
Journal of Information Assurance and Security 3 (2008) 203-211

Received August 20, 2008. 1554-1010 $03.50 © Dynamic Publishers, Inc

A Memory Efficient Anti-Spoofing Method

Hikmat Farhat

Notre Dame University, Computer Science Department,
Zouk Mosbeh, Lebanon

hikmat.farhat@acm.org

Abstract: Large-scale denial of service (DoS) attacks present a
grave threat to hosts on the Internet. The use of source IP address

spoofing makes the situation much worse. The Implicit Token
Scheme (ITS), presented in [9], was demonstrated to be an
efficient method to defend against IP spoofing. ITS uses the path

taken by a packet, which cannot be controlled by the attacker, and
binds it to the source IP address of the same packet to form a

token. All legitimate tokens are stored in a tokens database on

border routers. When a packet is received, the border router checks
the validity of the token it carries by consulting the tokens
database. Only packets carrying valid tokens will be forwarded
while the others are dropped. Although very effective, ITS requires

border routers to maintain state information for thousands of
simultaneous connections which could require more memory than
is available on typical routers.

In this paper we add a component to ITS to improve its scalability

using Bloom filters. We show that implementing ITS using Bloom
filters is simple, saves a substantial amount of router memory, and
does not impose large strain on routers. We also modify the basic

method to allow for it to be incrementally deployed. The efficiency
of the method is demonstrated through simulations by using real-
world Internet data.

Keywords: about six key words separated by commas.

1. Introduction

Today's society has become heavily dependent on the

Internet and the services it offers. Mission critical

applications have been deployed using the Internet including

banking and government transactions. Unfortunately, with

the rapid increase in the use of the Internet as a mission

critical service came the proliferation of attacks on the

Internet infrastructure. The Distributed Denial of Service

(DDoS) attacks are one of the most threatening of those

attacks. One particular type of DDoS, the flooding attack,

floods the link of the victim network with a large amount of

packets leading to a high rate of packet drops for legitimate

users. Recent studies have shown that the number of DDoS

attacks is actually more prevalent than previously thought

[14]. What makes protection against IP spoofing paramount

is that many approaches that could mitigate DDoS are

inefficient in the presence of IP spoofing.

Victims of DDoS attacks cannot authenticate the source

address of the received packets because of the destination-

based forwarding paradigm of the Internet Protocol (IP).

The straightforward method of installing filters at border

routers, is rendered inefficient by IP spoofing. It very easy

for attackers to choose randomly an IP address as the source

for different packets and thus make the protection method

infeasible.

Devising methods to detect and block spoofed packets has

been actively pursued in the research community. Many

solutions have been proposed to the IP spoofing problem

are either a variation of the IP traceback method [19,22,28]

or try to restrict the address space available to attacker(s) as

in [7,16]. A third class of solutions which gained popularity

recently is based on the concept of capabilities [1,17].

There is a class of DDoS attacks in which the attackers use

intermediate compromised hosts, called zombies or botnets,

to mount their attacks [6]. In this class the attackers take

control of unwitting hosts and use them later on to mount

coordinated DDoS attacks against the victims. In the

presence of such class of attacks one could argue that the

attackers do not need to spoof the source address because

they are not using directly their hosts to mount the attacks

and therefore will not reveal their IP addresses.

Nevertheless, IP spoofing is still popular as shown in [15].

What is more, we believe that IP spoofing will be used often

in the future for many reasons. First, it is more difficult to

block spoofed addresses because they don't have a pattern

unlike real addresses.

Second, some attacks, like reflector attacks [18] where the

attacker poses as some victim to send packets to a number of

hosts with the results that the victim receives a large

number of replies, rely on IP spoofing to work.

Based on the above discussion about the relative ease in

which attackers can fake their source IP address, it remains

true that they cannot control the paths taken by packets they

send to the victim. This property of being unable to forge the

paths taken by packets to reach the target remain one of the

cornerstones of defenses against DDoS attacks which

employ spoofed packets. In that spirit we have recently

proposed the Implicit Token Scheme (ITS) as a method to

mitigate DDoS attacks [9].

The key idea in ITS is that attackers cannot complete the

TCP three-way handshake if they use spoofed source

addresses. The method was demonstrated to be a highly

effective defense against spoofed traffic and in subsequent

work was shown to be easily deployable on the current

Internet infrastructure [10]. The main shortcoming of ITS,

however, was its need to maintain state information for

many thousands of flows which requires a large amount of

router memory. Reducing the memory requirements of ITS

is the main contribution of this paper.

Wire-speed filters on Internet routers are usually stored in

Ternary Content Addressable Memory (TCAM) which is

expensive. Advanced router line cards usually have only 1

TCAM chip which can hold 256k entries to be shared with

the router's forwarding table. This limits any DDoS filtering

solution to less than 100k simultaneous flows which, for

A Memory Efficient Anti-Spoofing Method

204

busy sites, is far short of what is expected. Therefore it is

paramount for any proposed solution to IP spoofing to be

scalable and to save router memory. For more information

on router's memory requirements see [3] and references

therein.

