
Schema
Completeness

The extent to
which entities
and attributes
of the
application
domain are
represented in
the schema

1 – (#incomplete
items /
#total items) 1

Type
Consistency

Data type
uniformity
across the
schemas

1 – (#inconsistent
schema elements /
#total schema
elements)1

Minimality The extent in
which the
schema is
modeled
without
redundancies

1 – (#redundant
schema elements /
#total schema
elements)1

Schema Completeness

The completeness can be measured as the percentage of real-
world objects modeled in the integrated schema that can be
found in the sources. Therefore, the schema completeness
criterion is the number of concepts provided by the schema
with respect to the application domain.

Type Consistency

1 # denotes the expression “Number of”

276 Batista and
Salgado

Type consistency is the extent in which the attributes
corresponding to the same real world concept are represented
with the same data type across all schemas of a data
integration system.

Minimality

Minimality is the extent in which the schema is compactly
modeled and without redundancies. In our point of view, the
minimality concept is very important to data integration
systems because the integrated schema generated by the
system may have redundancies. The key motivation for
analyzing minimality is the statement that the more minimal
the integrated schema is, the least redundancies it contains,
and, consequently, the more efficient the query execution
becomes [18]. Thus, we believe that our minimality analysis
will help decreasing the extra time spent by mediators
accessing to unnecessary information represented by
redundant schema elements.

In this paper we discuss the use of minimality criterion
analysis in a data integration system, when related to the
system’s schemas. This criterion defines that an schema
element has good quality if it has no redundancies.

The quality analysis is performed by a software module
called IQ Manager or Information Quality Manager which
may be attached to a data integration system. At the moment
of integrated schema generation or update, this module
proceeds with the criteria assessment and then, according to
the obtained IQ scores may execute adjustments over the
schema to improve its design and, consequently, the query
execution. This last step of schema tuning is executed after
the IQ evaluation.

The paper is organized as follows: in section 2 we discuss
Information Quality (IQ) and its use in data integration;
section 3 discusses the formalism used for schemas
representation; in section 4 we discuss minimality formal
specification for the schema context; section 5 presents the
schema improvement algorithm; section 6 presents the
practical results obtained with the proposal implementation
and section 7 discuss the final considerations about the
mentioned topics.

2. Related Works

It has long been recognized that IQ is described or analyzed
by multiple attributes or dimensions. During the past years,
more and more dimensions and approaches were identified in
several works [14, 26, 35, 2].

Naumann and Leser [26] define a framework addressing
the IQ of query processing in a data integration system. This
approach proposes the interleaving of query planning with
quality considerations and creates a classification with twenty
two dimensions divided into three classes: one related to the

user preferences, the second class concerns the query
processing aspects and the last one is related to the data
sources.

The work proposed by Herden [14] deals with measuring
the quality of conceptual database schemas. In this approach,
given a quality criterion, the schema is reviewed by a
specialist in the mentioned criterion.

In [35] the authors propose IQ evaluation for data
warehouse schemas focusing on the analyzability and
simplicity criteria

Some relevant works [5, 29, 24] are concerned with
addressing IQ issues in data integration systems. Peralta in
[29] proposes addressing the problem of data quality
evaluation by a framework which is based on a graph model
of the data integration system. The system is modeled as a
workflow represented by a graph in which the activities
perform the different tasks that extract, transform and convey
data to users. It was presented an experiment with the data
freshness IQ criteria. The work described in [24] also uses
the activities graph representation for the integration system
defined in [29]. The author defined the actual values of the
quality properties at the sources, and at the integrated system
there are the expected values of these properties. The focus
of this work is the definition of strategies for the problem of
managing the changes in the quality of sources, i.e. the
management of the consequences that source quality changes
may have on the system quality. Again, in this work, there is
no reference about specific criteria for schema quality, only
for the data-related criteria freshness and accuracy.

The proposal discussed in [5] is a data integration system
with features to improve the user query processing. One of
the optimization resources is the use of IQ criteria for
selectively materialize data into a local repository.

Other relevant topic to consider in IQ and data integration
is the set of quality criteria for schemas. These are critical
due the importance of the integrated and data sources
schemas for query processing. Some works are related to IQ
aspects of schema equivalence and transformations, as in [2],
where the authors exploit the use of normalization rules to
improve IQ in conceptual database schemas.

We have found many works concerning IQ related to
aspects of data integration. Some of them are concerning
schema quality. But we have not find works related to
investigate the impacts of minimality score in those schemas.

Our proposition is centered in IQ analysis for schemas of
data integration systems. The differential of our approach is
the proposal of processes of schema management associated
with the minimality criterion examination features to obtain
improvements in schema design and query execution.

Minimality Quality Criterion Evaluation for Integrated Schemas 277

3. Schema Representation

In data integration systems, the user submits queries to an
integrated schema, which is a set of views, over a number of
data sources, designed for a particular data integration
application. Each source publishes a data source schema with
the representation of its contents. The data integration system
must reformulate a user query into queries that refers directly
to schemas on the sources. To the reformulation step, the
data integration system requires a set of correspondences,
called schema mappings. Commonly, data integration
systems use XML to represent the data and XML Schema to
represent schemas . To provide a high-level abstraction for
XML Schema elements [30], we use a conceptual data
model, called X-Entity [20, 21] described in what follows.
We also present the schema mappings with this notation.

3.1 X-Entity Model

The X-Entity model is an extension of the ER model [9], i.e.,
it extends it with additional features to represent XML
schemas. The main concept of the model is the entity type,
which represents the structure of XML elements composed
by other elements and attributes. An X-Entity schema S is
denoted by S = (E,R), where E is a set of entity types and
R is a set of relationship types.

• Entity type: an entity type E, denoted by
E({A1,…,An},{R1,…,Rm}), is made up of an entity
name E, a set of attributes {A1,…,An} and relationships
{R1,…,Rm}. The attributes {A1,…,An} represent either
XML attributes or simple XML elements. In X-Entity
diagrams, entity types are rectangles.

• Containment relationship: a containment relationship
between two entity types E and E1, specifies that each
instance of E contains instances of E1. It is denoted by
R(E,E1,(min,max)), where R is the relationship
name and (min,max) are the minimum and the
maximum number of instances of E1 that can be
associated with an instance of E.

• Reference relationship: a reference relationship, denoted
by R(E1,E2, {A11,…,A1n}, {A21,…,A2n}), where
R is the name of the relationship where the entity type E1
references the entity type E2. {A11,…,A1m} and
{A21,…,A2n} are referencing attributes between E1 and
E2 such that the value of A1i, 1 ≤ i ≤ n, in E1

matches a value of A2i, 1 ≤ i ≤ n, in E2.

