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Abstract: Large-scale denial of service (DoS) attacks present a 
grave threat to hosts on the Internet. The use of source IP address 

spoofing makes the situation much worse. The Implicit Token 
Scheme (ITS), presented in [9], was demonstrated to be an 
efficient method to defend against IP spoofing. ITS uses the path 

taken by a packet, which cannot be controlled by the attacker, and 
binds it to the source IP address of the same packet to form a 

token. All legitimate tokens are stored in a tokens database on 

border routers. When a packet is received, the border router checks 
the validity of the token it carries by consulting the tokens 
database. Only packets carrying valid tokens will be forwarded 
while the others are dropped. Although very effective, ITS requires 

border routers to maintain state information for thousands of 
simultaneous connections which could require more memory than 
is available on typical routers. 

In this paper we add a component to ITS to improve its scalability 

using Bloom filters. We show that implementing ITS using Bloom 
filters is simple, saves a substantial amount of router memory, and 
does not impose large strain on routers. We also modify the basic 

method to allow for it to be incrementally deployed. The efficiency 
of the method is demonstrated through simulations by using real-
world Internet data.  

 
Keywords: about six key words separated by commas.  

 

1. Introduction 

Today's society has become heavily dependent on the 

Internet and the services it offers. Mission critical 

applications have been deployed using the Internet including 

banking and government transactions. Unfortunately, with 

the rapid increase in the use of the Internet as a mission 

critical service came the proliferation of attacks on the 

Internet infrastructure. The Distributed Denial of Service 

(DDoS) attacks are one of the most threatening of those 

attacks. One particular type of DDoS, the flooding attack, 

floods the link of the victim network with a large amount of 

packets leading to a high rate of packet drops for legitimate 

users. Recent studies have shown that the number of DDoS 

attacks is actually more prevalent than previously thought 

[14]. What makes protection against IP spoofing paramount 

is that many approaches that could mitigate DDoS are 

inefficient in the presence of IP spoofing.  

Victims of DDoS attacks cannot authenticate the source 

address of the received packets because of the destination-

based forwarding paradigm of the Internet Protocol (IP). 

The straightforward method of installing filters at border 

routers, is rendered inefficient by IP spoofing. It very easy 

for attackers to choose randomly an IP address as the source 

for different packets and thus make the protection method 

infeasible. 

Devising methods to detect and block spoofed packets has 

been actively pursued in the research community. Many 

solutions have been proposed to the IP spoofing problem  

are either a variation of the IP traceback method [19,22,28] 

or try to restrict the address space available to attacker(s) as 

in [7,16]. A third class of solutions which gained popularity 

recently is based on the concept of capabilities [1,17]. 

There is a class of DDoS attacks in which the attackers use 

intermediate compromised hosts, called zombies  or botnets, 

to mount their attacks [6]. In this class the attackers take 

control of unwitting hosts and use them later on to mount 

coordinated DDoS attacks against the victims. In the 

presence of such class of attacks one could argue that the 

attackers do not need to spoof the source address because 

they  are not using directly their hosts to mount the attacks 

and therefore will not reveal their IP addresses. 

Nevertheless,  IP spoofing is still popular as shown in [15]. 

What is more, we believe that IP spoofing will be used often 

in the future for many reasons. First, it is more difficult to 

block spoofed addresses because they don't have a pattern 

unlike real addresses. 

Second, some attacks, like reflector attacks [18] where the 

attacker poses as some victim to send packets to a number of 

hosts with the results that the victim receives  a large 

number of replies, rely on IP spoofing to work. 

Based on the above discussion about the relative ease in 

which attackers can fake their source IP address, it remains 

true that they cannot control the paths taken by packets they 

send to the victim. This property of being unable to forge the 

paths taken by packets to reach the target remain one of the 

cornerstones of defenses against DDoS attacks which 

employ spoofed packets. In that spirit we have recently  

proposed the Implicit Token Scheme (ITS) as a method to 

mitigate DDoS attacks [9]. 

The key idea in ITS is that attackers cannot complete the 

TCP three-way handshake if they use spoofed source 

addresses. The method was demonstrated to be a highly 

effective defense against spoofed traffic and in subsequent 

work was shown to be easily deployable on the current 

Internet infrastructure [10]. The main shortcoming of ITS, 

however, was its need to maintain state information for 

many thousands of flows which requires a large amount of 

router memory. Reducing the memory requirements of ITS 

is the main contribution of this paper. 

