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Abstract: : The need for rapidly configurable, secure communica-
tion among groups of participants has resulted in the study of group
key agreement protocols. The study of these protocols has been
primarily theoretical. In this paper, we present the results of simu-
lation studies of the methods provided by four group-key agreement
protocols, EGK, TGDH, STR and CCEGK. The results of the sim-
ulation clarify the theoretical metrics, but also provide insight into
the actual relative impact of the metrics, specifically the impact of
synchronization. Overall CCEGK performed better in all categories
than the other three protocols.
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I. Introduction

Currently, much of group key management analysis remains
theoretical [9, 16]. We have created simulations to mimic
the ways the four group key management protocols, Efficient
Group Key (EGK) [1], Tree Group Diffie-Hellman (TGDH)
[9, 12], Skinny TRee (STR) [10, 11] and Computation and
Communication Efficient Group Key (CCEGK) [15], will
perform in real-world settings. The goal of this research is to
provide a more realistic evaluation of the behavior of group
key management protocols, taking into account the perfor-
mance cost of bandwidth utilization and timing. In order
to accomplish this, we first establish the feasibility of im-
plementing group key management protocols over network
simulation software. Second, we corroborate previous theo-
retical estimates from our earlier work [15, 16]. Finally, we
compare simulated results against our original theoretical re-
sults which allows for the determination of how accurately
they correlate to real-world networks.
Group key management is a subcategory of cryptography.
Cryptography concerns itself with securing information so
that unauthorized individuals cannot understand the mes-
sages sent. Key management is responsible for the proper
and secure distribution, creation, and revocation of the keys
used to secure messages.
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Group key management, sometimes called group key ex-
change, applies to groups of participants who want to com-
municate securely through insecure channels. In this pa-
per, we focus on decentralized group key management, of-
ten called group key agreement. Where each participant
contributes to the entropy of the shared key. This type of
group key management is more suitable for large and dy-
namic groups, by avoiding centralized control and potential
computational or communication bottlenecks.
The idea of group key agreement stems from the earlier work
of two-party key management. In 1976, Diffie and Hellman
introduced a two-party key exchange protocol, DH, that al-
lowed two participants to create a private key through the use
of publicly exchanged messages [6]. This protocol allowed
two participants, without any prior shared secrets, to securely
establish a shared session key. DH is now at the heart of
many two-party secure communication protocols, including
Secure Socket Layer [7] and Secure Shell [14].
With the prevalence of the Internet and networked technolo-
gies, there are applications that would benefit from a group
key agreement protocol that provides the same protection as
DH, but for groups of more than two participants. This list
includes conference calls, distributed computation, white-
boards, distributed databases, Unmanned Aerial Vehicles,
and battlefield communications, among many others. To en-
sure secure and reliable communication in these applications,
there have been several attempts to create efficient group key
agreement protocols for large and dynamic groups based on
the DH algorithm [1, 3–5, 8, 13, 15].
Although the DH algorithm was first created in 1976, a sub-
stantial flurry of new work arose in the field during the late
1990s. Prior to 2000, different groups simultaneously de-
veloped their own versions of group key agreement proto-
cols that utilized tree-based information structures. The algo-
rithms utilized by these protocols scale logarithmically with
the number of participants, increasing performance greatly
over prior work that scales linearly with the number of par-
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ticipants. In an attempt to extend the usefulness of two-
party key management to an n party arena, these groups
created the following protocols: Efficient Group Key (EGK)
[1], Tree Group Diffie-Hellman (TGDH) [9, 12], and Skinny
TRee(STR) [10, 11]. Later on, Computation and Communi-
cation Efficient Group Key (CCEGK) [15, 16] was added to
the mix.
With these four protocols, (CCEGK, EGK, TGDH, STR),
the designers attempted to address a handful of performance
concerns. Chief among them were communication costs and
computation costs. The designers of EGK and TGDH fo-
cused more on the cost of computation than on that of com-
munication. STR improved the cost of communication over
the cost of computation, in keeping with Becker and Willie’s
original work on efficient communication in group key pro-
tocols [3]. The newest protocol, CCEGK [15] emphasizes
both the costs of communication and computation.
The analysis of these protocols has been primarily theoreti-
cal. The main goals of the work presented in this paper are
to simulate these protocols to both validate and extend the
theoretical comparisons. Specifically we focus on:

• Implementing additional core functionality of NS-2 and
extending it to the four group key management proto-
cols.

• Implementing two network topologies (Internet, routed)
with various test configurations.