 3.2 Schema Mappings

There are several types of schema mappings to formally
describe the associations between the concepts of X-Entity
schemas [36, 23]. We consider an X-Entity element as an
entity type, a relationship type or an attribute:

Entity schema mappings: if E1 and E2 are entity types, the
schema mapping E1 ≡ E2 specifies that E1 and E2 are
semantically equivalent, i.e., they describe the same real
world concept and they have the same semantics.

Attribute schema mappings: are the mappings among
attributes of semantically equivalent entities. The mapping
E1.A1 ≡ E2.A2 indicates that A1 and A2 are semantically
equivalent.

Path mappings: specify special types of mappings between
attributes and subentities of semantically equivalent entity
types with different structures.

Before defining a path mapping, it is necessary to define two
concepts: link and path. A link between two X-Entity
elements X1 and X2 (X1.X2) occurs if X2 is an attribute of
the entity type X1, or X1 is an entity of the relationship type
X2 (or vice-versa).

If there is a multiple link, it is called a path. In this case it
may occurs a normal path, X1.....Xn or an inverse path
(X1.X2.....Xn)

-1. Any X-entity element is represented
by paths. A path mapping can occur in four cases (assuming
P1 and P2 as two paths):

Case 1: P1 = X1.X2...Xn and P2 = Y1.Y2...Ym,
where X1≡Y1. The mapping P1≡P2 specifies that the entity
types Xn and Ym are semantically equivalent.

Case 2: P1 = X1.X2...Xn.A and P2=Y1.Y2....Ym.A’,
where X1≡Y1. The mapping P1≡P2 specifies that A∈Xn and
the attribute A’∈Ym are semantically equivalent.

Case 3: P1 = X1.X2...Xn and P2 = (Y1.Y2...Yn)-1,
where X1 ≡ Yn. The mapping P1 ≡ P2 specifies that the
entity types Xn and Y1 are semantically equivalent.

Case 4: P1 = X1.X2...Xn.Ak and P2 = (Y1.Y2...Yn)-
1.Ak’, where X1 ≡ Yn. The mapping P1 ≡ P2 specifies
that the attribute Ak ∈ Xn and the attribute Ak’ ∈ Y1 are
semantically equivalent. Consider the integrated and data
source schemas in Figure 1.

278 Batista and
Salgado

Source Schema S
2
 =

({book
2
({title

2
,year

2
},

 {book
2
_chapter

2
,book

2
_publisher

2
}),

 chapter
2
({ch_title

2
},{}),

 publisher
2
({pub_name

2
},{})},

{book
2
_chapter

2
(book

2
, chapter

2
,(1,N)),

 book
2
_publisher

2
(book2, publisher

2
, (1,1))})

publisher
m

title
m

book
m

chapter
m

contains

chapter_title
m

Integrated Schema S
med

 =

({book
m
({title

m
,publisher

m
},{book

m
_chapter

m
}),

chapter
m
({chapter_title

m
},{})},

{book
m
_chapter

m
(book

m
,chapter

m
,(1,N))})

(1,N)

publisher
1

title
1

book
1 chapter

1refers

chapter_title
1

Source Schema S
1
 =

({book
1
({title

1
,publisher

1
},{}),

chapter
1
({chapter_title

1,
book_title

1
},

 {ref_chapter
1
_book

1
})},

{ref_chapter
1
_book

1

(chapter
1
,book

1
,{book_title

1
},{title

1
})})

book
1
_title

1

year
2

title
2

book
2

chapter
2contains

ch_title
2

(1,N)

publisher
2contains

pub_name
2

(1,1)

Figure 1. X-Entity Schemas
The Table 2 presents the relevant schema mappings

identified to compute bookm and chapterm. The mappings
specify the semantic equivalences between the integrated and
data source schema elements.

Table 2. Schema mappings between the integrated schema
Smed and schemas S1 and S2

MP1:bookm ≡ book1

MP2:bookm.titlem ≡ book1.title1

MP3:bookm.publisherm≡ book1.publisher1

MP4:chapterm ≡ chapter1

MP5:chapterm.chapter_titlem≡
chapter1.chapter_title1

MP6:bookm.bookm_chapterm.chapterm ≡
(chapter1.chapter_ref_book1.book1)

-1

MP7:bookm ≡ book2

MP8:bookm.titlem ≡ book2.title2
MP9:chapterm ≡ chapter2

MP10:bookm.bookm_chapterm.chapterm ≡
book2.book2_chapter2.chapter2
MP11:chapterm.chapter_titlem ≡ chapter2.ch_title2

MP12:bookm.publisherm≡

book2.book2_publisher2.publisher2.pub_name2

In data integration, the mappings are essential to assure the
query processing over integrated schema. We assume that the
mappings and schema elements equivalences are already
defined automatically by the system or even manually by
advanced users. It is very important to point that our work is
not concerned with semantic similarities. The proposed IQ
environment was designed to be included in an existent data
integration system with all the schemas and mappings already

created. Thus, we assume that the IQ module has access to a
pre-existent set of semantic mappings between the data
integration schemas.

Our proposition, centered in IQ analysis for schemas in
data integration systems, has goals of query optimization and
it is detailed in the following sections. The system uses the
Seth’s similarity scale for define schema equivalences [34].
Particularly, in the environment used to experiment our
approach [5, 20, 21, 22], a schema matcher component is
responsible to maintain equivalencies and mappings among
sources and integrated schema.

4. The Minimality Criterion

The key motivation for analyzing minimality is the statement
that the more minimal the integrated schema is, the least
redundancies it contains, and, consequently, the more
efficient the query execution becomes [18]. Thus, we have
based our analysis in the measurement of minimality to help
decreasing the extra time spent by mediator with access to
unnecessary information represented by redundant schema
elements.

It is important to notice that the proposed approach is not
only to be applied in X-Entity schemas. The minimality IQ
may be useful in any integrated schema to minimize
problems resulting from schema integration processes, for
example, to have semantically equivalent concepts
represented more than once in one schema.

4.1 Definitions

It is necessary to consider an existent data integration system.
More formally, a data integration system is defined as
follows:

Definition 1 – Data Integration System (Ð):

A data integration system is a tuple, Ð = <δδδδ,Sm>

where: δδδδ is the set of Si data sources schemas, i.e. δδδδ =

<S1,S2,…,Sw>, where w is the number of data sources in Ð
and Sm is the integrated schema, generated by modules of Ð.
In Ð, the following statements are true:

• Sm is a X-Entity integrated schema such as Sm =

m1 2 n
<E ,E ,...,E > where Ek is a mediation entity (1

≤ k ≤ nm), and nm is the number of entities in Sm;

• ∀Ek ∈ Sm,

k kk k1 k2 ka k1 k2 kr
E({A ,A ,...,A },{R ,R ,...,R }), where

kk1 k2 ka
{A ,A ,...,A } is the set of attributes of Ek, (ak >

0);
kk1 k2 kr

{R ,R ,...,R } is the set of relationships of Ek,

(rk ≥ 0).

