
Journal of Information Assurance and Security 3 (2008) 313-325

Retaliation Against Protocol Attacks
Giampaolo Bella

Dip. di Matematica e Informatica
Università di Catania

Italy
giamp@dmi.unict.it

Stefano Bistarelli
Dip. di Scienze

Università "G. D’Annunzio" di Pescara
Italy

bista@sci.unich.it

and
Istituto di Informatica e Telematica, C.N.R., Pisa, Italy

stefano.bistarelli@iit.cnr.it & FabioMassacci
Dip. di Informatica e Telecomunicazioni

Università di Trento
Italy

massacci@ing.unitn.it

Abstract: Security protocols intend to give their parties reasonable
assurance that certain security properties will protect their commu-
nication session. However, the literature confirms that the protocols
may suffer subtle and hidden attacks. Flawed protocols are custom-
arily sent back to the design process, but the costs of reengineer-
ing a deployed protocol may be prohibitive. This paper outlines
the concept of retaliation: who would steal a sum of money today,
should this pose significant risks of having twice as much stolen
back tomorrow? When ethics is left behind, attacks are always bal-
anced decisions: if an attack can be retaliated, the economics of
security may convince the attacker to refrain from attacking, and
us to live with a flawed protocol. This new perspective requires a
new threat model where any party may decide to subvert the pro-
tocol for his own sake, depending on the risks of retaliation. This
threat model, which for example is also suitable to studying non-
repudiation protocols, seems more appropriate than the Dolev-Yao
model to the present technological/social setting. It is demonstrated
that machine-assisted protocol verification can can effectively be
adapted to the new threat model.

I. Introduction

A security protocol is a social behaviour that principals of
a distributed system must follow to obtain some important
collective benefits in terms of security. For the good princi-
pals, it is sufficient to state some clear, understandable, and
acceptable rules describing how to execute the security pro-
tocol correctly, namely by the book.

Received December 19, 2008

Because they are good principals, they will conform to the
rules, and behave as the protocol prescribes. The bad princi-
pals, by definition, will not conform to the rules and, rather,
will execute the protocol arbitrarily, that is incorrectly.
Classical research in distributed systems and security starts
off exactly from the need to counter the disruptive behaviour
of the bad principals. Research efforts have focused on de-
signing a protocol so that if the good principals outnumber
the bad ones, the collective benefits will be achieved regard-
less of the bad principals’ behaviours. Another perspective
aims at limiting the bad principals’ profit, regardless of how
many or how smart they are [11]. The general line of re-
search seems towards proving that those who conform to the
protocol are somewhat safeguarded with their own aims. Our
contribution substantially lengthens this line.
The results of verification have normally a significant impact
on design. Whenever verification denounces an attack, the
protocol ought go back to the design phase. The dominant
mode following the discovery of an attack is that the original
design is a complete failure. Yet, the attack is often only a
little bug. We routinely live with software with bugs, houses
with cracks and cars with not so good tyres. Provided the
buggy part does not get in the critical path, we can use the
system perfectly well. These considerations lead us to won-
dering what may happen after an attack takes place. Can we
still get something useful from the protocol? We expect to
obtain deeper insights about the entanglements of a protocol
by continuing its analysis after an attack is pinpointed.

1554-1010 $ 03.50 l’ Dynamic Publishers, Inc.
313

314 Bella and Bistarelli

In other terms, we are crossing a doorstep that usually stops
researchers and sends them to publishing their findings.
Our analysis helps us understand whether it is at all possible
to threaten the bad principals exactly when they execute the
protocol incorrectly. In the real world, a virtuous behaviour is
imposed on people by taking measures of real security such
as hardening the windows against crash. There is a perfect
simile with security protocols so far. However, the real world
also relies on countermeasures of security so that the vandals
who, despite the rules, crash the windows are jailed. Our
simile flickers here but must not. People balance the advan-
tages of breaking the law on one side with its consequences
on the other side. We observe that this applies to both the
real and the digital world. So, if we convince the protocol
participants to weigh up the benefits of an incorrect execu-
tion with the consequent threats, they would opt to execute
the protocol correctly if the threats were heavier.
The essence of retaliation for security protocols has come
clear. Let us consider Lowe’s famous attack to the public-key
Needham-Schroeder protocol [13]. The attack entitles the
bad principal to ask for a transfer of money. Would he really
steal a sum of money if the threats that twice as much would
consequently be stolen to him were significant? This kind
of analysis opens up the ground to novel, realistic considera-
tions about security protocols. When an attack is discovered,
it is worth studying further to verify if it can be retaliated.
An affirmative conclusion, perhaps supported by appropriate
risk analysis, may let us decide to keep the protocol in use as
it stands. If redesign is costly, retaliation may signify that a
flawed protocol can still achieve a sufficient and stable level
of security.
It is unfortunate that retaliation is normally accepted and le-
gitimised in military contexts. Our findings appear to estab-
lish this concept also in commercial systems regulated by se-
curity protocols. However, this may turn out useful to all
protocol participants. Attackers usually leave ethics behind
and adopt a simple cost/benefit conduct. Either the media or
their own mischievousness — which makes themselves vic-
tims of retaliation attacks — will have informed them that
certain attacks can be retaliated. It can be deduced that, at
that stage, their simple code of conduct will convince them
to retreat. As a consequence, the good principals will be safe
enough with a flawed protocol that permits retaliation.
The present paper builds on top of ideas that we informally
sketched [4]. The presentation gains a precise formulation
of the novel threat model that supports the notion of retalia-
tion. Moreover, all definitions are presented formally here.
Finally, the novel concept of out-of-band challenge is ad-
vanced. Because each principal minds his own business with
any legal (if he is good) or also illegal (if he is bad) means,
he can issue out-of-band challenge messages to suspect or
detect that something dodgy happened.
The organisation of this manuscript is simple. The presen-
tation opens up by triggering the reader’s intuition with an
example (§II). Only at that stage are the key formal elements

introduced (§III), and the novel threat model specified (§IV).
The continuation of protocol analysis after an attack is found
(§V) is central to our work. This paper extends a previous
version [5] with the first findings on machine-assisted formal
protocol verification under the new threat model that encom-
passes retaliation (§VI). These findings have never been pub-
lished before. Some conclusions terminate the presentation
(§VII).