The rest of the paper is organized as follows. The ITS

method is discussed in Section 2. The basic theory of

Figure 1. Defense model.

Bloom filters and its adaptation to the ITS method is

presented in Section 3. The preliminary implementation

and the results of the performed simulations are also

presented in Section 4. In Section 4 we discuss the

incremental deployment strategies of ITS and the partial

matching needed to implement it. We also argue about the

benefits of a particular Bloom filter implementation over

other strategies. Other work related to DDoS and the

application of Bloom filters in networking, are presented in

5. We conclude with Section 6.

2. The ITS Method

The Implicit Token Scheme (ITS) provides protection

against IP spoofed traffic by having Internet Service

Providers (ISPs) install filters at the border router as shown

in Figure 1. The installed filters contain tokens that should

be matched by arriving packets to be forwarded.

The token is composed of an IP address and a path

signature. The path signature is a collection of values

marked by intermediate routers on the path traveled by the

packet from source to destination. These signatures, unlike

the source IP address, are uncontrollable by the attacker and

therefore cannot be forged. Once the filter(s) is installed a

Border router will forward packets if they carry tokens that

match entries in the tokens database; otherwise the packet

will be dropped. This way IP addresses are tightly bound to

unforgeable path signature. Furthermore, since the token is

48 bit long the probability of a spoofed address having the

correct signature is extremely small.

While the basic technique is straightforward the

implementation is not a simple one. The first question that

arises is how to collect valid tokens. An obvious solution is

to collect tokens during regular traffic when there is no

DDoS attack. There are many problems with this approach.

First, during a DDoS attack the victim "sees" a large

number of previously unseen addresses and all of them are

considered spoofed because they are not in the tokens

database. Second, due to frequent routing changes the path

signature most likely will change from the time it is recoded

to the time it is used which leads to may false positives. A

better approach to building the database is to add the tokens

for each TCP session separately after the TCP handshake is

completed. This guarantees the integrity of the token

because an attacker using spoofed source address cannot

complete the TCP handshake.

An added bonus is that the path signature is up to date and

rarely changes on the order of a TCP transaction. One could

reserve a portion of the bandwidth, say, 95% to already

established connections which are guaranteed to be non-

spoofed, and the remaining 5% to the rest of the traffic to

allow for new connections. This method has a serious

shortcoming: an attacker can flood the 5% of bandwidth

reserved for connection establishment and thus prevents new

clients from connecting to the target.

To solve the denial of connection attack we use the concept

of a SYN cookie. Originally the SYN cookie was used to

protect against SYN attacks. In this work we use it on the

Border Router instead of the target. When the Border router

receives a TCP SYN segment having a destination address

equal to that of the target it responds with a SYN-ACK

segment on the behalf of the target. This is done without

maintaining state information by using a special value for

the Initial Segment Number in the TCP header. For more

details on SYN cookies see [25]. When a Border router

receives a TCP segment it takes one of the following steps:

• If the segment has SYN=1, it replies with a SYN-ACK

that includes the cookie as ISN. This is shown on lines

2-6 in Figure 2.

• If the segment has SYN=0, it checks if the segment

contains a valid token then it is forwarded as it shown

in Figure 2 on lines 7-9. Otherwise it performs the step

below.

• It checks the sequence number. If it is a response to a

valid cookie then the token is added to the tokens

database and the segment is forwarded. This is shown

in Figure 2 on lines 10-13.

• If all of the above checks fail the segment is dropped.

In short, when a border router receives a packet it runs the

algorithm shown below.

1 for each packet pkt

 2 do

3 if pkt.SYN=1

4 then

5 sendCookie

6 Exit

7 if pkt.TOKEN in D

8 then

9 forward packet

10 elseif checkCookie(pkt)=TRUE

11 then

205 Farhat

12 forward pkt

13 insert pkt.TOKEN in D

14 else

15 drop pkt

Figure 2. Packet Filtering in ITS

The efficiency of the method has been demonstrated in [9]

with simulations using real world network data from the

Skitter initiative [20]. However, this method requires that

Border Routers maintain the tokens database in TCAM

memory since filtering operations have to be done at wire

speed. The main contribution of this paper is to make the

method scalable by reducing its memory requirements.

Before doing so we give a few details about path signatures

that will be needed in later sections.