• If X1 and X2 are schema elements (attributes, relationships
or entities), the schema mapping X1 ≡ X2 specifies that

Minimality Quality Criterion Evaluation for Integrated Schemas 279

X1 and X2 are semantically equivalent, i.e., they describe
the same real world concept and have the same semantics.

Every information system (even a data integration one) is
constructed from a number of requirements. Moreover,
embedded in this set of requirements is the application
domain information [19], very important to schemas
construction.

In data integration context, we define a schema as
redundant if it has occurrences of redundant entities and/or
relationships. We introduce the definitions 2 to 5.

Definition 2 – Redundant attribute in a single entity:

An attribute Aki of entity Ek, is redundant, i.e.,
Red(Aki,Ek)=1, if ∃Ek.Akj, j≠i, Akj∈

kk1 k2 ka
{A ,A ,...,A }such as Ek.Aki ≡ Ek.Akj, 1≤ i,j

≤ ak

Definition 3 – Redundant attribute in different entities:

An attribute Aki of the entity Ek, Aki ∈

kk1 k2 ka
{A ,A ,...,A } is redundant, i.e. Red(Aki,Ek) =

1, if: ∃Eo, o ≠ k, Eo ∈ Sm, Ek ≡ Eo,

Eo(
oo1 o2 oa

{B ,B ,...,B }), Boj are attributes of Eo and

∃Eo.Boj, Boj ∈
oo1 o2 oa

{B ,B ,...,B } such as

Ek.Aki≡Eo.Boj, 1≤ i ≤ ak, 1 ≤ j ≤ ao.

If for an attribute Aki of entity Ek, Red(Aki,Ek)=0, we
say that Aki is non-redundant.

Definition 4 – Entity Redundancy Degree:

An entity Ek has a positive redundancy degree in schema
Sm, i.e. Red(Ek,Sm)>0, if Ek has at least one redundant
attribute. The redundancy degree is calculated by the
following formula:

Red(Ek,Sm) =

ka

ki k

i = 1

k

Red(A ,E)

a

∑ , (1)

where

 ka

ki k

i = 1

Red(A ,E)∑
 is the number of redundant

 attributes in Ek and;

 ak is the total number of attributes in Ek.

Definition 5 – Redundant Relationship:

Consider a relationship R ∈ Sm between the entities Ek
and Ey represented by the path Ek.R.Ey,
R∈

kk1 kr
{R ,...,R }and R ∈

yy1 yr
{T ,...,T }, where

kk1 kr
{R ,...,R } is the set of relationships of Ek and

yy1 yr
{T ,...,T } is the set of relationships of Ey.

The relationship R connects Ek and Ey if and only if R ∈

kk1 kr
{R ,...,R } and R ∈

yy1 yr
{T ,...,T }.

We define R as a redundant relationship in Sm, i.e.
Red(R,Sm) = 1 if:

∃P1, P1=Ek.Rj.….Ts.Ey, P1 is a path with

Rj ∈
kk1 kr

{R ,...,R } and Ts ∈
yy1 yr

{T ,...,T },

such as P1 ≡ R.

In other words, a relationship between two entities is
redundant if there are other semantically equivalent
relationships which paths are connecting the same two
entities.

It is important to say that a relationship equivalence is
determined by a path equivalence, i.e., two relationships are
semantically equivalents if their paths are also semantically
equivalent.

In a redundancy analysis, where E1 ≡ E2, we must decide
if Red(E1,Sm) = 1 or Red(E2,Sm) = 1, because both
situations are possible. However, only one element must be
marked as redundant and removed, while the other has to be
kept in the schema to assure that domain information will not
be lost. In our approach we use some issues to decide which
one of two redundant elements is marked and removed, as
shown in section 5.

We agree with the work presented in [45], where Zhang
states that redundancy is an asymmetric metric. He states that
an element Ej may cause other element Ek to be viewed as
redundant, but if the order is reversed, Ek may not cause Ej
to be assigned as redundant, as it would be in a symmetric
concept. A simple example is the case of an entity E1,
entirely contained in other entity E2, E1 may be viewed as
redundant but E2 may not.

4.2 Minimality

A schema is minimal if all of the domain concepts
relevant for the application are described only once [18, 39,
31, 25].

Thus, we can say that the minimality of a schema is the
degree of absence of redundant elements in the schema.
Likewise our point of view, Kesh [18] argues that a more
minimal (or concise) schema will make itself more efficient,
and consequently improves the performance of operations
and queries over it.

To measure the minimality, we must first determine the
redundancy degree of the schema. To each one of the next
redundancy definitions (6 and 7), we assume the following:

i) nrel is the total number of relationships in Sm;

ii) nm is the total number of entities in Sm;

280 Batista and
Salgado

iii) rk is the number of relationships of each entity Ek in
Sm;

Definition 6 – Entity Redundancy of a Schema:

The total entity redundancy of a schema Sm is computed
by the formula:

ER(Sm) =

mn

k m

k 1

m

Re d(E ,S)

n

=

∑ (2),

where Red(Ek,Sm) is the redundancy degree of each Ek
in Sm.

Definition 7 – Relationship Redundancy of a Schema:

The relationship redundancy degree of Sm is measured by
the equation:

RR(Sm) =
m

rel

Re d(R,S)

n

 (3),

where #Red(R,Sm) is the number of redundant
 relationships in Sm as stated in Definition 5.

Definition 8 – Schema Minimality:

We define the overall redundancy of a schema in a data
integration system as the sum of the aforementioned
redundancy values: entities (ER) and relationships (RR), by
the formula:

mS m m

Mi = 1 - [ER(S)+RR(S)] (4)

4.3 Example

As an example of minimality evaluation, assume the
redundant schema of Figure 2. The entity artistm, is
redundant because it is semantically equivalent to actorm
and all its attributes have a semantically equivalent
correspondent in actorm.

The relationship moviem_artistm is also redundant
because it has a semantically equivalent relationship
moviem_actorm and actorm ≡ artistm. The schema
minimality value will be obtained as in Figure 3.

 Figure 2. Schema with redundant elements

Red(movie
m
,S

m
) = 0

 Red(actor
m
,S

m
) = 0

 Red(theater
m
,S

m
) = 0

 Red(artist
m
,S

m
)= 1

 ER(S
m
)= 1/(4 + 4) = 0,125

 RR(S
m
)= 1/(4 + 4) = 0,125

Mi(S
m
)= 1 -(0,125 + 0.125) = 0,75

Figure 3. Schema minimality score

The minimality of schema Sm is 75%, what means that the
schema has 25% of redundancy that can possibly be
eliminated.

5. Schema IQ Improvement

After detecting the schema IQ anomalies, it is possible to
restructure it to achieve better IQ scores [2]. In order to
improve minimality scores, redundant elements must be
removed from the schema. We proposed schema
improvement actions specified in the algorithm of Table 3.

The condition of minimality = 1 is the ideal case where the
schema is minimal, and this can occur when all schema
redundancies are eliminated.