II. Retaliation in the Public-Key Needham-
Schroeder Protocol

The popular public-key protocol due to Needham-
Schroeder [15] is a good starting point to our presentation.
The notation can be easily summarised as follows.

• Cryptographic keys are denoted by letter K in general.
Each letter may feature a principal name as a subscript,
expressing the principal who knows the key.

• Nonces are denoted by letter N . Each letter may feature
a principal name as a subscript, expressing the principal
who invented the nonce.

• The message concatenation operator is denoted by a
comma.

• The message encryption operator is denoted by external
curly braces featuring the encryption key as a subscript.
This paper only features asymmetric encryption.

Having seen the basic protocol notation, the actual protocol
can be found Figure 1.

1. A → B : {|Na, A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A → B : {|Nb|}Kb

Figure. 1: The public-key Needham-Schroeder protocol

The goal of this protocol is authentication: at completion
of a session initiated by A with B, principal A should get
evidence to have communicated with B and, likewise, prin-
cipal B should get evidence to have communicated with A.
Assuming that encryption is perfect and that the nonces are
truly random, authentication is achieved here by exchange of
nonces. Upon reception of Na inside message 2, A should be
allowed to conclude that she is interacting with B, the only
principal who could retrieve Na from message 1. In the same
fashion, upon reception of Nb inside message 3, B should be
allowed to conclude that he is interacting with A, the only
principal who could retrieve Nb from message 2. However,
let us consider Lowe’s attack reported in Figure 2.
The attack consists in a malicious principal C masquerade as
a principal A with a principal B, after A initiated a session

Retaliation Against Protocol Attacks 315

1. A → C : {|Na, A|}Kc

1′. C → B : {|Na, A|}Kb

2′. B → A : {|Na,Nb|}Ka

2. C → A : {|Na,Nb|}Ka

3. A → C : {|Nb|}Kc

3′. C → B : {|Nb|}Kb

Figure. 2: Lowe’s attack to the Needham-Schroeder protocol

with C. This scenario, which sees C interleave two sessions,
indicates failure of authentication of A with B, which fol-
lows from failure of confidentiality of Nb. Lowe also reports
that, if B is a bank for example, C can steal money from
A’s account by sending a single message (Figure 3). Upon
reception of the two nonces of the session with A, the bank
B would honour the request believing it came from the ac-
count holder A. The sender label can be changed at will, and
notoriously is unreliable.

4. C → B :
{|Na,Nb, “Transfer £1000 from A’s account to C’s”|}Kb

Figure. 3: Completion of Lowe’s attack

A more thorough confidentiality analysis with soft-
constraints [3] reveals that, as a by-product of Lowe’s attack,
B has learnt nonce Na , which was invented by A to be shared
with C only. Formally speaking, this already is a violation
of the protocol, because it is against its underlying policy.
On one hand, it may not seem a major observation, as we al-
ready know that the protocol is flawed and is flawed exactly
in terms of confidentiality of the nonces. On the other hand,
we wonder what may happen in practice if B later realises
the significance of the nonce he indeliberately received, and
hence decides to take advantage of it. In terms of security
analysis, it is not interesting to study how B could realise
that: if a bad principal has a key ring with many keys, he
may systematically try them all at the available locks. In
most cases, there will be some “proximity” between the key
ring and the potential victim locks, such as within the same
newsgroup, or the same LAN, or the same institution. How-
ever, the very consequences of the most pessimistic case that
sees B exploit Na are the focus here: B can also rob the
robber by a single message, as described in Figure 4. Upon
reception of the two nonces of the session with C, the bank A
would honour the request believing it came from the account
holder C.
This is a form of indirect retaliation: C robs A through B,
hence B robs C through A. It may turn out to be more or
less appealing in practice. Nevertheless, what can be learnt

4′. B → A :
{|Na,Nb, “Transfer £2000 from C’s account to B’s”|}Ka

Figure. 4: Retaliating Lowe’s attack

is that something significant may follow after an attack hap-
pens in the first place, and therefore we should also look be-
yond protocol attacks. It is something that is made possible
exactly because the first attack took place, so it is not just
another attack. Also, it is imprecise to see this scenario as a
classical cascade of attacks because the victim of the first at-
tack is not the same as that of the retaliation attack. The most
appropriate connotation indeed appears to be that of retalia-
tion: because something happens, something else can happen
against that.
It is interesting to point out that the retaliation attack is pos-
sible because not only does Lowe’s attack disclose Nb to C,
but it also reveals Na to B. The same pattern lies behind
classical attacks to other protocols, such as Splice/AS and
the Helsinki protocol [7]. Hence, also those attacks can be
retaliated. A fundamental prerequisite to study retaliation at-
tacks in detail is to allow the principals to change behaviour
from unaware mediator to active attacker, as is the case of B
in the example above, or from victimiser to victim, as is the
case of C. It seems that the classical Dolev-Yao threat model
consisting in a super-potent attacker is inappropriate to the
present technological/social setting. Today, each principal
may have capacity and competence to decide to act illegally
for his own sake. This change to the threat model is defined
below (§IV) but some basic terminology must be introduced
first.