In the original method the path signature was made up of

intermediate routers marks where each router contributes 2

bits to the path signature. Each 2-bit mark is the result of an

MD5 hash of the IP addresses on the current link. When a

router with IP address x receives a packet from a neighbor

with IP address y the resulting mark is:

 mark=MD5 (x || y) & 3

(1)

Where || is the concatenation operation and the bitwise AND

operation, & 3, is used to retain only the last two bits of the

resulting hash. Equation (1) gives the mark contributed by

an individual router. It is added to the identification field in

the IP header as follows :

 idnew=idold << 2 + mark

(2)

Because the mark is a 2-bit value it is necessary to left-shit

by two bits the identification field value to make room for

the new mark. This means that the rightmost two bits in the

identification field always carry the last mark and the

leftmost two bits carry the "oldest" mark. Since the

identification field in the IP header is 16-bit long it can hold

a maximum of 8 marks. Other sizes of the mark (e.g. 4 or 8

bits) are possible but it is argued in [9,26,29], based on the

average "Internet length" that two-bits are optimal.

3. Bloom Filters

As can be seen from lines 7 and 13 in the algorithm

presented in Figure 2 , packet tokens need to be stored and

retrieved from the tokens database at wire speed. This

necessitates the use of the expensive and limited size of on-

chip SRAM on the Border Router. To reduce the memory

footprint we will use Bloom filters to store the tokens

database. What follows is a quick overview of Bloom filters.

Bloom filters were introduced in 1970 by B. H. Bloom [4].

They have been widely used since, especially in database

applications. Recently there has been a surge in the use of

Bloom filters in networking applications (see [5] for a

survey).

A Bloom filter is a space-efficient data structure used to test

set membership. It is an array of m bits, initialized to zero,

used to represent a set of n elements, S=x1,… xn. The filter

uses k independent and uniform hash functions, h1,…,hk,

each with range in 1,…,m. To "add" an element xi in x1,…,xn

to the filter the k hash functions are applied to xi and the

corresponding bits in the filter are set to one. Adding an

element x to the filter is written in pseudo-code as follows:

ADD-ELEMENT(x)

1 for j=1 to k

2 do

3 filter[hj(x)] gets x

It is clear that when a particular bit is set, an additional

setting does not change it. To check if an element y belongs

to the set the k hash functions are applied to y and the

corresponding bits are checked. If one of the bits is 0 then

clearly the element is not in the set. If all the bits are equal

to 1 then we could say that the element belongs to the set.

The following pseudo-code checks if y is an element of the

set:

CHECK-ELEMENT(y)

1 for j=1 to k

2 do

3 if filter[hj(y)]=1

4 then return FALSE

5 return TRUE

Obviously, an element z could have all the corresponding

bits equal to 1 without the element itself belonging to the

set. This is called a false positive. It is in our interest that

the rate of false positives be as small as possible. The false

positive rate can be calculated as follows. When a given

hash function hi is applied to an input x1 the results is a

value between 1 and m. Since the hash functions are

uniform, the probability that this result is equal to a

particular number v is 1/m. Therefore the probability of the

bit at position v being 1 after one hash function is 1/m. The

probability that it is 0 is 1-1/m. The probability that it is 0

after all k hash functions are applied is (1-1/m)k. Since there

are n elements in the set, the probability that the bit v is

equal to 0 after we process all elements is (1-1/m)kn. Hence

1- (1-1/m)kn is the probability that a given bit v is set to 1

after all input elements x1,…,xn are processed. Since we

want the false positive rate, we need the probability that for

an arbitrary input y the corresponding k bits are 1 without y

belonging to the set. This probability is

1
11

k
kn

p
m

f





















−−=

 (3)

 1

k

m

nk

e 












−≈ (4)

A Memory Efficient Anti-Spoofing Method

206

Asymptotically the false positive rate depends on k and the

ratio m/n. If we fix the ratio m/n then one can show [13] that

the minimum of the false positive rate in equation (4) as a

function of k, occurs when

2ln0
n

m
k = (5)

And the optimal false positive ratio is

k

pf 







=

2

1
0

 (6)

Usually, the false positive rate and the number of elements n

are fixed and we need to deduce the number of bits required

to achieve those values. Combining equations (5) and (6) we

get

fnm ln08.2−= (7)

One disadvantage of Bloom filters is that it is not possible to

delete entries stored in the filter. To do so requires the

setting to zero all the k bits that the entry points to. But this

could confuse the filter since as we mentioned a bit could be

set to 1 by multiple entries. To solve this problem a

variation of Bloom Filters called counting Bloom Filters was

introduced by Fan et. al. [8]. In a counting Bloom Filter

each entry is a counter rather than a single bit. When we

add an entry the corresponding counters are incremented

and when the item is removed the corresponding counters

are decremented.

In fact, only 4 bits per counter are what mostly application

need [8]. To simplify the discussion we will ignore this

aspect in the rest of the paper and consider only connection

establishment, not connection closure. This is not really a

restriction since we could assume that once a DDoS attack is

over the Border Router resets all its entries.

3.1 Building the filter

Originally the list of tokens was stored in what is called a

tokens database. The implementation of the database was

not specified but rather assumed to exist. Furthermore, an

assumption was made that one can retrieve and store entries

in the database. In this section we show how the above-

mentioned database can be implemented as a single bloom

filter.