The detection of redundant elements processes are
executed in steps 2, 4 and 6, already described in previous
definitions. Redundancies elimination in steps 3, 5 and 7 are
discussed in next sections.

Table 3. Schema improvement algorithm

1 Calculate minimality score and if

minimality = 1, then stop;

2 Search for fully redundant entities in

Sm;

3 If there are fully redundant entities

then eliminate the redundant entities

from Sm;

4 Search for redundant relationships in Sm;

5 If there are redundant relationships

then eliminate the redundant

relationships from Sm;

6 Search for redundant attributes in Sm;

7 If there are redundant attributes

then eliminate the redundant attributes

from Sm;

8 Go to Step 1

5.1 Redundant Entities Elimination

After removing a redundant entity E, its relationships must
be relocated to a semantic equivalent remaining entity.
When removing a redundant entity E1 (E1 ≡ E2), the IQ

Manager transfers the relationships of E1 to the remaining
equivalent entity E2. Three different situations may occur
when moving a relationship Rx, Rx ∈ E1:

i) if Rx ∈ E2 then Rx is deleted because it is no
longer necessary;

ii) if Rx ∉ E2 but ∃Ry, Ry ∈ E2 such as Rx ≡ Ry

then Rx is deleted;

Minimality Quality Criterion Evaluation for Integrated Schemas 281

iii) if Rx ∉ E2 and there is no Ry, Ry∈E2 such as Rx
≡ Ry, then Rx is connected to E2.

The first and second situations are not supposed to cause
any other schema modification besides the entity deletion.
The third case needs more attention, once redundant
relationships of the removed entity have to be relocated as
stated in the following.

Definition 9 – Substitute Entity:

Ek is a fully redundant entity, if and only if
Red(Ek,Sm)=1 and Ek has at least one Substitute Entity
Es, i.e. Subst(Ek)= Es, such as:

• Ek
k kk1 ka k1 kr

({A ,...,A },{R ,...,R }) Akx are attributes

and Rky are relationships of Ek and;

• Es
s ss1 sa s1 sr

({A ,...,A },{R ,...,R }) Asz are attributes

and Rst are relationships of Es and

• Ek≡Es and ∀Ek.Aki ∈
kk1 ka

{A ,...,A }, ∃Es.Asj ∈

ss1 sa
{A ,...,A } with Ek.Aki≡Es.Asj.

An entity Ek is considered fully redundant when all of its
attributes are redundant, i.e. Red(Ek,Sm)=1 and it has a
substitute entity Es in Sm. All the attributes of Ek are
contained in Es. Ek may be removed from the original
schema Sm without lost of relevant information if it is
replaced by its substitute entity Es. Any existing relationship
from Ek may be associated to Es.

Definition 10 – Relationship Relocation:

In a schema Sm, if Subst(Ek)=Es, then Ek can be
eliminated from Sm. In this case, in order to do not lose any
information, Ek relationships may be relocated in Sm. It is
possible to relocate the relationships from Ek to Es according
to the following rules, i.e. ∀Ek.Rkj:

i. If Ek.Rkj ∈
ss1 sr

{R ,...,R } then Rkj must be

deleted because it is no longer useful;

ii. If Ek.Rkj ∉
ss1 sr

{R ,...,R } but ∃Es.Rsp, such that

Ek.Rkj ≡ Es.Rsp then Ek.Rkj must be deleted because
it has an equivalent relationship in Es;

iii. If Ek.Rkj ∉
ss1 sr

{R ,...,R } and ∃ Es.Rsp such as

Ek.Rkj ≡ Es.Rsp then, Es is redefined as

Es
s s

' '

s1 sa s1 sr
({A ,...,A },{R ,...,R }), Asz are

attributes and '

st
R are relationships of Es and

s s

' '

s1 sr s1 sr kj
{R ,...,R } {R ,...,R } R= ∪ .

The relationship relocation is illustrated in Figure 3. In the
Figure 3, the redundant elements are represented in grey.

movie
m

contains actor
m

ssh
m

name
m

artist
m

id
m

nationality
m

contains

artist
m

 actor
m

id
m

 ssh
m

nationality
m

 country
m

country
m

award
m

description
m

year
m

edition
m

category
m

contains

(1,N)

(1,N)

(1,N)

=> Red(artist
m,
S
m
) = 1

Figure 3. Redundant entity elimination

The fully redundant entity artistm (with its attributes) is
removed and it is substituted by the semantically equivalent
actorm. Consequently, the relationship moviem_artistm

may be deleted and it is replaced by the remaining equivalent
relationship moviem_actorm.

The relationship artistm_awardm is relocated to
actorm, turning into the new relationship
actorm_awardm. With these operations, it is possible to
obtain the non redundant schema represented in Figure 4.

movie
m

contains actor
m

ssh
m

name
m

country
m

award
m

description
m

year
m

edition
m

category
m

contains

(1,N)

(1,N)

Figure 4. Schema after redundant entity elimination

5.2 Redundant Relationships Elimination

After removing redundant entities and performing the
necessary relationship relocations, the IQ Manager is
supposed to analyze if there are remaining redundant
relationships to eliminate them. This can be accomplished by
purely deleting from the schema, the relationships identified
as redundant.

After eliminating the redundant relationships the schema
becomes with no relationship redundancies and do not have
had lost of relevant information.

5.3 Redundant Relationships Elimination

282 Batista and
Salgado

The last step of schema improvement algorithm consists in
investigating and eliminating remaining redundant attributes
in schema. Similarly to the redundant relationships removal
step, these attributes may merely be deleted from schema.
This occurs because the schema always has semantically
equivalent attributes to substitute the redundant ones. After
executing the schema improvement steps, the IQ Manager
can recalculate and analyze minimality scores in order to
determine if the desired IQ is accomplished.

6. Experimentation Results

We implemented the IQ Manager in an existing mediator-
based data integration system. It is a software module that
executes minimality analysis and schema improvement
actions.

At the moment of integrated schema generation or update,
the IQ Manager proceeds with the criterion assessment and
then, according to the obtained scores, executes adjustments
over the schema presented in Section 5. More details about
the data integration system can be found in [5].

The module was written in Java and the experiment used
two databases – MySQL and PostgreSQL – to store the data

sources. As mentioned before, the data in the system are
represented with XML and the schemas with XML Schema.
In our experimentation the following steps were executed:

(i) the queries were submitted over an integrated schema
with a some redundancy and the execution times were
measured;

(ii) the redundancy elimination algorithm was executed
over the redundant integrated schema generating a
completely minimal schema;

(iii) the same queries used in step (i) were executed.

The results obtained with these experiments have been
satisfactory since query performance was improved. We used
a real world data integration application in health care
domain, the mediator works with two data sources: one with
data of a public hospital and the other with data obtained
from video-conferencing sessions of real-time consultations
between medical specialists in different locations.