• Illustrating the current limitations to the group key man-
agement protocols as described in the literature.

• Corroborating our theoretical data with this experimen-
tal data.

The remainder of this paper is organized as follows. In Sec-
tion II we define the performance metrics used to compare
the four protocols, and provide a brief discussion of NS-2,
the simulator used in this work. In Section III we discuss the
two specific simulation scenarios evaluated. Sections IV & V
we present the results of the two scenarios. Finally we con-
clude in Section VI with a discussion of the results and where
we plan to go in the future.

II. Background

A. Costs and Performance Metrics

In this section we define how the protocols are compared.
Most protocols implement five to eight standard operations
(or methods). These operations define how the protocol man-
ages and secures the shared group keys.
For example, in order for an individual to join a group, he
or she must initiate a join operation. Then the entire group
participates in this operation, and at the end, the entire group,
including the new member, has a new shared key. The rest of
the operations are quite similar.

It is commonly held that there are eight main operations for
each group key management protocol. However, we have
found that not every protocol implements, or at least docu-
ments, every operation (see Table 1.)
Due to the simultaneous development of these group key
management protocols, standardization of categories and
ambiguities in their classification led to the development of
categories to be applied to all operations discussed in this
paper.
We define the common eight operations as follows:

Initialization The initial creation of the group key and orga-
nization of the key management infrastructure.

Join (Add) This operation brings a new member into the ex-
isting group.

Mass join (Mass add) Allows many new members to be
added to an existing group simultaneously when these
new members have not already formed a group of their
own.

Merge (Group fusion) As opposed to mass join, merge is
used when another group is combined with the existing
group to become a new group.

Leave (Remove) This operation is used to remove a mem-
ber from the group.

Mass leave This operation is used when multiple members
are simultaneously removed from the existing group.

Split (Partition or Group fission) Different from mass
leave, split occurs when a single group is divided into
two or more component groups.

Key refresh This operations is used to refresh the existing
group key in order to prevent an adversary from having
a sufficient time or resources to break the key.

Not every protocol documented in the literature includes
the operations of mass add, split, initialization, and refresh.
Therefore we limited our simulation to the operations that
have been sufficiently and completely described to enable
their implementation on a real network. Specifically we ana-
lyze the operations of merge, add, leave, and mass leave.
To compare these operations, we use a set of metrics related
to the cost of their execution. Costs come in two categories,
communication and computation; however, because NS-2 is
a communication simulator, only the communication costs
are taken into account in this paper. We assume that the the-
oretical computation costs are sufficient for comparison [16].

Number of rounds A generic time unit used to compare the
number of steps taken in different operations. The pro-
tocols often require synchronization between rounds, so
this number becomes important when real-world imple-
mentations take synchronization time into account.
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Table 1: Group Key Agreement Protocols and their Methods
TGDH STR EGK CCEGK

initialization X X
join (add) X X X X

mass join (mass add) X X
merge (group fusion) X X X X

leave (remove) X X X X
mass leave X X X X

split (partition or group fusion) X X
refresh X X X

Number of unicast messages The sum of all messages ev-
ery member sends to other single members in the group
in the operation. This number is useful for determin-
ing total communication and is important if many or all
nodes are on the same network collision domain, thus
forcing these messages to be sent sequentially and not
in parallel.

Number of broadcast messages The sum of all messages
sent by each member to all the other members in the
group for the operation. Since the messages go to all
members of the group, it greatly affects total commu-
nication costs depending upon the underlying network
topology.

Number of messages The sum of all unicast messages and
broadcast messages. We use this number to determine
the total time of communication in an underlying broad-
cast network.

B. Introduction to NS-2

Currently there are no simulators like Network Simulator
Version 2 (NS-2) for group key management protocols, and
consequently, any comparative analysis is done at a theoreti-
cal level [15,16]. NS-2 allows a user to emulate network traf-
fic as it actually occurs on physical networks. The software
simulates switches, routers, connections and traffic sources
of various kinds. Traditionally used to model new versions
of communications protocols like Transmission Control Pro-
tocol (TCP) and Ethernet, NS-2 can also model new forms
of traffic generation, like the group key management simu-
lation. The field of group key management would benefit
from a real implementation of these protocols or a realistic
simulation on a reliable network simulator. The NS-2 imple-
mentation presented in this paper aims to do just that.
Kim et al have worked on simulating their protocols on
very specific hardware topologies [9]. While limited to the
specifics of the particular computational hardware, this con-
tribution to realistic simulations of group key management
must be explored in future work.
The goal of the simulation presented in this paper is to pro-
vide a more realistic and real-world evaluation to the field of
group key management protocols. Our research will estab-
lish the feasibility of implementing group key management

protocols over NS-2 network simulation software. Addition-
ally, basing these experiments on our previous experience
with theoretical analysis [16], we help shed light on how real-
istic and meaningful previous literature has been [3–5, 8, 13]
by corroborating previous theoretical estimates.