Each entry in the database contains a token, which is

composed of the source IP address and the corresponding

path signature stored in the 16-bit IP identification field of

the IP header [9]. This field is marked by the routers along

the path, from the source to the destination, where each

router contributes 2 bits.

In the discussion of Bloom filters in Section 3 we have

assumed that the elements of the set and their number are

known in advance. In ITS, the tokens are added to the filter

every time a TCP connection is established. Therefore the

number of elements is not known in advance but increases

with time. This is not really a problem at all. Recall from

Section 3 that the number of bits needed to get the optimal

value of false positive is proportional to n, which is the

number of elements in the set.

The pseudo-code for adding the token of a packet to the

filter is shown in Figure 3 below:

ADD-PACKET(pkt)

1 token=pkt.sig|| pkt.source

2 for i=1 to k

3 do

4 bitPos=hi(token)

5 filter[bitPos] gets 1

Figure 3. Adding a packet token to the filter

Similarly checking if a packet is in the filter is shown in

Figure 4.

CHECK-PACKET(pkt)

1 token=pkt.sig|| pkt.source

2 for i=1 to k

4 do

5 bitPos=hi(token)

6 if filter[bitPos]=0 return FALSE

7 return TRUE

Figure 4. Checking if a packet is stored in the filter

Figure 5. The efficiency of the filter as a function of the

filter size

In our analysis we will regard this number n as an upper

bound on the number of elements that we can store in the

Bloom filter. It can be seen from equation (4) that the

smaller the value of n the smaller the false positive rate.

It should be noted that it is possible in the algorithm shown

in Figure 4 above that a packet will have all the resulting

bits equal to 1 without the packet actually being in the filter.

Having implemented these two functions using a Bloom

filter we can use them in the algorithm shown in Figure 2 to

replace the original functions. The function CHECK-

PACKET replaces the condition of the if statement on line 7

in Figure 2 and the ADD-PACKET function replaces the

insert statement on line 13 in the same Figure.

3.2 Implementation

Due to its widely availability and effectiveness we have

chosen to use MD5 for hashing. The 128-bit output of an

MD5 was used as four independent 32-bit hashes therefore

we needed two MD5 operations to generate the eight hash

207 Farhat

functions h1,…,h8. Our goal is to maintain about 500,000

flows. For a false positive rate of 1%, from equation (7) the

filter size is 2.08 X 5 X 105 ln 0.01≈0.6 MB. As a

comparison, without Bloom filters we need 6 bytes for each

token for a total of 6 X 5 X 105= 3MB. This is a memory

saving of 5 times. We have performed a series of

simulations using real-world topological data from Skitter

[20]. For every trial run we chose randomly 600 hosts: 100

were used as clients and 500 as attack sources. The IP

address and path identifier of clients were manually added

to the Bloom filter (not through TCP). The attacking

sources send data at the constant rate of 10M packets/s

while the clients send at the rate of 1M packets/s. The link

victim's link rate is set to 100MB, i.e. just enough for the

legitimate clients. The metric used to measure the

performance of our method is the fraction of bandwidth of

the link between the border router and the target consumed

by the attacking packets. As expected, the results in Figure 5

show that the bigger the filter size, the better the efficiency

of the method since the false positive rate is smaller.

It should be noted that for a size of 0.9 MB less than 5% of

the bandwidth is used by the attackers which is an excellent

results with a gain of a factor of more than 3 in memory size

since the original ITS method requires 3 MB of memory.

4 Incremental Deployment

One cannot expect that all routers on the Internet deploy

ITS at the same time. Any method would be useless if it

cannot be incrementally deployed. The original ITS method

was shown to be incrementally deployed [10]. The question

here is to do the same but with a smaller memory footprint

using Bloom filters. To be able to do that it is helpful to

describe how the original method worked. Suppose a given

Border Router receives two packets, p1 and p2 with

signatures sig1=a15… a0 and sig2=b15… b0 . The 16-bit

signature is stored in the identification field in the IP

header. The base ITS method uses exact match to compare

packets: two sig1=sig2 are equal if ai=bi for all i. Exact

match cannot be used if we take incremental deployment

into account. When ITS is incrementally deployed, the

packets will be forwarded by routers that do not implement

ITS. The marks of these routers will be missing from the

packet signature.

4.1 Partial Matching

It is helpful to illustrate with an example the idea of partial

deployment. Let s and d be the source and target

respectively. As required by the Internet Protocol, every

packet sent from s to d has to have a different value in the

identification field in the IP header. Assume further that

there are five intermediate routers R0, R1, R2, R3 and R4

between s and the Border Router that protects d. Suppose

that one of the intermediate routers, say R2, does not

implement ITS. Let M0, M1, M2, M3 and M4 be the marks of

the routers respectively. Initially, s needs to establish a TCP

connection with the target d. This is done via the Border

Router, which saves the path signature in the tokens

database. It is important to note that signature saved by the

Border Router depends on the original value of the

identification field and the path taken by the packet. In our

example suppose that the initial value of the identification

field when the TCP handshake is completed by s (this is

when the Border Router saves the signature) is a15… a0.