 There are portions of the data source schemas in Figures
5 and 6. The redundant integrated schema is presented in
Figure 7.The schema mappings between the data sources and
the integrated schema are listed in Table 4.

patient
1

clinicalCase
1

refers

patname
1

symptom
1

patsex
1

patbirth
1

pataddress
1

coorp
1

cellphone
1

patid
1

hypothesis
1caseid

1

complaint
1

evolution
1

patient
1

status
1

agent
1

start
1

end
1

healtAgent
1agname

1

email
1

medicalid
1

systemcat
1

login
1

phone
1

agid
1

passw
1

specialty
1

sympid
1

diseaseid
1

description
1

refers

medicalHistory
1

case
1

orders
1

allergies
1

familyHistory
1

histid
1

date
1

refersrefers

Figure 5. Schema of public hospital data source (S1)

Minimality Quality Criterion Evaluation for Integrated Schemas 283

patient
2

case
2refers

name
2

sickness
2

mother
2

birth
2

address
2

healthcare
2

cellphone
2

id
2

hypothesis
1

caseid
1

complaint
1

evolution
1

patient
1

status
1

agent
1

start
1

end
1

physician
2

name
2

cpf
2

crm
2

systemcat
1

login
1

phone
1

id
2

crmstate
1

passw
1

specialty
2

id
2 diseasecode

2

taxonomy
2

refers

company
2

email
2

father
2

rg
2

refers

Figure 6. Schema of telemedicine data source (S2)

Figure 7. Redundant integrated schema (Sm)

Table 4. Schema mappings between the redundant integrated
schema Sm and the source schemas S1 and S2

MP1: casem ≡ clinicalCase1

MP2: casem ≡ case2

MP3: physicianm ≡ healthAgent1

MP4: physicianm ≡ physician2

MP5: patientm ≡ patient1

MP6: patientm ≡ patient2

MP7: ilnessm ≡ disease2

MP8: ilnessm ≡ sickness2
MP9: anamnesism ≡ medicalHistory1
MP10: casem.datem ≡ clinicalCase1.start1

MP11: casem.diagnosticsm ≡ clinicalCase1.hypothesis1

MP12: casem.doctorm ≡ clinicalCase1.agent1

MP13: casem.finaldatem ≡ clinicalCase1.end1

MP14: casem.dischargedatem ≡ clinicalCase1.end1

MP15: casem.complaintm ≡ clinicalCase1.maincomplaint1

MP16: casem.hypothesism ≡ clinicalCase1.hypothesis1

MP17: casem.datem ≡ case2.startdate1

MP18: casem.diagnosticsm ≡ case2.diagnostics2

MP19: casem.doctorm ≡ case2.doctor2

MP20: casem.hypothesism ≡ case2.diagnostics2

MP21: casem.maincomplaintm ≡ case2.complaint2

MP22: casem.complaintm ≡ case2.complaint2

MP23: physicianm.namem ≡ healthAgent1.agname1

MP24: physicianm.specialtym ≡ healthAgent1.specialty1

MP25: physicianm.emailm ≡ healthAgent1.email1

MP26: physicianm.codem ≡ healthAgent1.agid1

MP27: physicianm.branchm ≡ healthAgent1.specialty1

MP28: physicianm.crmm ≡ healthAgent1.medicalid1

MP29: physicianm.namem ≡ physician2.name2

MP30: physicianm.addressm ≡ physician2.address2

MP31: physicianm.specialtym ≡ physician2.specialty2

MP32: physicianm.codem ≡ physician2.cpf2

MP33: physicianm.cpfm ≡ physician2.cpf2

MP34: physicianm.branchm ≡ physician2.specialty2

MP35: physicianm.disciplinem ≡ physician2.specialty2
MP36: physicianm.emailm ≡ physician2.email2

MP37: physicianm.crmm ≡ physician2.crm2
MP38: patientm.namem ≡ patient1.patname1

MP39: patientm.addressm ≡ patient1.pataddress1

MP40: patientm.companym ≡ patient1.coorp1

MP41: patientm.phonem ≡ patient1.cellphone1

MP42: patientm.coorpidm ≡ patient1.coorp1

MP43: patientm.namem ≡ patient2.name2

MP44: patientm.addressm ≡ patient2.address2

MP45: patientm.companym ≡ patient2.company2

MP46: patientm.cellphonem ≡ patient2.cellphone2

MP47: patientm.coorpidm ≡ patient2.company2

MP48: patientm.rgm ≡ patient2.rg2

MP49: anamnesism.idm ≡ medicalHistory1.histid1

MP50: anamnesism.allergiesm ≡ medicalHistory1.allergies1

MP51: anamnesism.caseidm ≡ medicalHistory1.case1

MP52: anamnesism.proceduresm ≡ medicalHistory1.orders1

MP53: anamnesism.datem ≡ medicalHistory1.date1

MP54: anamnesism.casem ≡ medicalHistory1.case1

MP55: anamnesism.familyHistm ≡

284 Batista and
Salgado

medicalHistory1.familyHistory1

MP56: anamnesism.ordersHistm ≡ medicalHistory1.orders1

MP57: anamnesism.allergicHistm ≡ medicalHistory1.

allergies1

MP58: anamnesism.familyAnnotationm ≡

medicalHistory1.familyHistory1

MP59: casem.casem_patientm.patientm ≡

clinicalCase1.clinicalCase1_ref_patient1.patient1
MP60: casem.casem_patientm.patientm ≡

case2.case2_ref_patient2.patient2

MP61: casem.casem_ref_physicianm.physicianm ≡

clinicalCase1.clinicalCase1_ref_healthAgent1.healthAgent1

MP62: casem.casem_ref_physicianm.physicianm ≡

case2.case2_ref_physician2.physician2

MP63: ilnessm.idm ≡ disease1.id1

MP64: ilnessm.diseaseidm ≡ disease1.diseaseid1

MP65: ilnessm.descriptionm ≡ disease1.description1
MP66: ilnessm.sicknessidm ≡ disease1.diseaseid1

MP67: ilnessm.idm ≡ sickness2.id2

MP68: ilnessm.diseaseidm ≡ sickness2.diseasecode2

MP69: ilnessm.taxonomym ≡ sickness2.taxonomy2

MP70: ilnessm.sicknessidm ≡ sickness2.diseasecode2

MP71: ilnessm.taxonomym ≡ sickness2.classification2
MP72: casem.casem_ref_ilnessm.ilnessm ≡

clinicalCase1.clinicalCase1_ref_symptom1.symptom1
MP73: anamnesism.anamnesism_ref_casem.casem ≡

(clinicalCase1.clinicalCase1_ref_medicalHistory1.

medicalHistory1)
-1

MP74: casem.casem_ref_ilnessm.ilnessm ≡

case2.case2_ref_sickness2.sickness2

After analyzing the schemas of Figures 5, 6 and 7 and
schema mappings of Table 4, the IQ module calculates the
following minimality values for the integrated schema:
Red(casem,Sm) = 0.3750; Red(patientm,Sm) =

0.1250; Red(physicianm,Sm) = 0.2778;

Red(ilnessm,Sm) = 0.3333.