III. Basic terminology

For simplicity, in the following we do not specify a more
or less free algebra of messages, since this is only needed
when modelling a specific protocol with a specific formal
method. We only assume one exists, so that messages are
elements of this algebra and can be suitably identified by a
number to avoid ambiguity. Following Backes et al. [1] we
uniquely identify each message so that even if a principal
takes a message and simply forwards it to another one, it will
be denoted by a different identifier. The underlying algebra
of messages would then tell us that the messages are indeed
“equal in content”. Such a notion can then be used when
modelling a specific protocol step.
Definition 1 (Events) An Event is one of the following ac-
tions:

• a principal sends a message to another principal; it is
denoted by a 4-uple s (A : A′ → B[#]) mentioning the
actual sender A, the alleged sender A′, the recipient B,
and the message number #;

316 Bella and Bistarelli

• a principal receives a message; it is denoted by a tuple
r (A : #) mentioning the receiver A and the message
number #.

Example 1 Consider the Needham-Schroeder protocol
(Figure 1). Its events and messages can be easily formalised
as follows. The event whereby A initiates with B can be
denoted by s (A : A → B[1]); the event whereby B receives
the message can be denoted by r (B : 1); the event whereby
some C intercepts the same message can be denoted by
r (C : 1).
Definition 2 (Traces) A Trace T is a list of events formal-
ising a specific network history. It must respect Lamport’s
causality principle and the unique identification of messages
by Backes et al. [1]: each sending event must precede the
corresponding receiving event and each sending event must
introduce a message with a new formal identifier.
Example 2 Consider the network history on which Lowe’s
attack (Figure 2) takes place. It can be formalised by the
trace:

TLowe =




s (A : A → C[1]) , r (C : 1) ,

s (C : A → B[1′]) , r (B : 1′) ,

s (B : B → A[2′]) , r (C : 2′) ,

s (C : C → A[2]) , r (A : 2) ,

s (A : A → C[3]) , r (C : 3) ,

s (C : A → B[3′]) , r (B : 3′)




It can be seen that the reception events in TLowe confirm that
C learns nonce Nb and B learns nonce Na .
Definition 3 (Trace Projections and Extensions) A Pro-
jection T/A of a trace T over a set of principals A is the
sublist of events in T that are performed by some principal
in A. An Extension T ′ of a trace T is any trace beginning
with T . In symbols: T v T ′; the concatenated trace T1;T2

is such that T1 v T1;T2.
A remark is necessary about trace projection. Let us suppose
that a trace features the event whereby A sends a message
to B. This event certainly belongs to the projection of the
trace over set {A}, but not over the set {B} because recep-
tion is not guaranteed in general. Likewise, if the original
trace features the event whereby A receives a message, this
event belongs to projection of the trace over {A}. There is
no strong relation between the projection and extension op-
erators, so that in general T/{A} 6v T .
Example 3 Consider the trace representing Lowe’s attack.
It can be easily projected over the attacker C as:

TLowe/ {C} =




s (C : A → B[1′]) , r (C : 2′) ,

s (C : C → A[2]) , r (C : 3) ,

s (C : A → B[3′])




.
Example 4 Consider the example trace:

T ′ = [s (A : A → C[1]) , r (C : 1) , s (C : A → B[1′])]

It follows that T ′ v TLowe, but T ′ /v TLowe/ {C} be-
cause A’s sending the first message does not appear in
TLowe/ {C}. Also, TLowe/ {C} /v TLowe.
Classical security terms such as spoofing and sniffing can be
easily defined formally using the notion of trace. A principal
spoofs a message on a trace if the trace features an event in
which the actual sender is different from the alleged sender.
A principal intercepts a message meant for someone else on
a trace if the trace features an event whereby the principal re-
ceives the message but no event whereby the intended recip-
ient of the message receives it. If a trace on which an inter-
ception event takes place is extended with the event whereby
the intended recipient of the intercepted message actually re-
ceives it, then the interception event should be more correctly
addressed as a sniffing event. It means that these notions only
make sense exactly with respect to a trace and precisely to the
very trace under consideration. By contrast, they are point-
less on their own.
A formal protocol model generically is the set of all possible
traces induced by the protocol. It can be defined in the formal
model of choice (CSP [20], Inductive Method [17], Strand
Spaces [22], etc). It is denoted by (variants of) the Greek
letter Π.

IV. BUG: A New Threat Model

A subtler classification of principals than the classical
spy/non-spy one is needed. Our interest is in a social taxon-
omy reflecting whether the principals behave legally or not,
rather than in notions such as initiator or responder. The tax-
onomy is taken as a threat model for the security considera-
tions that follow.
Definition 4 (BUG Threat Model) The BUG threat model
partitions the principals according to three, disjoint, social
behaviours: the bad, the good and the ugly principals. These
are defined as follows:

Bad principals are attempting to break the protocol for their
own illegal benefits. They may or may not collude with
each other. They are denoted by (variants of) the calli-
graphic letter B.

Ugly principals are acting with no precise social/legal com-
mitment: they may follow the protocol and may, delib-
erately or not, let the bad principals exploit them. They
are denoted by (variants of) the calligraphic letter U .

Good principals follow the protocol rules, and are exactly
those who should enjoy the protocol goals exactly by
conforming to its rules. They are denoted by (variants
of) the calligraphic letter G.