Wire-speed filters on Internet routers are usually stored in 

Ternary Content Addressable Memory (TCAM) which is 

expensive. Advanced router line cards usually have only 1 

TCAM chip which can hold 256k entries to be shared with 

the router's forwarding table. This limits any DDoS filtering 

solution to less than 100k simultaneous flows which, for 
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busy sites, is far short of what is expected.  Therefore it is 

paramount for any proposed solution to IP spoofing to be 

scalable and to save router memory. For more information 

on router's memory requirements see [3] and references 

therein. 

The rest of the paper is organized as follows. The ITS 

method is discussed in Section 2. The basic theory of 

 
 

Figure 1. Defense model. 

 

Bloom filters and its adaptation to the ITS method is 

presented in Section 3.  The preliminary implementation 

and the results of the performed simulations are also 

presented in Section 4. In Section 4 we discuss the 

incremental deployment strategies of ITS and the partial 

matching needed to implement it. We also argue about the 

benefits of a particular Bloom filter implementation over 

other strategies. Other work related to DDoS and the 

application of Bloom filters in networking, are presented in 

5. We conclude with Section 6. 

2. The ITS Method 

The Implicit Token Scheme (ITS) provides protection 

against IP spoofed traffic by having Internet Service 

Providers (ISPs) install filters at the border router as shown 

in Figure 1. The installed filters contain tokens that should 

be matched by arriving packets to be forwarded. 

The token is composed of an IP address and a path 

signature. The path signature is a collection of values 

marked by intermediate routers on the path traveled by the 

packet from source to destination. These signatures, unlike 

the source IP address, are uncontrollable by the attacker and 

therefore cannot be forged. Once the filter(s) is installed a 

Border router will forward packets if they carry tokens that 

match entries in the tokens database; otherwise the packet 

will be dropped. This way IP addresses are tightly bound to 

unforgeable  path signature. Furthermore, since the token is 

48 bit long the probability of a spoofed address having the 

correct signature is extremely small. 

While the basic technique is straightforward the 

implementation is not a simple one. The first question that 

arises is how to collect valid tokens. An obvious solution is 

to collect tokens during regular traffic when there is no 

DDoS attack. There are many problems with this approach. 

First, during a DDoS attack the victim "sees" a large 

number of previously unseen addresses and all of them are 

considered spoofed because they are not in the tokens 

database. Second, due to frequent routing changes the path 

signature most likely will change from the time it is recoded 

to the time it is used which leads to may false positives. A 

better approach to building the database is to add the tokens 

for each TCP session separately after the TCP handshake is 

completed. This guarantees the integrity of the token 

because an attacker using spoofed source address cannot 

complete the TCP handshake. 

An added bonus is that the path signature is up to date and 

rarely changes on the order of a TCP transaction. One could 

reserve a portion of the bandwidth, say, 95% to already 

established connections which are guaranteed to be non-

spoofed, and the remaining 5% to the rest of the traffic to 

allow for new connections. This method has a serious 

shortcoming: an attacker can flood the 5% of bandwidth 

reserved for connection establishment and thus prevents new 

clients from connecting to the target.  

To solve the denial of connection attack we use the concept 

of a SYN cookie. Originally the SYN cookie was used to 

protect against SYN attacks. In this work we use it on the 

Border Router instead of the target. When the Border router 

receives a TCP SYN segment having a destination address 

equal to that of the target it responds with a SYN-ACK 

segment on the behalf of the target. This is done without 

maintaining state information by using a special value for 

the Initial Segment Number in the TCP header. For more 

details on SYN cookies see [25]. When a Border router 

receives a TCP segment it takes one of the following steps: 

 

• If the segment has SYN=1, it replies with a SYN-ACK 

that includes the cookie as ISN. This is shown on lines 

2-6 in Figure 2. 

• If the segment has SYN=0, it checks if the segment 

contains a valid token then it is forwarded as it shown 

in Figure 2 on lines 7-9. Otherwise it performs the step 

below. 