These entity minimality scores result in a integrated
schema with overall minimality degree of 72.22%. The
27.78% of redundancy can be completely eliminated by the
algorithm presented in Section 5. The output of the IQ
manager adjustment process is the minimal integrated schema
presented in Figure 8 and non-redundant set of schema
mappings in Table 5.

Table 5. Schema mappings between the minimal integrated
schema Sm and the source schemas S1 and S2

MP1: casem ≡ clinicalCase1

MP2: casem ≡ case2

MP3: physicianm ≡ healthAgent1

MP4: physicianm ≡ physician2

MP5: patientm ≡ patient1

MP6: patientm ≡ patient2

MP7: ilnessm ≡ disease2

MP8: ilnessm ≡ sickness2
MP9: anamnesism ≡ medicalHistory1
MP10: casem.datem ≡ clinicalCase1.start1

MP11: casem.diagnosticsm ≡ clinicalCase1.hypothesis1

MP12: casem.doctorm ≡ clinicalCase1.agent1
MP14: casem.dischargedatem ≡ clinicalCase1.end1

MP15: casem.complaintm ≡ clinicalCase1.maincomplaint1
MP17: casem.datem ≡ case2.startdate1

MP18: casem.diagnosticsm ≡ case2.diagnostics2

MP19: casem.doctorm ≡ case2.doctor2
MP22: casem.complaintm ≡ case2.complaint2
MP23: physicianm.namem ≡ healthAgent1.agname1

MP24: physicianm.specialtym ≡ healthAgent1.specialty1

MP25: physicianm.emailm ≡ healthAgent1.email1
MP26: physicianm.codem ≡ healthAgent1.agid1
MP28: physicianm.crmm ≡ healthAgent1.medicalid1
MP29: physicianm.namem ≡ physician2.name2

MP30: physicianm.addressm ≡ physician2.address2

MP31: physicianm.specialtym ≡ physician2.specialty2

MP32: physicianm.codem ≡ physician2.cpf2
MP36: physicianm.emailm ≡ physician2.email2

MP37: physicianm.crmm ≡ physician2.crm2
MP38: patientm.namem ≡ patient1.patname1

MP39: patientm.addressm ≡ patient1.pataddress1

MP40: patientm.companym ≡ patient1.coorp1
MP41: patientm.phonem ≡ patient1.cellphone1
MP43: patientm.namem ≡ patient2.name2

MP44: patientm.addressm ≡ patient2.address2
MP45: patientm.companym ≡ patient2.company2
MP46: patientm.cellphonem ≡ patient2.cellphone2

MP48: patientm.rgm ≡ patient2.rg2
MP49: anamnesism.idm ≡ medicalHistory1.histid1

MP50: anamnesism.allergiesm ≡ medicalHistory1.allergies1

MP51: anamnesism.caseidm ≡ medicalHistory1.case1

MP52: anamnesism.proceduresm ≡ medicalHistory1.orders1

MP53: anamnesism.datem ≡ medicalHistory1.date1

MP55: anamnesism.familyHistm ≡

medicalHistory1.familyHistory1

MP59: casem.casem_patientm.patientm ≡

clinicalCase1.clinicalCase1_ref_patient1.patient1
MP60: casem.casem_patientm.patientm ≡

case2.case2_ref_patient2.patient2

MP61: casem.casem_ref_physicianm.physicianm ≡

clinicalCase1.clinicalCase1_ref_healthAgent1.

healthAgent1

MP62: casem.casem_ref_physicianm.physicianm ≡

case2.case2_ref_physician2.physician2
MP63: ilnessm.idm ≡ disease1.id1

MP64: ilnessm.diseaseidm ≡ disease1.diseaseid1

MP65: ilnessm.descriptionm ≡ disease1.description1

MP66: ilnessm.idm ≡ sickness2.id2

MP67: ilnessm.diseaseidm ≡ sickness2.diseasecode2

MP68: ilnessm.taxonomym ≡ sickness2.taxonomy2

MP69: ilnessm.sicknessidm ≡ sickness2.diseasecode2

MP70: ilnessm.taxonomym ≡ sickness2.classification2
MP62: casem.casem_ref_physicianm.physicianm ≡

case2.case2_ref_physician2.physician2

MP63: ilnessm.idm ≡ disease1.id1

MP64: ilnessm.diseaseidm ≡ disease1.diseaseid1

MP65: ilnessm.descriptionm ≡ disease1.description1
MP66: ilnessm.sicknessidm ≡ disease1.diseaseid1

MP67: ilnessm.idm ≡ sickness2.id2

MP68: ilnessm.diseaseidm ≡ sickness2.diseasecode2

MP69: ilnessm.taxonomym ≡ sickness2.taxonomy2

MP70: ilnessm.sicknessidm ≡ sickness2.diseasecode2
MP72: casem.casem_ref_ilnessm.ilnessm ≡

clinicalCase1.clinicalCase1_ref_symptom1.symptom1
MP73: anamnesism.anamnesism_ref_casem.casem ≡

(clinicalCase1.clinicalCase1_ref_medicalHistory1.

medicalHistory1)
-1

MP74: casem.casem_ref_ilnessm.ilnessm ≡

case2.case2_ref_sickness2.sickness2

Figure 8. Minimal integrated schema (Sm)

To experiment our arguments and points of view, we
choose four types of user queries and executed the same
query over the redundant schema of Figure 7 and over the
minimal schema of Figure 8. Each query was submitted five
times, and its processing times were computed. In all of the
four queries, the average execution time was lower when the
integrated schema is minimal, as it can be seen in the user
queries UQ1 to UQ4 presented as follows.

UQ1: simple selection

This user query is a simple selection asking for all the
attributes of the mediation entity anamnesism. The graph
of Figure 9, illustrates the execution times.

Minimality Quality Criterion Evaluation for Integrated Schemas 285

Figure 9. Execution times of a simple selection user query

(UQ1)

The average execution time for the first query UQ1 was
69,372 seconds in a redundant schema versus 37,009 seconds
for the same query submitted over a minimal schema. The
query returned over 1.000 records. This represented a
percentage gain of 46,65%.

UQ2: selection with condition

This query is a selection asking for all the attributes of the
anamnesism entity with surgery procedures.

The graph of Figure 10, illustrates the set of execution
times of UQ2 submitted over the redundant and the minimal
schemas.

Figure 10. Execution times of a user query with condition
(UQ2)

The average execution time was 11,831 seconds over the
redundant schema and 6,897 seconds for the same query
submitted over a minimal schema.

The query returned over 500 records. This represents a
percentage gain of 41,70%.