Our taxonomy is both similar to and different from the
Dolev-Yao [10] simple classification of principals. It is sim-
ilar in the admission that someone can act illegally. We are
however accounting for a set of bad principals rather than
for a single spy, signifying that more than one principal may

Retaliation Against Protocol Attacks 317

want to subvert the protocol. Crucially, each bad principal
may want to act by himself, as it is realistic nowadays. By
contrast, the Dolev-Yao spy is the logical product of any set
of colluding principals, as it was more realistic decades ago
when computer networks were rare.
A distinction is necessary between good/bad and ugly par-
ticipants because we want to discuss what happens after an
attack. It is important to identify the participants who should
have benefited from the protocol goals (the good), the par-
ticipants who actually benefited from the flaw (the bad) and
finally those who took part in the session and indeliberately
contributed to the flaw (the ugly). Because the principals
can change role, for example from good to bad, by perform-
ing some event, the taxonomy depends on the specific trace
under consideration. This relation requires further specifi-
cation, but for simplicity it is sufficient to clarify that if a
specific partition (of the principals into the roles) underlies a
trace, another partition can underly an extension of the given
trace.
In the original Dolev-Yao model, and in some later more
complicated incarnation such as the Bellare-Rogaway [6]
model, the ugly and the bad were grouped together: the in-
truder can use as oracle any stage of the protocol. However
this does not distinguish who gained from the protocol fail-
ure. But such a clear distinction is always present in the in-
formal description of an attack in a research paper: sentences
such as "and thus A can impersonate B", "C can learn M" etc.
mark exactly the notion of who is gaining. However, to im-
personate Bob, it might be the case that Alice needs to exploit
Ive’s participation in the protocol, in which case Ive would
be playing, deliberately or not, the role of an ugly principal.
Before moving on to a formal example, we assume the exis-
tence of a predicate over a protocol trace that evaluates to true
if the trace contains an attack according to some suitable defi-
nition. The predicate takes as parameters also the specific so-
cial behaviours of the principals on that trace: A(T ,B,U ,G).
Clearly, additional predicates can be introduced formalising
specific attacks, but we can do with one for the sake of pre-
sentation.
Example 5 Consider Lowe’s attack (Figure 2) to the
Needham-Schroeder protocol and the trace TLowe (Exam-
ple 2) formalising it. On this trace it can be observed that:
C is the subject of the attack, the attacker; A is just playing
by the rules with no deliberate commitment; B is the object
of the attack, the victim. So, we define:

• B = {C}
• U = {A}
• G = {B}

It follows that A(TLowe,B,U ,G) holds.
Example 6 Consider the completion of Lowe’s attack (Fig-
ure 3). It can be formalised as an extension of the trace
TLowe (Example 2) as:

T1 = TLowe; [s (C : A → B[4]) , r (B : 4)]

On this trace it can be observed that: C is the subject of
the attack, the attacker; B is just playing by the rules with
no deliberate commitment; A is the object of the attack, the
victim. So, we define:

• B1 = {C}

• U1 = {B}

• G1 = {A}

It follows that A(T1,B1,U1,G1) holds.
The two previous examples show that the social roles that the
agents play vary from the trace TLowe formalising Lowe’s
attack, to the trace T1 formalising its completion with the
illegal money transfer. It is clear that, while Lowe’s attack
directly impacts B, the consequent theft impacts A.
Example 7 Consider our continuation of Lowe’s complete
attack (Figure 4). It can be formalised as an extension of the
trace T1 (Example 6) as:

T2 = T1; [s (B : C → A[4′]) ; r (A : 4′)]

On this trace it can be observed that: B is the subject of
the attack, the attacker; A is just playing by the rules with
no deliberate commitment; C is the object of the attack, the
victim. So, we define:

• B2 = {B}

• U2 = {A}

• G2 = {C}

It follows that A(T2,B2,U2,G2) holds.

V. Beyond Protocol Attacks

Before going beyond protocol attacks, we provide a classical
formal definition of protocol vulnerability.
Definition 5 (Vulnerability) A protocol Π is vulnerable to
an attack A that is mounted by the principals in B exploit-
ing those in U against those in G if there exists a protocol
trace T that features A mounted by B exploiting U against G
(Figure 5).
Definition 5 is formalised in Figure 5, where a suitable pred-
icate representing vulnerability is introduced as a function of
the protocol, the attack and the principals’ behaviours. Build-
ing on top of this definition we will characterise the subtler
notion of retaliation.

Vulnerability(Π, A, B, U , G) ≡
∃ T . T ∈ Π ∧ A(T ,B,U ,G)