• It checks the sequence number. If it is a response to a 

valid cookie then the token is added to the tokens 

database and the segment is forwarded. This is shown 

in Figure 2 on lines 10-13. 

• If all of the above checks fail the segment is dropped. 

In short, when a border router receives a packet it runs the 

algorithm shown below. 

 

1 for each packet pkt  

 2  do 

3   if pkt.SYN=1 

4    then 

5     sendCookie 

6     Exit 

7   if pkt.TOKEN in D 

8    then 

9     forward packet 

10   elseif checkCookie(pkt)=TRUE 

11    then 
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12     forward pkt 

13     insert pkt.TOKEN in D 

14   else 

15     drop pkt 

 

Figure 2. Packet Filtering in ITS 

 

The efficiency of the method has been demonstrated in [9] 

with simulations using real world network data from the 

Skitter initiative [20]. However, this method requires that 

Border Routers maintain the tokens database in TCAM 

memory since filtering operations have to be done at wire 

speed. The main contribution of this paper is to make the 

method scalable by reducing its memory requirements. 

Before doing so we give a few details about path signatures 

that will be needed in later sections. 

In the original method the path signature was made up of 

intermediate routers marks where each router contributes 2 

bits to the path signature. Each 2-bit mark is the result of an 

MD5 hash of the IP addresses on the current link. When a 

router with IP address x receives a packet from a neighbor 

with IP address y the resulting mark is:  

 

                            mark=MD5 (x || y) & 3          

(1) 

 

Where || is the concatenation operation and the bitwise AND 

operation, & 3, is used to retain only the last two bits of the 

resulting hash. Equation (1) gives the mark contributed by 

an individual router. It is added to the identification field in 

the IP header as follows : 

 

  idnew=idold << 2 + mark              

(2) 

 

Because the mark is a 2-bit value it is necessary to left-shit 

by two bits the identification field value to make room for 

the new mark. This means that the rightmost two bits in the 

identification field always carry the last mark and the 

leftmost two bits carry the "oldest" mark. Since the 

identification field in the IP header is 16-bit long it can hold 

a maximum of 8 marks. Other sizes of the mark (e.g. 4 or 8 

bits) are possible but it is argued in [9,26,29], based on the 

average "Internet length" that two-bits are optimal. 

3. Bloom Filters 

As can be seen from lines 7 and 13 in the algorithm 

presented in Figure 2 , packet tokens need to be stored and 

retrieved from the tokens database at wire speed. This 

necessitates the use of the expensive and limited size of on-

chip SRAM on the Border Router. To reduce the memory 

footprint we will use Bloom filters to store the tokens 

database. What follows is a quick overview of Bloom filters. 

Bloom filters were introduced in 1970 by B. H. Bloom [4]. 

They have been widely used since, especially in database 

applications. Recently there has been a surge in the use of 

Bloom filters in networking applications (see [5] for a 

survey).  

A Bloom filter is a space-efficient data structure used to test 

set membership. It is an array of m bits, initialized to zero, 

used to represent a set of n elements, S=x1,… xn. The filter 

uses k independent and uniform hash functions, h1,…,hk, 

each with range in 1,…,m. To "add" an element xi in x1,…,xn 

to the filter the k hash functions are applied to xi and the 

corresponding bits in the filter are set to one. Adding an 

element x to the filter is written in pseudo-code as follows: 

 

ADD-ELEMENT(x) 

1 for j=1 to k 

2 do 

3  filter[hj(x)] gets x 

 

 

It is clear that when a particular bit is set, an additional 

setting does not change it. To check if an element y belongs 

to the set the k hash functions are applied to y and the 

corresponding bits are checked. If one of the bits is 0 then 

clearly the element is not in the set. If all the bits are equal 

to 1 then we could say that the element belongs to the set. 