Since each router mark consumes 2 bits and the

identification field in the IP header is updated according to

equation (2) then when the packet reaches the Border Router

it has the value a8… a0M4M3M1M0. Note that since R2 does

not implement ITS its mark is absent. At a later time when s

sends a packet with initial value for the identification field

equal to b15… b0$ it will reach the border router with the

signature b8… b0M4M3M1M0.

Clearly the two signatures are not the same and the border

router drops the second packet. In fact the Border Router

drops all the packets subsequent to connection establishment

because all of them will have different initial value as

required by IP and therefore will reach the Border Router

with different path signature from the one stored in the

tokens database. The example we have provided is not a rare

occurrence. In fact to minimize this problem we have

chosen that each router mark should be 2-bits. As can be

seen from Figure 6 the number of paths that have length

(number of hops) more than 8 is very small.

The solution to the above problem is to use partial

matching instead of exact matching [10]. The basic idea in

partial matching is to count the number of identical marks

from right to left in the path signature. In the example

above the signatures sig1=a8…a0M4M3M1M0 and

sig2=b8…b0M4M3M1M0 have at least 4 identical marks.

Starting from right to left the identical marks are: M0 then

M1

Figure 6. The distribution of the paths length.

then M3 and finally M4. The algorithm for partial matching

is shown in Figures . The two signatures used in the

example could have more matches (accidental) depending

on the values of the a'i and b'i. Once the number of matches

is computed it is used as a priority, which is then assigned to

the packet. Therefore in this method no packet is dropped, it

is assigned a low priority.

A Memory Efficient Anti-Spoofing Method

208

COUNT-MATCHES(sig,pkt)

1 count ← 0

2 for i=1 to 8

3 do

4 if pkt.sig & (22i-1)= sig & (22i-1)

5 then

6 count ← count+1

7 else return count

8 return count

Figure 7. Counting the number of matches

between two signatures

1 for each packet pkt

2 do

3 if pkt.SYN=1

4 then

5 sendCookie

6 Exit

7 if checkCookie(pkt)=TRUE

8 then

9 add pkt to queue 0

10 insert pkt.token in D

11 else

12 sig=lookup(pkt)

13 n ← COUNT-MATCHES(pkt)

14 add pkt to queue n

Figure 8. Modified packet filtering using partial matching

4.2 Partial Matching Using Bloom Filters

Now we need to implement partial matching using Bloom

filters to save memory. The approach is similar to what was

done before but quite. The main obstacle is that the hash of

the concatenation of two strings is not equal to the

concatenation of the hashes. In other words, given a hash

function g and two strings x and y, in general

g(x||y)≠ g(x) || g(y)

For a given IP address IPx and path signature sigx, instead of

considering the whole token, IPx || sigx, for hashing

operations we consider intermediate values of the token. If

we consider again the example given in Section 41. Assume

that the source with IP address IPx sent a packet with the

identification field having the value a15…a0 and the packet

is forwarded by 4 ITS routers with marks M4, M3, M1 and

M0 (recall that the router with mark M2 does not implement

ITS). We know that the path signature of the packet when it

reaches the Border Router will be a8… a0M4M3M1M0. The

problem arises because once the token is hashed we cannot

perform partial matching. Consider the hash of the whole

token with a hash function g:

g(IPx || a1a0M4M3M1M0)

Clearly we cannot perform any partial matching on the

above value. To be able to perform partial matching it

important to perform the hashing on the partial signatures.

We use k hash functions but the hashing is applied

differently. For a given source IP address IPx and path

signature sigx, we perform k different hash operations on 8

modifications of the packet token (for a total of 8*k hash

operations per packet):

hi(IPx || sigx & (22j-1)) 1≤ i ≤ k, 1≤ j ≤

8

Where again || is the concatenation operator and & is the

bitwise AND operator. For example, the first k hashes

corresponding to j=1, give hi(sigx & 3) =hi(IPx|| M0) with 0<

i < k+1 because sigx& 3=M0. We say that two path

signatures sig1 and sig2 have a match of order j if and only

if for all i we have:

hi(IP1 || sig1 & (22j-1))=hi(IP2 || sig2 & (22j-1))

Note in the above equation we have used the same source IP

address. We illustrate the idea by applying it to the example

given in Section 4.1. Recall that the same source, with IP

address IPx, sent two packets with different initial values in

the identification field: a15… a0 and b15… b0. The ITS router

marks are M4, M3, M1, and M0. Using hash function hi we

get the following set of values:

()0|| MIPhi ()0|| MIPhi

()01|| MMIPhi ()01|| MMIPhi

()013|| MMMIPhi ()013|| MMMIPhi

()0134|| MMMMIPhi ()0134|| MMMMIPhi

()013401|| MMMMaaIPhi ()013401|| MMMMaaIPhi

Where in the above 1≤ i ≤ k. Clearly, the result of the first

four lines are identical, even though the two packets had

different identification field initially. This means that the

two signatures have matches of order 0, 1, 2 and 3.