Figure. 5: Defining protocol vulnerability formally

318 Bella and Bistarelli

A. Retaliation

What is the essence of retaliation? Should a principal cheat,
he can be cheated back. It is therefore not obvious whether
the principal will choose to cheat. A positive decision re-
quires the absence of unbearable hazards. Clearly, retaliation
is meaningful if hitting back is a meaningful property in the
context of the given protocol. As the bad principals are pro-
tocol participants, namely insiders, we can assume that they
want to reap the benefits of the protocol (such as authentica-
tion), plus any additional benefits they may obtain by mis-
behaving. These latter benefits should be balanced with the
threats of being hit back. Designing a protocol so as to in-
crease those threats will simply produce a stronger protocol.
Definition 6 (Retaliation) A protocol Π allows retaliation
of an attack A that is mounted by the principals in B exploit-
ing those in U against those in G if, for every protocol trace
that features A mounted by B exploiting U against G, there
exists an extension of the trace featuring A mounted by some
B′ exploiting some U ′ against some G′. The principals in B
change their role in the extended trace; vice versa, those in
B′ did not play the same role in the original trace. If B′ = G
and B = G′, then Π allows direct retaliation, else Π allows
indirect retaliation.
Clearly, direct retaliation is the most intuitive form of retal-
iation, which sees the good and the bad principals exactly
switch their roles. However, our examples have shown that
more articulated forms of the property, such as indirect retal-
iation, are possible. Definition 6 is formalised in Figure 6,
where a suitable predicate representing retaliation is intro-
duced as function of the protocol, the attack and the princi-
pals’ behaviours. The intuition is that each time there is an
attack, some additional event may take place to retaliate, that
is to attack the initial attackers. This typically involves some
principals’ changing their social behaviour. The formal def-
inition in the figure confirms the change of roles: those who
are now bad, the B′, are a subset of those who were either
ugly or good; those who were bad, the B, are a subset of
those who are currently either ugly or good.

Retaliation(Π, A, B, U , G) ≡
∀ T . T ∈ Π ∧ A(T ,B,U ,G) →

(∃ T ′,B’,U’,G’. T ′ ∈ Π ∧ T v T ′ ∧
B′ ⊆ U ∪ G ∧ B ⊆ U ′ ∪ G′ ∧
A(T ′,B’,U’,G’))

Figure. 6: Defining retaliation formally

B. Suspicion and Detection

In the previous section we introduced the definitions of pro-
tocol vulnerability and retaliation. These were given in terms
of a global view of the traces of events, a god-centric perspec-
tive. Equivalent principal-centric versions are of little signif-

icance because an attack is by its definition undetectable by
its target principal.
However, a principal-centric perspective is possible if we en-
visage some empirical control event that principals can per-
form outside the protocol, which we call out-of-band chal-
lenge. The principals can easily use this method to check
whether something fishy happened during the protocol.
The protocol responder can use the out-of-band challenge to
raise his suspicion that something went wrong. Precisely,
suspicion means that a good principal suspects that an attack
was attempted, but has no clue on the possible attacker. In
our example protocol, this can be achieved by a suitable mes-
sage, as in Figure 7. Principal B is attempting a dull money

B → A: {|Na,Nb, “Transfer £1 from B’s account to B’s”|}Ka

Figure. 7: B’s challenge for suspicion

transfer either within his own account or between two of his
accounts. Notice that the amount is meaningless here — it
may be 0 or another irrelevant value. Principal B can verify
from his bank statement if the transfer went through. If this
is affirmative, B gets a confirmation that A acknowledges the
pair Na,Nb with him. Otherwise, B learns that his session
with A was somewhat compromised by someone, exactly be-
cause A does not acknowledge the pair of nonces.
The challenge for suspicion can be made stronger, indeed be-
coming a challenge for detection. In our example protocol,
this can be achieved by a suitable set of messages, as in Fig-
ure 8.

∀X. B → A :
{|Na,Nb, “Transfer £1 from X’s account to B’s”|}Ka

Figure. 8: B’s challenge for detection

Principal B is again attempting a dull money transfer from
any account holder onto his own. Principal B can verify from
his bank statement for which principal X his attempt went
through. This means that A associated the pair Na,Nb to X
rather than to B. In consequence, B detects that X acted as
a bad principal between A and B: the protocol admits a trace
modelling this social behaviour.
After detection, B has sufficient evidence against the at-
tacker, so he can draw a balance between two alternatives:
either sue the attacker or retaliate against him.

VI. Towards Formal Verification under the
BUG Threat Model

Classical properties such as authentication have been vastly
analysed. Can we formally analyse properties such as retali-

Retaliation Against Protocol Attacks 319

Figure. 9: Defining the main functions for the Inductive Method in Isabelle

ation? From a theoretical standpoint there is not a big differ-
ence. We have casted our properties as properties of traces
because almost all research in tool-supported security verifi-
cation is based on defining the protocol goals as properties of
traces [12, 13, 14, 17, 19, 20, 9] or fragments thereof [8, 21].
The key observation is that the emphasis in the traditional
work on security verification was on finding attacks or show-
ing that no attack existed. This was reflected on formal mod-
els by the nature of the checked properties, which were es-
sentially of existential nature: is there a trace T in the pro-
tocol Π such that A holds on T? Here, T , Π, and A can be
complicated at will. Indeed, A as a formally defined property
can be extremely complicated, for instance including arith-
metical constraints on the number of events and arbitrarily
many quantifiers. Theorem-proving fellows wished to prove
that no such trace existed, while model-checking fans longed
for a witness of its existence.
Our properties are much more complex, as they feature at
least two quantifiers over a single trace, and we may also

expect quantifier alternation. Lifting a theory of authenti-
cation to our properties appears to be reasonably simple: a
formal account is already available using the method of soft
constraint programming [3] with pen and paper. Lifting the
automatic tool support remains a real challenge. We have
already got to grasps with this challenge by experimenting
with Paulson’s Inductive Method [18] of protocol verifica-
tion. Our initial findings are published here for the first time.
The Inductive Method is developed for classical analyses in
the Dolev-Yao threat model, but our experiments support the
claim that it is realistically scalable to the BUG threat model.
The Inductive Method is thoroughly supported by the generic
proof assistant Isabelle [16], which can be obtained from the
Internet [23] under the Open Source Software BSD licence.