The following pseudo-code checks if y is an element of the 

set: 

 

CHECK-ELEMENT(y) 

1 for j=1 to k 

2 do 

3  if filter[hj(y)]=1 

4   then return FALSE 

5 return TRUE 

 

Obviously, an element z could have all the corresponding 

bits equal to 1 without the element itself belonging to the 

set. This is called a false positive. It is in our interest that 

the rate of false positives be as small as possible. The false 

positive rate can be calculated as follows. When a given 

hash function hi is applied to an input x1 the results is a 

value between 1 and m. Since the hash functions are 

uniform, the probability that this result is equal to a 

particular number v is  1/m.  Therefore the probability of the 

bit at position v being 1 after one hash function is 1/m. The 

probability that it is 0 is 1-1/m. The probability that it is 0 

after all k hash functions are applied is (1-1/m)k. Since there 

are n elements in the set, the probability that the bit v is 

equal to 0 after we process all elements is (1-1/m)kn. Hence 

1- (1-1/m)kn is the probability that a given bit v is set to 1 

after all input elements x1,…,xn are processed. Since we 

want the false positive rate, we need the probability that for 

an arbitrary input y the corresponding k bits are 1 without y 

belonging to the set. This probability is 
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Asymptotically the false positive rate depends on k and the 

ratio m/n. If we fix the ratio m/n then one can show [13] that 

the minimum of the false positive rate in equation (4) as a 

function of k, occurs when  

 

2ln0
n

m
k =               (5) 

And the optimal false positive ratio is 
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              (6) 

Usually, the false positive rate and the number of elements n 

are fixed and we need to deduce the number of bits required 

to achieve those values. Combining equations (5) and (6) we 

get 

fnm ln08.2−=          (7) 

One disadvantage of Bloom filters is that it is not possible to 

delete entries stored in the filter. To do so requires the 

setting to zero all the k bits that the entry points to. But this 

could confuse the filter since as we mentioned a bit could be 

set to 1 by multiple entries. To solve this problem a 

variation of Bloom Filters called counting Bloom Filters was 

introduced by Fan et. al. [8]. In a counting Bloom Filter 

each entry is a counter rather than a single bit. When we 

add an entry the corresponding counters are incremented 

and when the item is removed the corresponding counters 

are decremented. 

In fact, only 4 bits per counter are what mostly application 

need [8]. To simplify the discussion we will ignore this 

aspect in the rest of the paper and consider only connection 

establishment, not connection closure. This is not really a 

restriction since we could assume that once a DDoS attack is 

over the Border Router resets all its entries. 

3.1 Building the filter 

Originally the list of tokens was stored in what is called a 

tokens database. The implementation of the database was 

not specified but rather assumed to exist. Furthermore, an 

assumption was made that one can retrieve and store entries 

in the database. In this section we show how the above-

mentioned database can be implemented as a single bloom 

filter. 

Each entry in the database contains a token, which is 

composed of the source IP address and the corresponding 

path signature stored in the 16-bit IP identification field of 

the IP header [9]. This field is marked by the routers along 

the path, from the source to the destination, where each 

router contributes 2 bits. 

In the discussion of Bloom filters in Section 3 we have 

assumed that the elements of the set and their number are 

known in advance. In ITS, the tokens are added to the filter 

every time a TCP connection is established. Therefore the 

number of elements is not known in advance but increases 

with time. This is not really a problem at all. Recall from 

Section 3 that the number of bits needed to get the optimal 

value of false positive is proportional to n, which is the 

number of elements in the set. 

The pseudo-code for adding the token of a packet to the 

filter is shown in Figure 3 below: 

 

ADD-PACKET(pkt) 

1 token=pkt.sig|| pkt.source 

2 for i=1 to k 

3  do 

4   bitPos=hi(token) 

5   filter[bitPos] gets 1 

 

Figure 3. Adding a packet token to the filter  

 

Similarly checking if a packet is in the filter is shown in 

Figure 4.  

 

CHECK-PACKET(pkt) 

1 token=pkt.sig|| pkt.source 

2 for i=1 to k 

4  do 

5   bitPos=hi(token) 

6   if filter[bitPos]=0 return FALSE 

7 return TRUE 

 

Figure 4. Checking if a packet is stored in the filter 

 

 
Figure 5. The efficiency of the filter as a function of the 

filter size 

 

In our analysis we will regard this number n as an upper 

bound on the number of elements that we can store in the 

Bloom filter. It can be seen from equation (4) that the 

smaller the value of n the smaller the false positive rate. 

It should be noted that it is possible in the algorithm shown 

in Figure 4 above that a packet will have all the resulting 

bits equal to 1 without the packet actually being in the filter. 