As before we use the number of matches between signatures

to assign a priority to a packet. We assign a priority n

depending on the match order of a signature. If a signature

have match orders 0…k then it is assigned priority k+1. In

the example above the number of matches would be four,

because it has matches of order 0,1,2 and 3. This matching

procedure is shown in the algorithm in Figure 9.

Furthermore, given a border router, for every packet it

receives it executes the algorithm in Figure 10.

HASHED-MATCHES(pkt)

1 count ← 0

2 for i=1 to 8

3 do

4 mask=pkt.sig & (22i-1)

5 token=pkt.IP || mask

6 for i=1 to k

7 do

8 bitPos=hi(token)

9 if filter[bitPos]=0

10 then return count

11 count ← count+1

12 return count

Figure 9. Counting the number of hashed matches of a

209 Farhat

packet.

1 for each packet pkt

2 do

3 if pkt.SYN=1

4 then

5 sendCookie

6 Exit

7 if checkCookie(pkt.ack)=TRUE

8 then

9 add pkt to queue 0

10 ADD-PACKET-TO-FILTER(pkt)

11 else

12 n ← HASHED-MATCHES(pkt)

13 add pkt to queue n

Figure 10. Modified packet filtering using hashed partial

matching

Similar to the case of exact matching it is clear that it is

possible to have a partial matching without the original

signatures being the same. These false positives are expected

when using Bloom filters.

4.3 Implementation Details

It turns out that the straightforward implementation as

shown in Figures 9 and 10 is not very efficient. In fact we

would need 8 "independent" Bloom filters, one for each

signature variation. If we check the results of Figure 5 then

we could see that to achieve 70% bandwidth consumption by

attackers (only 30% reserved for legitimate users) we need a

filter with size equal to 0.4MB which means for the 8 filters

we need about 3.2MB which is larger than required without

using Bloom filters.

A better approach is to use 8 hash functions, one hash

function for every variation. Not only the algorithm for

counting the number of signature matches in Figure 9 needs

to be changed but also we need to include a function to add

a given token to the filter as this is not straightforward as in

the case of using 8 filters. As in all cases, adding a token to

the filter is done after the TCP handshake is completed and

the Border Router checks the validity of the SYN-cookie.

Given a source IP address, IPx and path signature sigx, and

the 8 hash functions labeled h1… h8, the Border Router uses

the algorithm shown in Figure 11 to add the packet token to

the filter and the one shown in Figure 12 to count the

number of matches in the filter.

ADD-PACKET-TO-FILTER(pkt)

1 for i=1 to 8

2 do

3 mask=pk.sig & (22i-1)

4 token=pkt.IP || mask

5 bitPos=hi(token)

6 filter[bitPos] ← gets 1

Figure 11. Adding the hash of a packet variation to the

filter

MODIFIED-HASHED-MATCHES(pkt)

1 count ← 0

2 for i=1 to 8

3 do

4 mask=pkt.sig & (22i-1)

5 token=pkt.IP || mask

8 bitPos=hi(token)

9 if filter[bitPos]=0

10 then return count

11 count ← count+1

12 return count

Figure 12. Modified version of the function in Figure 9.

On the surface it looks like the number of hash operation is

going to be as before, 8 per packet. In reality, as we

mentioned in Section 3.2 we used only two MD5 operations

to implement the 8 hashes. In this case this cannot be done

since we are applying the hashing to 8 different variations

and therefore we need to do eight hash operations per packet

instead of only two. If hashing becomes a bottleneck, instead

of MD5 one can use other hashing techniques have been

demonstrated to perform well and are much cheaper to

implement in hardware [23].

To test the efficiency of our method we performed a series of

simulations using the real-world Internet paths provided by

Skitter initiative [20].

First we characterize partial deployment by a parameter d

which is the number of routers implementing our method

for a given path. Given a path containing k routers, we

randomly choose d<= k routers to implement the method

and the remaining k-d routers forward packets in the normal

fashion without modifying the packet headers. Figure 13

shows the results of the simulation for d=1, d=2, and d=4.

For comparison purposes we included in Figure 13 the full

deployment results already shown in Figure 5 It is clear

from the presented results that the proposed method

succeeded in reaching the goals we have set for it:

combating IP spoofing

A Memory Efficient Anti-Spoofing Method

210

Figure 13. Bandwidth fraction used by attackers for three

different values of d as well as the case of full deployment

while minimizing the memory usage on routers. We can see

from Figure 13 that even if only one router along the path

(d=1) about 70% of the bandwidth is reserved to legitimate

users with a cost of 1MB of router memory. The results for

d=1 is important because it is an excellent incentive for

Internet Service Providers (ISP) to deploy ITS. This means

that even if no other ISP deploys ITS they still get an

efficient method to protect their networks from IP spoofing.