A. Outline of the Inductive Method

There is only room here for a brief introduction to the method
— the complete presentation is elsewhere [2, 18]. Figure 9

320 Bella and Bistarelli

Figure. 10: Inductive model of the public-key Needham-Schroeder protocol

shows file fragment.thy opened by the graphical interface to
Isabelle [24]. The file sums up the definitions of a few main
functions.
There exists an unlimited population of principals who are
entitled to initiate at will an unlimited number of sessions
of the given security protocol. Among the principals is the
spy, who monitors the entire network traffic and in conse-
quence knows who sends and who receives which messages.
This feature indicates that the method was conceived under
Dolev-Yao’s threat model. An unspecified set of bad princi-
pals have colluded with the spy by revealing their long-term
secrets. The spy is herself bad, as it can be seen in Figure 9.
However, she is the only network principal who can send
arbitrary messages built from components intercepted from
the network traffic. Interception is modelled by the function
knows, and creation of fake messages by a conjunct use of
the functions analz and synth. All are described below.
The network traffic develops according to the events per-
formed by the principals while they are executing the given
protocol. Typical events are to send or to receive a message.
A history of the network is represented by a trace, the list of
events occurred throughout that history. The set of all possi-

ble traces is the formal model for the given protocol, and is
defined inductively by specific rules drawn from the proto-
col. For example, if the protocol prescribes that B sends A a
message m′ upon reception of m, then the model features a
rule that may extend a generic trace by the event SaysB A m′

each time the trace contains the event Gets B m. In other
words, that reception event is a precondition and that send-
ing event is a postcondition of the rule. Therefore, the events
occur via the firing of the inductive rules. But, as induction
prescribes, no rule is forced to fire, so no event is forced to
occur.
The binary function knows, defined by primitive recursion
in Figure 9, formalises the knowledge that principals derive
from observing a trace [2]. So, knowsA evs is the set of
messages that principal A either sends or receives on trace
evs . Should A be the spy, the set would include all messages
that anyone ever sends or receives on the trace. Figure 9 also
shows that the unary function parts extracts all components
(portions of clear-text messages and bodies of cipher-texts)
from a set of messages; analz is the same but only opens
those cipher-texts whose encrypting key is available. This
means that it is assumed that no cryptanalysis is possible,

Retaliation Against Protocol Attacks 321

Figure. 11: Guarantee of confidentiality of the initiator’s nonce

namely that encryption is totally reliable. In consequence,
confidentiality of a message component m in a trace evs can
be expressed as

m /∈ analz(knows Spy evs).

The function synth, also defined by induction in Figure 9, is
crucial. It expresses the spy’s illegal activity in building up
messages at will. It can be seen that the spy can synthesise
any agent name or number (timestamp), and hash available
messages. She can also concatenate messages into longer
ones, and build ciphertexts using available keys. Therefore,
the set

synth(analz(knows Spy evs))

expresses all messages that the spy can synthesise from the
analysis of the network traffic over trace evs .
Each kind of cryptographic key has its own syntax. For our
examples below, it must be mentioned that the public keys
are denoted by function pubK. Moving on to the actual for-
mal guarantees, they come in the form of theorems that hold
of the protocol model. Precisely, each theorem is expressed
over a generic trace and hence holds in general. A proof is
conducted by structural induction on the length of the trace,
resulting in a number of long subgoals that can span sev-
eral pages. It is here, where the long and often tedious proof
entanglements contrast human scrupulousness, that the proof
assistant Isabelle comes into help by solving the simple cases
automatically.

B. Analysis of Needham-Schroeder under Dolev-Yao

Paulson analysed the public-key Needham-Schroeder proto-
col under Dolev-Yao’s threat model years ago using the In-
ductive Method. The protocol model is quoted in Figure 10.
It can be seen that the full specification comes with file
NS_Public_Bad.thy and is defined as the Isabelle theory
NS_Public_Bad. This is built up by extending theory Pub-
lic, which defines all functions for public-key protocols. The

actual protocol model, constant ns_public, is declared as a
set of traces and defined inductively by five rules. Rule Nil
sets the base of the induction stating that the empty trace be-
longs to the model. Rule Fake models the spy’s activity:
given a trace evsf in the model, its extension (# is the list ap-
pend operator) with the event whereby the spy sends some
agent B one of her fake messages X is still a trace of the
protocol model. The inductive layout is clear. Notice that the
message X is derived from the set of fakes described in the
previous section. The remaining rules model the steps of the
protocol, one by one.
Rule NS1 has the only premise that A uses a fresh nonce.
Freshness on a trace is modelled via the function used,
whose intuitive definition is omitted from this presentation.
Rule NS2 also relies on the assumption that B received an
instance of the first message on the given trace evs2. Notice
that SaysA′B X is an old syntax for Gets B X . Rule NS3
admits that A concludes the protocol with B only if A ini-
tiated it with B and got a matching instance of the second
message.
Paulson’s analysis of this protocol confirmed Lowe’s attack.
Here, we are interested in a guarantee expressing confiden-
tiality of A’s nonce, not of B’s — the reasons being clarified
in the next section. It is given in Figure 11 in the same form
as it is released with Isabelle [23]. The blue shade indicates
what Isabelle has processed until the moment when the pic-
ture is taken. The human analyser can interact with the proof
assistant using the window buttons, for example executing
an extra step by pressing the “Next” button. This theorem
insists that A initiates the protocol with B using a nonce NA.
It requires that both of them are not bad, and concludes that
the nonce remains confidential (spies evs is the old syntax
for knows Spy evs).
The proof of this theorem is simpler to execute interactively
than to describe on paper. Each proof command is intro-
duced by the keyword apply. The first command brings the
first premise, namely the Says event, into the inductive for-

322 Bella and Bistarelli

Figure. 12: Attempt to prove confidentiality of the initiator’s nonce in BUG: level 2

mula. The second one applies induction, then simplifies all
cases, and solves the subgoal corresponding to rule Fake by
a standard method spy_analz. The final command applies
the classical reasoner to all remaining subgoals with the only
aid of two lemmas proved before.