Having implemented these two functions using a Bloom 

filter we can use them in the algorithm shown in Figure 2 to 

replace the original functions. The function CHECK-

PACKET replaces the condition of the if statement on line 7 

in Figure 2 and the ADD-PACKET function replaces the 

insert statement on line 13 in the same Figure. 

3.2 Implementation 

Due to its widely availability and effectiveness we have 

chosen to use MD5 for hashing. The 128-bit output of an 

MD5 was used as four independent 32-bit hashes therefore 

we needed two MD5 operations to generate the eight hash 
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functions h1,…,h8. Our goal is to maintain about 500,000 

flows. For a false positive rate of 1%, from equation (7)  the 

filter size is 2.08 X 5 X 105 ln 0.01≈0.6 MB. As a 

comparison, without Bloom filters we need 6 bytes for each 

token for a total of 6 X 5 X 105= 3MB. This is a memory 

saving of 5 times. We have performed a series of 

simulations using real-world topological data from Skitter 

[20]. For every trial run we chose randomly 600 hosts: 100 

were used as clients and 500 as attack sources. The IP 

address and path identifier of clients were manually added 

to the Bloom filter (not through TCP).  The attacking 

sources send data at the constant rate of 10M packets/s 

while the clients send at the rate of 1M packets/s.  The link 

victim's link rate is set to 100MB, i.e. just enough for the 

legitimate clients. The metric used to measure the 

performance of our method is the fraction of bandwidth of 

the link between the border router and the target consumed 

by the attacking packets. As expected, the results in Figure 5 

show that the bigger the filter size, the better the efficiency 

of the method since the false positive rate is smaller.  

It should be noted that for a size of 0.9 MB less than 5% of 

the bandwidth is used by the attackers which is an excellent 

results with a gain of a factor of more than 3 in memory size 

since the original ITS method requires 3 MB of memory. 

4 Incremental Deployment 

 

One cannot expect that all routers on the Internet deploy 

ITS at the same time. Any method would be useless if it 

cannot be incrementally deployed. The original ITS method 

was shown to be incrementally deployed [10]. The question 

here is to do the same but with a smaller memory footprint 

using Bloom filters. To be able to do that it is helpful to 

describe how the original method worked. Suppose a given 

Border Router receives two packets, p1 and p2 with 

signatures sig1=a15… a0 and sig2=b15… b0 . The 16-bit 

signature is stored in the identification field in the IP 

header. The base ITS method uses exact match to compare 

packets:  two sig1=sig2 are equal if ai=bi for all i. Exact 

match cannot be used if we take incremental deployment 

into account. When ITS is incrementally deployed, the 

packets will be forwarded by routers that do not implement 

ITS. The marks of these routers will be missing from the 

packet signature.  

 

4.1 Partial Matching 

It is helpful to illustrate with an example the idea of partial 

deployment. Let s and d be the source and target 

respectively. As required by the Internet Protocol, every 

packet sent from s to d has to have a different value in the 

identification field in the IP header. Assume further that 

there are five intermediate routers R0, R1, R2, R3 and R4 

between s and the Border Router that protects d. Suppose 

that one of the intermediate routers, say R2, does not 

implement ITS. Let M0, M1, M2, M3 and M4 be the marks of 

the routers respectively. Initially, s needs to establish a TCP 

connection with the target d. This is done via the Border 

Router, which saves the path signature in the tokens 

database. It is important to note that signature saved by the 

Border Router depends on the original value of the 

identification field and the path taken by the packet. In our 

example suppose that the initial value of the identification 

field when the TCP handshake is completed by s (this is 

when the Border Router saves the signature) is a15… a0. 

Since each router mark consumes 2 bits and the 

identification field in the IP header is updated according to 

equation (2) then when the packet reaches the Border Router 

it has the value a8… a0M4M3M1M0. Note that since R2 does 

not implement ITS its mark is absent. At a later time when s 

sends a packet with initial value for the identification field 

equal to b15… b0$ it will reach the border router with the 

signature b8… b0M4M3M1M0.  

Clearly the two signatures are not the same and the border 

router drops the second packet. In fact the Border Router 

drops all the packets subsequent to connection establishment 

because all of them will have different initial value as 

required by IP and therefore will reach the Border Router 

with different path signature from the one stored in the 

tokens database. The example we have provided is not a rare 

occurrence.  In fact to minimize this problem we have 

chosen that each router mark should be 2-bits. As can be 

seen from Figure 6 the number of paths that have length 

(number of hops) more than 8 is very small. 