UQ3: Join with two condition tests

This query is a join between casem and patientm entities.
It asks for case elements which patients live in city of
“Recife” and state of “Pernambuco”. The graph of Figure 11,
illustrates the UQ3 execution times.

Figure 11. Execution times of a user query with containment
relationship and condition (UQ3)

The average execution time in this case was 35,913
seconds in the first submission over the redundant schema
versus 13,590 seconds for the same query submitted over the
minimal schema. This represents a percentage improvement
of 62,16%.

UQ4: join with one condition

This query is a join between the entities case and physician,
asking for the attributes of the cases which physicians have
last name “Kaufmann”. The graph of Figure 12, illustrates
the execution times.

The average execution time in this case was 12,078
seconds in a redundant schema versus 8,325 seconds for the
query submitted over a minimal schema. This represents a
percentage gain of 31,07%. Thus, this confirms the existence
of improvements in query execution time.

Figure 12. Execution times of a join (UQ4)

It is important to observe that in all of the tested cases, the
results confirm the existence of improvements in query
execution time. The execution times for queries over the
minimal schema were significantly minor. The four query
execution times are summarized in Table 6 and in Figure 13.

Table 6 Summary of query execution times

 Average Times (Sec) Performance

Query
Redundant

Schema

Minimal

Schema
Gain(%)

UQ1 Simple selection 69,3720 37,0094 46,65%

UQ2 Selection with condition 11,8312 6,8970 41,70%

UQ3 Join with two 35,9128 13,5904 62,16%

286 Batista and
Salgado

conditions

UQ4 Join with one condition 12,0776 8,3248 31,07%

 Average Gain 45,40%

Figure 13. Summary of execution times of UQ

By comparing the final results, it is possible to see that the
query performance was improved in an average time of
45,40%.

7. Conclusions and Future Works

Data integration systems may suffer with lack of quality in
their produced query results. They can be outdated,
erroneous, incomplete, redundant and so on. To minimize the
impact of these problems, we propose a quality approach that
serves to analyze and improve the integrated schema
definition and consequently, the query execution. The main
contribution of the presented approach is the specification of
minimality IQ criteria assessment methods for the
maintenance of high quality integrated schemas with
objectives of achieving better integrated query execution. We
have implemented the IQ Manager in an existing data
integration system module, to analyze the integrated schema
minimality and to eliminate the redundant items. The detailed
contributions are:

i. Consolidation of IQ usage in data integration systems
through the classification of a set of criteria specifically
selected for this kind of environment;

ii. Specification of a relevant schema IQ criterion, i.e.
minimality, in the context of a data integration system;

iii. Analysis of system’s elements according to the
specified minimality criteria. We presented the IQ analysis of
schemas associated with an algorithm for minimality
improvement.

iv. The proposed approach was experimentally validated
through specification, implementation and tests of the IQ
Manager in a data integration system with a real health care
application.

It is important to mention that we have found several
works concerning IQ related to aspects of data integration
and schemas. However, none of them were concerned to
verify the impacts of minimality in those schemas.

As future work, we will formally describe and implement
the algorithms to evaluate others schema related IQ criteria.
We already have started the specification of the type

consistency and completeness criteria using similar concepts
as used in [10, 13, 40]. More detail about our work with other
IQ criteria is presented in [6, 7, 8].

Possibly, we also may extend our IQ studies to analyze the
quality impacts in information retrieval area.

References

[1] ANGELES P. and MACKINNON, L. Quality
Measurement and Assessment Models including Data
Provenance to grade Data sources. In proceedings of
International Conference on Computer Science and
Information Systems, Athens, Greece, 2005.

[2] ASSENOVA, P. and JOHANNESON, P. Improving
Quality in Conceptual Modeling by the Use of Schema
Transformations. In Proceedings 15th Int. Conf. of
Conceptual Modeling (ER´96), Cottbus, Germany,
1996.

[3] BALLOU, D.P. and PAZER, H.L. Modeling Data and
Process Quality in Multi-input, Multi-output Information
Systems. Management Science 1985.

[4] BALLOU, D. P. and PAZER H.: Modeling
Completeness versus Consistency Tradeoffs in
Information Decision Contexts. IEEE Transactions on
Knowledge and Data Engineering, 15(1), 2003.

[5] BATISTA, M. C., LÓSCIO, B. F. and SALGADO, A.
C. Optimizing Access in a Data Integration System with
Caching and Materialized Data. In Proceedings of 5th
ICEIS, 2003.

[6] BATISTA, M. C. and SALGADO, A.C. Minimality
Quality Criterion Evaluation for Integrated Schemas. In
Proceedings of the Second International Conference on
Digital Information Management (ICDIM'07). Lyon,
France. 2007.

[7] BATISTA, M. C. and SALGADO, A.C. Data Integration
Schema Analysis: An Approach with Information
Quality. In Proceedings of the 12th International
Conference on Information Quality (ICIQ 07). MIT,
Massachusetts, USA. 2007.

[8] BATISTA, M. C. and SALGADO, A.C. Information
Quality Measurement in Data Integration Schemas. In
Proceedings of the 5th International Workshop on Quality
in Databases at VLDB. Vienna, Austria. 2007.

[9] CHEN, P.P. The Entity-Relationship Model: Toward a
Unified View of Data. ACM Transactions on Database
Systems, 1976.

[10] DAI, B., T., KOUDAS, N., OOI, B. C., SRIVASTAVA,
D. and VENKATASUBRAMANIAN, S. Column
Heterogeneity as a Measure of Data Quality, in
Proceedings of 1st Int'l VLDB Workshop on Clean
Databases, 2006.

[11] GE, M. and HELFERT, M. A Review of Information
Quality Research - Develop a Research Agenda. In
Proceedings of the 12th International Conference on
Information Quality (ICIQ 07). MIT, Massachusetts,
USA. 2007.

[12] GERTZ, M.; TAMER OZSU, M.; SAAKE, G. and
SATTLER, K.: “Report on the Dagstuhl Seminar: Data
Quality on the Web”. SIGMOD Record, 33(1), March
2004.

[13] HALEVY, A. Why Your Data Don't Mix. ACM Queue,

3(8), 2005.

Minimality Quality Criterion Evaluation for Integrated Schemas 287

[14] HERDEN, O. Measuring Quality of Database Schema
by Reviewing - Concept, Criteria and Tool. In
Proceedings of 5th Intl Workshop on Quantitative
Approaches in Object-Oriented Software Engineering,
2001.

[15] JARKE, M. and Y. VASSILIOU. Data Warehouse
Quality: A Review of the DWQ Project. in Proceedings
of the 1997 Conference on Information Quality.
Cambridge, MA, 299-313, 1997.

[16] JARKE, M., JEUSFELD, M. A., QUIX, C. and
VASSILIADIS, P.: Architecture and Quality in Data
Warehouses: An Extended Repository Approach. Inf.
Syst. 24(3): 229-253, 1999.