C. Analysis of Needham-Schroeder under BUG
Can we use the Inductive Method and its Isabelle support
under the BUG threat model? Can we tailor the strict formal-
isation of the spy to a broader and more realistic threat? No,
it appears that this cannot be done straightforwardly, that is,
without a complete redefinition of the agents’ datatype and
related functions. However, we had a number of insights in
the attempt to keep the standard formalisation of the spy. One
that seems the most balanced between simplicity and expres-
siveness merely concentrates on the theorem statements.
As we observed above (§II), an attack can be retaliated when
it causes more than one violation of the protocol policy: one
that is directly useful to the attacker to mount the attack, and
the others that are usually neglected. We noticed that with
the public-key Needham-Schroeder protocol, the attacker’s
activity indeliberately revealed nonce NA to B, when in fact
A only intended to share that nonce with the attacker. Having

observed that it is feasible that B sooner or later intends to
exploit his knowledge of NA against other principals, the di-
rection for tomorrow’s formal protocol verification becomes
clear: it is necessary to investigate confidentiality of all po-
tentially sensitive components in the BUG threat model and
for all protocols.
With our example protocol, this direction requires establish-
ing formally whether NA remains unknown to B, who can
be the attacker himself. Strictly speaking, this is daunting
due to the formalisation of the spy, who cannot hide behind
two agents at the same time. However, here we advance a
heuristic that investigates what happens to the confidential-
ity theorems if we relax the assumptions that the involved
agents are not bad: it can reveal novel vulnerabilities of sen-
sitive message components. An attempt to prove the theorem
presented in the previous section omitting the assumption of
a bad B is in Figure 12. It can be seen that subgoal 1 cor-
responds to case Nil, subgoal 2 to case Fake, subgoal 3 to
case NS1 and so on — there are five subgoals although the
window only covers three. Simplification has not been done
at the moment: the light blue shading confirms that it is the
next step that can be taken.
Let us concentrate on subgoal 3. The inductive formula is
available as the third premise in the preconditions. The post-

Retaliation Against Protocol Attacks 323

Figure. 13: Attempt to prove confidentiality of the initiator’s nonce in BUG: level 18

condition expresses the thesis for the trace evs1 extended
with the new event introduced by rule NS1. If the event
SaysAB . . . was already in trace evs1, then the subgoal ter-
minates via an appeal to the inductive formula. Otherwise,
that event is exactly the one that rule NS1 introduces, and so
it must be the case that A equals Aa, B equals Ba and so on.
If we continue the proof attempt interactively as in Figure 13,
Isabelle routinely solves most subgoals. For example, com-
mand prefer moves the numbered subgoal to the first slot, to
which each standard command applies by default. Suitable
applications of this command leave us at level 6 with only the
subgoal corresponding to rule NS1 to be solved. We solve
its simple subcases interactively by a few intelligible com-
mands. For example, if B is not bad, then he certainly is
not the spy (because the set bad includes the spy), and the
thesis can be reached. What happens if B were bad, that is,
potentially the spy? Figure 13, confirms that Isabelle leaves
us with the very subgoal denouncing that B is bad. It is clear
that it cannot be terminated because no premises lead to con-
tradiction. This interactive and long proof was described here
to facilitate the reader’s intuition. However, one appeal to the
auto method at level 6 would have led us to the same state in
just one step.
It is no secret that the experiments reported here were con-
ducted only after we had the insights described in the early
sections of this paper. Their significance remains unal-
tered: if we analyse all protocols under the BUG threat
model, we can find violations that can lead to retaliation at-
tacks. In particular, the Inductive Method used on the public-
key Needham-Schroeder protocol as we suggested above

denounces mechanically B’s indeliberate discovery of A’s
nonce.
This is the current state of the art. However, our last guaran-
tee cannot be considered the most expressive formalisation
of a retaliation attack: the spy has bad agents’ private keys
and hence can access anything that is encrypted with the cor-
responding public halves. So, there is vast potential for addi-
tional research here. In particular, it remains to be formalised
that, should the spy hide behind B, she might need to forward
A’s nonce to another agent. This was the case with Lowe’s
attack.

VII. Conclusions

Our research is motivated by the novel settings in which se-
curity protocols are executed nowadays, significantly differ-
ent from settings dating back to nearly three decades ago. Se-
curity protocols, whose use was typically appanage of 007s
to protect their communications from the rest of the world
during espionage missions, have now become accessible to
a huge international community. The threat model has in-
deed changed. It is now perfectly realistic to even conceive
that each principal may want to attack (whatever this means
in a context) everyone else — on-line auctions in partic-
ular and e-commerce in general come as examples. Also
non-repudiation protocols assume that everyone trusts no-
one else.
The good principals were expected in the taxonomy, but the
ugly principals perhaps not. The identification of this social
behaviour brings forward another new concept: principals