The solution to the above problem is to use partial 

matching instead of exact matching [10]. The basic idea in 

partial matching is to count the number of identical marks 

from right to left in the path signature. In the example 

above the signatures sig1=a8…a0M4M3M1M0 and 

sig2=b8…b0M4M3M1M0 have at least 4 identical marks. 

Starting from right to left the identical marks are: M0 then 

M1 

 
Figure 6. The distribution of the paths length. 

 

then M3 and finally M4. The algorithm for partial matching 

is shown in Figures . The two signatures used in the 

example could have more matches (accidental) depending 

on the values of the a'i and b'i. Once the number of matches 

is computed it is used as a priority, which is then assigned to 

the packet. Therefore in this method no packet is dropped, it 

is assigned a low priority. 
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COUNT-MATCHES(sig,pkt) 

1 count ← 0 

2 for i=1 to 8 

3  do 

4   if pkt.sig & (22i-1)= sig & (22i-1) 

5    then 

6     count ←  count+1 

7    else return count 

8 return count 

 

Figure 7. Counting the number of matches  

between two signatures 

 

1 for each packet pkt  

2  do 

3   if pkt.SYN=1 

4    then 

5     sendCookie 

6     Exit 

7   if checkCookie(pkt)=TRUE 

8    then 

9     add pkt to queue 0 

10     insert pkt.token in D 

11   else 

12     sig=lookup(pkt) 

13     n ←  COUNT-MATCHES(pkt) 

14     add pkt to queue n 

 

Figure 8. Modified packet filtering using partial matching 

 

4.2 Partial Matching Using Bloom Filters 

Now we need to implement partial matching using Bloom 

filters to save memory. The approach is similar to what was 

done before but quite. The main obstacle is that the hash of 

the concatenation of two strings is not equal to the 

concatenation of the hashes. In other words, given a hash 

function g and two strings x and y, in general 

g(x||y)≠ g(x) || g(y) 

For a given IP address IPx and path signature sigx, instead of 

considering the whole token, IPx || sigx, for hashing 

operations we consider intermediate values of the token. If 

we consider again the example given in Section 41. Assume 

that the source with IP address IPx sent a packet with the 

identification field having the value a15…a0 and the packet 

is forwarded by 4 ITS routers with marks M4, M3, M1 and 

M0 (recall that the router with mark M2 does not implement 

ITS). We know that the path signature of the packet when it 

reaches the Border Router will be a8… a0M4M3M1M0. The 

problem arises because once the token is hashed we cannot 

perform partial matching. Consider the hash of the whole 

token with a hash function g: 

g(IPx || a1a0M4M3M1M0) 

Clearly we cannot perform any partial matching on the 

above value. To be able to perform partial matching it 

important to perform the hashing on the partial signatures. 

We use k hash functions but the hashing is applied 

differently. For a given source IP address IPx and path 

signature sigx, we perform k different hash operations on 8 

modifications of the packet token (for a total of 8*k hash 

operations per packet): 

hi(IPx || sigx & (22j-1))         1≤ i ≤ k, 1≤ j ≤ 

8 

Where again || is the concatenation operator and & is the 

bitwise AND operator. For example, the first k hashes 

corresponding to j=1, give hi(sigx & 3) =hi(IPx|| M0) with 0< 

i < k+1 because sigx& 3=M0. We say that two path 

signatures sig1 and sig2 have a match of order j if and only 

if for all i we have: 

hi(IP1 || sig1 & (22j-1))=hi(IP2 || sig2 & (22j-1)) 

Note in the above equation we have used the same source IP 

address. We illustrate the idea by applying it to the example 

given in Section 4.1. Recall that the same source, with IP 

address IPx, sent two packets with different initial values in 

the identification field: a15… a0 and b15… b0. The ITS router 

marks are M4, M3, M1, and M0. Using hash function hi we 

get the following set of values: 

( )0|| MIPhi  ( )0|| MIPhi  

( )01|| MMIPhi  ( )01|| MMIPhi  

( )013|| MMMIPhi  ( )013|| MMMIPhi  

( )0134|| MMMMIPhi  ( )0134|| MMMMIPhi  

( )013401|| MMMMaaIPhi  ( )013401|| MMMMaaIPhi  

 

Where in the above 1≤ i ≤ k. Clearly, the result of the first 

four lines are identical, even though the two packets had 

different identification field initially. This means that the 

two signatures have matches of order 0, 1, 2 and 3.  