[17] JIANG L., BORGIDA, A., TOPAGLOU T. and
MYLOPOULOS J. Data Quality By Design: A Goal-
Oriented Approach. In Proceedings of the 12th
International Conference on Information Quality (ICIQ
07). MIT, Massachusetts, USA. 2007.

[18] KESH, S. Evaluating the Quality of Entity Relationship
Models. Inform. Software Technology. 1995.

[19] KOTONYA, G and SOMMERVILLE, I. Requirements
Engineering: Processes and Techniques. 1st Edition,
Wiley & Sons, 1997.

[20] LÓSCIO, B. F., Managing the Evolution of XML-Based
Mediation Queries. Tese de Doutorado. Curso de
Ciência da Computação. Centro de Informática, UFPE,
Recife, 2003.

[21] LÓSCIO, B. F., SALGADO, A. C. and GALVÃO, L.
R.: Conceptual Modeling of XML Schemas, In
Proceedings of Fifth International Workshop on Web
Information and Data Management (WIDM 2003), New
Orleans Louisiana USA, 102-105, 2003.

[22] LÓSCIO, B. F. and SALGADO, A. C.: Generating
Mediation Queries for XML-based Data Integration
Systems, In Proceedings of XVIII Brazilian Symposium
on Databases (SBBD 2003), Manaus Amazonas Brazil,
2003.

[23] LOSCIO, B. F., COSTA, T. A., SALGADO, A. C. and
FREITAS, J. S. Query Reformulation for an XML-based
Data Integration System, In: The 21st Annual ACM
Symposium on Applied Computing, ACM Press, Dijon,
France, 2006.

[24] MAROTTA, A. and RUGGIA, R. Managing Source
Quality Changes in Data Integration Systems. In
proceedings of 2nd International Workshop on Data and
Information Quality (DIQ’05), 2005.

[25] MOODY, D. Measuring the Quality of Data Models: An
Empirical Evaluation of the Use of Quality Metrics in
Practice, New Paradigms in Organizations, Markets &
Society. In Proceedings of 11th European Conference on
Information Systems, 2003.

[26] NAUMANN, F. and LESER, U. Quality-driven
Integration of Heterogeneous Information Systems. In
Proceedings of the 25th VLDB. 1999.

[27] NAUMANN, F. and ROLKER, C. Assessment Methods
for Information Quality Criteria. In Proceedings of the
Conference on International Quality (IQ00) Boston,
2000.

[28] NAUMANN F. From Databases to Information Systems
– Information Quality Makes the Difference. In
Proceedings of The International Conference on
Information Quality, 2001.

[29] PERALTA, V., RUGGIA, R., KEDAD, Z. and
BOUZEGHOUB, M. A Framework for Data Quality
Evaluation in a Data Integration System. In Proceedings
of 19º Simposio Brasileiro de Banco de Dados
(SBBD’2004), 2004.

[30] PETERSON, D., BIRON, P. V., MALHOTRA, A. and
SPERBERG-MCQUEEN., C. M. XML Schema 1.1 Part

2: Data Types – W3C Working Draft, 2006.
http://www.w3.org/TR/xmlschema11-2/.

[31] PIATTINI, M., GENERO, M. and CALERO, C. Data
Model Metrics. In Handbook of Software Engineering
and Knowledge Engineering: Emerging Technologies,
World Scientific, 2002.

[32] REDMAN T.C.: Data Quality for the Information Age.
Artech House, 1996.

[33] SCANNAPIECO, M. Data Quality at a Glance.
Datenbank-Spektrum 14, 6–14. 2005.

[34] SHETH, A. and KASHYAP, V. So Far (Schematically)
yet So Near (Semantically), In Proceedings of IFIP WG
2.6 Conference on Semantics of Interoperable Database
Systems (Data Semantics 5), North Holland, Amsterdam,
1993.

[35] SI-SAID, S. C. and PRAT, N. Multidimensional
Schemas Quality: Assessing and Balancing Analyzability
and Simplicity, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2814, 140—151. 2003.

[36] SPACCAPIETRA, S. and PARENT, C. View
Integration: a Step Forward in Solving Structural
Conflicts. IEEE Transactions on Knowledge and Data
Engineering, 6(2), 1994.

[37] STVILIA, B., GASSER, L., TWIDALE, M. B. and
SMITH, L.C. A framework for information quality
assessment. In Journal of the American Society for
Information Science and Technology, 58(12), 2007.

[38] TAYI, G. K. and BALLOU, D. P. Examining Data
Quality. Communications of the ACM 41(2), 1998.

[39] VARAS, M. Diseño Conceptual de Bases de Datos: Un
enfoque Basado en la Medición de la Calidad", Actas
Primer Workshop Chileno de Ingeniería de Software,
Punta Arenas, 2001.

[40] WAND, Y. and WANG, R.Y. Anchoring Data Quality
Dimensions in Ontological Foundations.
Communications of the ACM 39(11), 86—95, 1996.

[41] WANG, R., KON, H. and MADNICK, S. Data Quality
Requirements Analysis and Modeling, In Proceedings of
9th International Conference of Data Engineering,
Vienna, Austria, 1993.

[42] WANG R.Y. and STRONG D.M. Beyond Accuracy:
What Data Quality Means to Data Consumers. Journal of
Management Information Systems, 12(4), 1996.

[43] WANG, R.Y. A Product Perspective on Total Data
Quality Management. Communications of the ACM
41(2), 58--65. 1998.

[44] WIEDERHOLD, G., Mediators in the Architecture of
Future Information Systems. IEEE Computer. 2, 1992.

[45] ZHANG, Y., CALLAN, J. and MINKA. T. Novelty and
Redundancy Detection in Adaptive Filtering. In
Proceedings of the 25 Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval (SIGIR), 2002.

Author Biographies

288 Batista and
Salgado

 Maria da Conceição Moraes Batista

 received her Bachelor degree and MS degree in computer science
from Center for Informatics of Universidade Federal de Pernambuco –
UFPE – (Brazil) in 1988 and 2003, respectively. Currently she is a PhD
student in Center for Informatics of UFPE. She has over 10 years of
software development. Her major research areas are information
quality, databases, Web systems and software development.

Ana Carolina Salgado is currently an
Associate Professor at the Center for Informatics of Universidade
Federal de Pernambuco – UFPE – (Brazil). She obtained her Doctorate
in Computer Science from the University of Nice (France) in 1988, her
Master (1983) and her Bachelor degree (1980) in Computer Science
from UFPE. Her main research interests are in the areas of databases,
information integration on the Web and cooperative systems. Dr.
Salgado has published over a hundred technical articles in conference
proceedings and journals. In her academic activities she has advised 34
MSc and 6 PhD theses. She is member of the ACM and of the
Brazilian Computer Society. She also was head of Center for
Informatics and coordinator of the Computer Science undergraduate
course at UFPE.