5 Related Work

The earliest work to solve the problems created by the ability

of attackers to spoof the source IP address of packets are IP

traceback techniques [19,22,24] which permit a target to

trace the origin of packets even if source address spoofing is

employed. One method in particular uses Bloom filters to

minimize the storage requirements on routers [21]. Unlike

our approach, most these methods use probabilistic packet

marking. They require routers to add, with a certain

probability, a mark to the IP header. The path taken by

attack packets is reconstructed when a sufficient number of

attack packet has been received by the victim. These

methods have been shown to be successful in finding the

approximate origin of the attack packets. The cost of the

reconstruction algorithm, however, becomes prohibitive

when the number of attackers is large.

Other approaches to source address spoofing and one of the

earliest such methods is Ingress filtering by Ferguson and

Senie [11]. This requires the installation of ingress filtering

at every ISP. Even so, IP addresses in the local network can

still be spoofed. Another approach to ingress filtering is the

SAVE protocol proposed by Li. et. al. [12].

The information obtained from the Border Gateway Protocol

(BGP) update message was used by Duan et. al. [7] to

selectively drop packets that appear to be spoofed. Also

based on BGP updates is the method proposed by Park and

Lee [16] to discard spoofed IP packets using a route-based

detection method. The problem with BGP-based methods is

the need for independent Autonomous Systems (AS) to

cooperate when in fact they have no incentive to do so.

To our knowledge, the first use of deterministic packet

marking was introduced by Yaar et. al. in [26] and was

extended in [29]. They used the path identification which is

a deterministic mark stamped by the intermediate routers on

every packet as a way to distinguish malicious from

legitimate users. Even if one assumes that the malicious

signatures can be clearly identified the number of malicious

and legitimate users having the same signature grows as the

number of attackers grows which quickly leads to self-

inflicted DoS.

Following the introduction by Anderson et. al. [1] of the

concept of capabilities there was a flurry of papers published

on the subject [17,27,30]. Argyraki et. al. [2] argued that

capabilities are not necessary nor sufficient to defend against

DDoS attacks . Their main contention is that these methods

are prone to denial of capabilities attacks.

6 Conclusion

The Implicit Token Scheme (ITS) is an efficient method to

defend against spoofed IP traffic. In this paper we have

proposed the use of Bloom filters, a space efficient data

structure, to store rules of ITS and thereby reduce the

storage requirements on intermediate routers. Since Bloom

filters can give rise to false positives we also derived an

expression for the false positive rate as a function of the

filter size as well as the optimal values needed to minimize

the rate of false positives. Several simulations were

preformed on real-world data and the results prove that the

proposed method accomplishes its aim of saving the (up to a

factor of 5) memory requirements on intermediate routers.

Even in the case of partial deployment the simulation results

show that the method is still effective both in combating IP

spoofing and saving on router memory.

References

[1] Anderson, T., Roscoe, T., and Wetherall, D.

“Preventing internet denial-of-service with

capabilities”. SIGCOMM Comput. Commun. Rev., pp.

39-44, 2004.

[2] Argyraki, K., and Cheriton., D. “Network capabilities:

The good, the bad and the ugly”. In HotNets-IV: The

Fourth Workshop on Hot Topics in Networks, pp. 27-

32, 2005.

[3] Argyraki, K., and Cheriton, D. R. “Active Internet

Traffic Filtering: Real-time Response to Denial-of-

service Attacks”. In Proceedings of the Annual

USENIX Technical Conference, pp. 135-148, 2005.

[4] Bloom, B. H. “Space/time Trade-offs in Hash Coding

With Allowable Errors”, Communications of the

ACM, pp. 422-426, 1970.

[5] Broder, A., and Mitzenmacher, M. “Network

Applications of Bloom Filters: A Survey”, Internet

Mathematics, pp. 485-509, 2005.

[6] Cooke, E., Jahanian, F., and McPherson, D “The

Zombie Roundup: Understanding, Detecting, and

Disrupting Botnets”. In SRUTI'05: Proceedings of the

Steps to Reducing Unwanted Traffic on the Internet on

Workshop, pp. 39-44, 2005.

211 Farhat

[7] Duan, Z., Yuan, X., and Chandrashekar, J.

“Constructing Inter-domain Packet Filters to Control

IP Spoofing Based on BGP Updates”. In Proceedings

of IEEE INFOCOMM, pp. 1-12, 2006.

[8] Fan, L., Cao, P., Almeida, J., and Broder, A. Z.