As before we use the number of matches between signatures 

to assign a priority to a packet. We assign a priority n 

depending on the match order of a signature. If a signature 

have match orders 0…k then it is assigned priority k+1. In 

the example above the number of matches would be four, 

because it has matches of order 0,1,2 and 3. This matching 

procedure is shown in the algorithm in Figure 9. 

Furthermore, given a border router, for every packet it 

receives it executes the algorithm in Figure 10. 

 

HASHED-MATCHES(pkt) 

1 count ←  0 

2 for i=1 to 8 

3  do 

4   mask=pkt.sig & (22i-1) 

5   token=pkt.IP || mask 

6   for i=1 to k 

7    do 

8     bitPos=hi(token) 

9     if filter[bitPos]=0 

10      then return count 

11     count ←  count+1 

12  return count 

 

Figure 9. Counting the number of hashed matches of a 
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packet. 

 

1 for each packet pkt 

2  do 

3   if pkt.SYN=1 

4    then 

5     sendCookie 

6     Exit 

7   if checkCookie(pkt.ack)=TRUE 

8    then 

9     add pkt to queue 0 

10     ADD-PACKET-TO-FILTER(pkt) 

11   else 

12     n ←  HASHED-MATCHES(pkt) 

13     add pkt to queue n 

 

Figure 10. Modified packet filtering using hashed partial 

matching 

 

Similar to the case of exact matching it is clear that it is 

possible to have a partial matching without the original 

signatures being the same. These false positives are expected 

when using Bloom filters. 

 

4.3 Implementation Details  

It turns out that the straightforward implementation as 

shown in Figures 9 and 10 is not very efficient. In fact we 

would need 8 "independent" Bloom filters, one for each 

signature variation. If we check the results of Figure 5 then 

we could see that to achieve 70% bandwidth consumption by 

attackers (only 30% reserved for legitimate users) we need a 

filter with size equal to 0.4MB which means for the 8 filters 

we need about 3.2MB which is larger than required without 

using Bloom filters.  

 

A better approach is to use 8 hash functions, one hash 

function for every variation. Not only the algorithm for 

counting the number of signature matches in Figure 9 needs 

to be changed but also we need to include a function to add 

a given token to the filter as this is not straightforward as in 

the case of using 8 filters. As in all cases, adding a token to 

the filter is done after the TCP handshake is completed and 

the Border Router checks the validity of the SYN-cookie. 

Given a source IP address, IPx and path signature sigx, and 

the 8 hash functions labeled h1… h8, the Border Router uses 

the algorithm shown in Figure 11 to add the packet token to 

the filter and the one shown in Figure 12 to count the 

number of matches in the filter. 

 

ADD-PACKET-TO-FILTER(pkt) 

1 for i=1 to 8 

2  do 

3   mask=pk.sig & (22i-1) 

4   token=pkt.IP || mask 

5   bitPos=hi(token) 

6   filter[bitPos] ← gets 1 

 

Figure 11. Adding the hash of a packet variation to the 

filter 

 

MODIFIED-HASHED-MATCHES(pkt) 

1 count ←  0 

2 for i=1 to 8 

3  do 

4   mask=pkt.sig & (22i-1) 

5   token=pkt.IP || mask 

8      bitPos=hi(token) 

9   if filter[bitPos]=0 

10    then return count 

11   count ←  count+1 

12  return count 

 

Figure 12. Modified version of the function in Figure 9. 

 

 

On the surface it looks like the number of hash operation is 

going to be as before, 8 per packet. In reality, as we 

mentioned in Section 3.2 we used only two MD5 operations 

to implement the 8 hashes. In this case this cannot be done 

since we are applying the hashing to 8 different variations 

and therefore we need to do eight hash operations per packet 

instead of only two. If hashing becomes a bottleneck, instead 

of MD5 one can use other hashing techniques have been 

demonstrated to perform well and are much cheaper to 

implement in hardware [23]. 