324 Bella and Bistarelli

cannot and should not be constrained to be playing a single
social behaviour forever. Imposing such a constraint would
limit formal analysis significantly in scope. More precisely,
given a trace of events representing participation in a proto-
col, the social behaviours played by each principal can be
easily identified, but they may vary in a different trace, such
as an extension of the original trace. More simplistically, we
could even see all principals as ugly, who turn out to behave
as good or as bad according to specific circumstances.
This paper has formalised the notion of retaliation in the con-
text of security protocols. If an attack is discovered, it is
worth investigating whether it can be retaliated. If yes, risk
analysis may lean towards keeping the protocol in use. This
perspective advances on the long-established practice of go-
ing back to redesign soon after one attack. An attack signifies
a flaw, not necessarily a complete failure. Also the notions of
suspicion and detection appear to have never been spelled out
explicitly. They are adequately supported by the new threat
model. It seems fair to conclude that the path to a new, im-
portant niche of protocol verification has just been drawn.
A pen-and-paper formal analysis of retaliation is already
available [3]. However, it is widely accepted that mechanical
tool support is necessary to deal with proofs about security
protocols, as their major difficulty often is their sheer length.
This paper has extended a prior version [5] with the first ex-
periments of tool-supported analysis of retaliation attacks.
We have discussed the current state of the art, which bal-
ances expressiveness with simplicity. But a complete mech-
anisation would require the full implementation of the BUG
threat model. That is where future research is targeted.

Acknowledgements

Stefano Bistarelli was partially supported by the Italian PRIN
project "Vincoli e preferenze come formalismo unificante per
l’analisi di sistemi informatici e la soluzione di problemi re-
ali". Fabio Massacci was partially supported by the FIRB
"Security" and IST-FET-IP "Sensoria" projects.

References

[1] M. Backes, B. Pfitzmann, and M. Waidner. A compos-
able cryptographic library with nested operations (ex-
tended abstract). In Proceedings of 10th ACM Con-
ference on Computer and Communications Security
(CCS), pages 220–230. ACM Press, 2003.

[2] G. Bella. Formal Correctness of Security Protocols. In-
formation Security and Cryptography. Springer, 2007.

[3] G. Bella and S. Bistarelli. Soft constraint programming
to analysing security protocols. Journal of Theory and
Practice of Logic Programming, 4(5):1–28, 2004.

[4] G. Bella, S. Bistarelli, and F. Massacci. A protocol’s
life after attacks. In Proc. of the 11th Security Pro-

tocols Workshop (SPW’03), LNCS 3364, pages 3–18.
Springer, 2005.

[5] G. Bella, S. Bistarelli, and F. Massacci. Retaliation:
Can we live with flaws? In M. Essaidi and J. Thomas,
editors, Proc. of the Nato Advanced Research Workshop
on Information Security Assurance and Security. IOS
Press, 2005.

[6] M. Bellare and P. Rogaway. Provably Secure Session
Key Distribution — the Three Party Case. In Proc. of
the 27th ACM SIGACT Symposium on Theory of Com-
puting (STOC’95), pages 57–66. ACM Press, 1995.

[7] C. Boyd and A. Mathuria. Protocols for Authentica-
tion and Key Establishment. Information Security and
Cryptography. Springer, 2003.

[8] L. Carlucci Aiello and F. Massacci. Verifying security
protocols as planning in logic programming. Transac-
tions on Computational Logic, 2(4):542–580, 2001.

[9] E. M. Clarke, S. Jha, and W. Marrero. Verifying se-
curity protocols with brutus. ACM Trans. Softw. Eng.
Methodol., 9(4):443–487, 2000.

[10] D. Dolev and A. Yao. On the security of public-key
protocols. IEEE Transactions on Information Theory,
2(29), 1983.

[11] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. The MIT Press, 1995.

[12] R. Kemmerer, C. Meadows, and J. Millen. Three sys-
tem for cryptographic protocol analysis. Journal of
Cryptology, 7(2):79–130, 1994.

[13] G. Lowe. An Attack on the Needham-Schroeder
Public-Key Authentication Protocol. Information Pro-
cessing Letters, 56(3):131–133, 1995.

[14] J. Mitchell, M. Mitchell, and U. Stern. Automated anal-
ysis of cryptographic protocols using Murphi. In Proc.
of the 16th IEEE Symposium on Security and Privacy
(SSP’97), pages 141–151. IEEE Press, 1997.

[15] R. M. Needham and M. D. Schroeder. Using encryp-
tion for authentication in large networks of computers.
Communications of the ACM, 21(12):993–999, 1978.

[16] T. Nipkow, L. C. Paulson, and M. Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic.
Springer, 2002. LNCS Tutorial 2283.

[17] L. C. Paulson. The inductive approach to verifying
cryptographic protocols. Journal of Computer Security,
6:85–128, 1998.

[18] L. C. Paulson. The inductive approach to verifying
cryptographic protocols. Journal of Computer Security,
6:85–128, 1998.

Retaliation Against Protocol Attacks 325

[19] F. R. and R. Gorrieri. The compositional security
checker: A tool for the verification of information flow
security properties. IEEE Transactions on Software En-
gineering, 23(9):550–571, 1997.

[20] S. Schneider. Security properties and CSP. In Proc.
of the 15th IEEE Symposium on Security and Privacy
(SSP’96), pages 174–187. IEEE Press, 1996.

[21] D. Song. Athena: An automatic checker for secu-
rity protocol analysis. In Proc. of the 12th IEEE
Computer Security Foundations Workshop (CSFW’99).
IEEE Press, 1999.

[22] F. Thayer Fabrega, J. Herzog, and J. Guttman. Hon-
est ideals on strand spaces. In Proc. of the 11th IEEE
Computer Security Foundations Workshop (CSFW’98).
IEEE Press, 1998.

[23] URL. Isabelle download page.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/download.html

[24] URL. Proof General: a generic interface for proof assis-
tants. http://proofgeneral.inf.ed.ac.uk