“Summary Cache: A Scalable Wide-area Web Cache

Sharing Protocol”, IEEE/ACM Trans. Netw., pp. 281-

293, 2000.

[9] Farhat, H. “ Protecting TCP Services From Denial of

Service Attacks”. In Proceedings of the ACM

SIGCOMM workshop on Large-scale attack defense,

pp. 155-160, 2006.

[10] Farhat, H. “An Effective Defense Against Spoofed IP

Traffic”. In NTMS'2007: Proceedings of the First

IFIP International Conference on New Technologies,

Mobility and Security, pp. 375-384, 2007.

[11] Ferguson, P., and Senie, D. “Network Ingress Filtering:

Defeating Denial of Service Attacks Which Employ IP

Source Address Spoofing”. RFC 2827, 2000.

[12] Li, J., Mirkovic, J., Wang, M., Reiher, P., and Zhang,

L. “SAVE: Source Address Validity Enforcement

Protocol”. In Proceedings of IEEE INFOCOMM, pp.

1557-1566, 2002.

[13] Mitzenmacher, M. “Compressed Bloom Filters”,

IEEE/ACM Trans. Netw., pp. 604-612, 2002.

[14] Moore, D., Shannon, C., Brown, D. J., Voelker, G.~M.,

and Savage, S. “Inferring Internet Denial-of-service

Activity”. ACM Trans. Comput. Syst., pp. 115-139,

2006.

[15] Pang, R., Yegneswaran, V., Barford, P., Paxson, V.,

and Peterson, L. “Characteristics of Internet

Background Radiation”. In IMC '04: Proceedings of

the 4th ACM SIGCOMM conference on Internet

measurement, pp. 27-40, 2004.

[16] Park, K., and Lee, H. “On the Effectiveness of Route-

based Packet Filtering for Distributed DoS Attack

Prevention in Power-law Internets”. In Proceedings of

ACM SIGCOMM, pp. 15-26, 2001.

[17] Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs,

B., and Hu, Y.-C. “Portcullis: Protecting Connection

Setup From Denial-of-capability Attacks”. In

Proceedings of ACM SIGCOMM, pp. 289-300, 2007.

[18] Paxson, V. “An Analysis of Using Reflectors for

Distributed Denial-of-service Attacks”. Comput.

Commun. Rev., pp. 38-47, 2001.

[19] Savage, S., Wetherall, D., Karlin, A., and Anderson,

T.} “Network Support for IP Traceback”. IEEE/ACM

Trans. Netw., pp. 226-237, 2001.

[20] CAIDA's skitter initiative. http://www.caida.org.

[21] Snoeren, A., Partridge, C., Sanchez, L. A., Jones, C. E.,

Tchakountio, F., Schwartz, B., Kent, S. T., and

Strayer, W. T. “Single-packet IP Traceback”.

IEEE/ACM Trans. Netw., 721-734, 2002.

[22] Song, D., and Perrig, A. “Advanced and Authenticated

Marking Schemes for IP Traceback”. In Proceedings

of IEEE INFOCOMM, pp. 878-886, 2001.

[23] Stone, J., Greenwald, M., Partridge, C., and Hughes, J.

“Performance of Checksums and CRC's Over Real

Data”. IEEE/ACM Trans. Netw., pp. 529-543, 1998.

[24] Sung, M., and Xu, J. “IP Traceback-based Intelligent

Packet Filtering: A Novel Technique for Defending

Against Internet DDoS Attacks”. In Proceedings of the

IEEE International Conference on Network Protocols,

pp. 302-311, 2002.

[25] D.J. Bernstein. http://cr.yp.com/syncookies.html.

[26] Yaar, A., Perrig, A., and Song, D. “PI: A Path

Identification Mechanism to Defend Against DDoS

Attacks”. In Proceedings of the IEEE Symposium on

Security and Privacy, pp. 93-107, 2003.

[27] Yaar, A., Perrig, A., and Song, D. “SIFF: A Stateless

Internet Flow Filter to Mitigate DDoS Flooding

Attacks”. In Proceedings of the IEEE Symposium on

Security and Privacy, pp. 130-143, 2004.

[28] Yaar, A., Perrig, A., and Song, D. “FIT: Fast Internet

Traceback”. In Proceedings of IEEE INFOCOMM, pp.

1395-1406, 2005.

[29] Yaar, A., Perrig, A., and Song, D. “StackPi: New

Packet Marking and Filtering Mechanisms for DDoS

and IP Spoofing Defense”. IEEE Journal on Selected

Areas in Communications, pp. 1853-1863, 2006.

[30] Yang, X., Wetherall, D., and Anderson, T. “A DoS-

limiting Network Architecture”, Comput. Commun.

Rev., pp. 241-252, 2005.

Author Biography

Hikmat Farhat is an assistant professor in the Computer

Science Department , Notre Dame University, Lebanon. His

research interests are Computer Networks and Network

security.