To test the efficiency of our method we performed a series of 

simulations using the real-world Internet paths provided by 

Skitter initiative [20]. 

First we characterize partial deployment by a parameter d 

which is the number of routers implementing our method 

for a given path. Given a path containing k routers, we 

randomly choose d<= k routers to implement the method 

and the remaining k-d routers forward packets in the normal 

fashion without modifying the packet headers. Figure 13 

shows the results of the simulation for d=1, d=2, and d=4. 

For comparison purposes we included in Figure 13 the full 

deployment results already shown in Figure 5 It is clear 

from the presented results that the proposed method 

succeeded in reaching the goals we have set for it: 

combating IP spoofing 
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Figure 13. Bandwidth fraction used by attackers for three 

different values of d as well as the case of full deployment 

 

while minimizing the memory usage on routers. We can see 

from Figure 13 that even if only one router along the path 

(d=1) about 70% of the bandwidth is reserved to legitimate 

users with a cost of 1MB of router memory. The results for 

d=1 is important because it is an excellent incentive for 

Internet Service Providers (ISP) to deploy ITS. This means 

that even if no other ISP deploys ITS they still get an 

efficient method to protect their networks from IP spoofing. 

5 Related Work 

The earliest work to solve the problems created by the ability 

of attackers to spoof the source IP address of packets are IP 

traceback techniques [19,22,24] which permit a target to 

trace the origin of packets even if source address spoofing is 

employed. One method in particular uses Bloom filters to 

minimize the storage requirements on routers [21]. Unlike 

our approach, most these methods use probabilistic packet 

marking. They require routers to add, with a certain 

probability, a mark to the IP header. The path taken by 

attack packets is reconstructed when a sufficient number of 

attack packet has been received by the victim. These 

methods have been shown to be successful in finding the 

approximate origin of the attack packets. The cost of the 

reconstruction algorithm, however, becomes prohibitive 

when the number of attackers is large.  

Other approaches to source address spoofing and one of the 

earliest such methods is Ingress filtering by Ferguson and 

Senie [11]. This requires the installation of ingress filtering 

at every ISP. Even so, IP addresses in the local network can 

still be spoofed. Another approach to ingress filtering is the 

SAVE protocol proposed by Li. et. al. [12].  

The information obtained from the Border Gateway Protocol 

(BGP) update message was used by Duan et. al. [7] to 

selectively drop packets that appear to be spoofed. Also 

based on BGP updates is the method proposed by Park and 

Lee [16] to discard spoofed IP packets using a route-based 

detection method. The problem with BGP-based methods is 

the need for independent Autonomous Systems (AS) to 

cooperate when in fact they have no incentive to do so. 

To our knowledge, the first use of deterministic packet 

marking was introduced by Yaar et. al. in [26] and was 

extended in [29]. They used the path identification which is 

a deterministic mark stamped by the intermediate routers on 

every packet as a way to distinguish malicious from 

legitimate users. Even if one assumes that the malicious 

signatures can be clearly identified the number of malicious 

and legitimate users having the same signature grows as the 

number of attackers grows which quickly leads to self-

inflicted DoS. 

Following the introduction by Anderson et. al. [1] of the  

concept of capabilities there was a flurry of papers published 

on the subject [17,27,30]. Argyraki et. al. [2] argued that 

capabilities are not necessary nor sufficient to defend against 

DDoS attacks . Their main contention is that these methods 

are prone to denial of capabilities attacks. 

6 Conclusion 

The Implicit Token Scheme (ITS) is an efficient method to 

defend against spoofed IP traffic. In this paper we have 

proposed the use of Bloom filters, a space efficient data 

structure, to store rules of ITS and thereby reduce the 

storage requirements on intermediate routers. Since Bloom 

filters can give rise to false positives we also derived an 

expression for the false positive rate as a function of the 

filter size as well as the optimal values needed to minimize 

the rate of false positives. Several simulations were 

preformed on real-world data and the results prove that the 

proposed method accomplishes its aim of saving the (up to a 

factor of 5) memory requirements on intermediate routers. 

Even in the case of partial deployment the simulation results 

show that the method is still effective both in combating IP 

spoofing and saving on router memory. 
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