III. Simulation Design

A. Network Topologies

Two distinct network topologies were chosen for this simu-
lation. In an attempt to cover as wide a range as possible,
and to better understand where group key protocols might
be employed, we simulate a small portion of the Internet
and a router subnetwork. The nodes 0-9 are the member
nodes used in the operations and node 10 represented the
switch/router.
A very small slice of the Internet is depicted in Figure 2.
This was created to mimic a small subsection of the Inter-
net with numerous interconnections and hops between nodes.
The nodes depicted with circles (and numbered 0-9) are the
members of the group operations. The remaining nodes de-
pict intermediate nodes in the internet.
The routed subnetwork we used is shown in Figure 1. The
subnetwork utilizes a star topology where every user is di-
rectly connected to the shared router.

B. Simulation Overview

The goals of the research reported in this paper are to verify
the validity of using NS-2 to simulate communication perfor-
mance for group key management protocols and to corrobo-
rate our previous theoretical estimates [16].
We ran a total of 56 different experiments. We tested four
different operations (join, leave, merge, and mass leave), for
four different protocols, CCEGK, EGK, TGDH, and STR, on
two different topologies with several different starting group
sizes.
The simulations are divided into two parts. Part 1 explores
the bandwidth utilization and timing costs for the four pro-
tocols, CCEGK, EGK, TGDH, and STR, over two network
topologies (subnetwork and Internet) for the four operations,
join, leave, merge, and mass leave. The results of Part 1
enable us to corroborate our prior theoretical data. Part 2 ex-
tends this simulation by examining two specific cases (join
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Figure. 2: Internet Topology

Figure. 1: Subnetwork Topology

and mass leave operations) with group sizes of 5, 10, and 30.
In Part 1 the join operation test was a sequential add of ex-
actly 10 members to an empty group. In Part 2, the join oper-
ation is tested three times, sequentially adding 5, 10, and 30
members to an empty group. This approach was explored to
give a better insight into the trends in communication costs.
Similarly, in Part 1, the mass leave operation involved hav-
ing three members simultaneously leave a group of size 10.
In Part 2 the mass leave operation was used to simultaneously
remove three members from groups of size 5, 10, and 30.
In order to meet the goals described above, we created sim-
ulations that accurately reflected certain “real world” situa-
tions, based on the two topologies. For our simulations we
needed to create experiments that highlighted each protocol’s
performance for each tested operation. We performed 14 dif-
ferent experiments for each of the four protocols (two groups
of four experiments in Part 1, one group for each network
topology, and one group of six experiments in Part 2), giving
us a total of 56 different experiments. The parameters of the
14 different experiments are summarized in Table 1.

C. Protocol Comparison for Fixed Group Size (Part 1)

Our analysis of the simulations divides up the network traf-
fic over time to evaluate how the performance varies be-
tween group key management protocols. One key metric we
use is bandwidth utilization per operation. The term “band-
width”, used in our metrics, should more accurately be called
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throughput. However, in this paper we use the word band-
width to define the total throughput capacity of a link, given
in bytes per second, following the definition often found in
trade literature. Additionally, bandwidth utilized is a mea-
surement meant to indicate how a given service is utilizing
the available bandwidth. For example, if service A utilized
20% of a link with 100 Mbps bandwidth, we would say that
service A had a bandwidth utilization of 20 Mbps. The term
“bandwidth utilization” is meant to convey the traffic cost of
certain services.
We graph the results of the simulations based on bandwidth
utilization over a fixed time unit for routed or subnetwork
topology, and then again for Internet topology. We also
graph the aggregate total bandwidth utilized for each pro-
tocol for each operation. Note that the amount of traffic over
the routed topology is exactly the same as the amount of traf-
fic over the Internet topology. The only way they differ is
through packet loss or corruption, which we do not simulate.
Our simulator samples the traffic by summing up the total
amount of traffic on the entire network during several inter-
vals and reports that amount. Therefore, depending on how
we slice our time, we could get different bandwidth utiliza-
tion results per slice; however, the total amount of traffic
on the network during a full run will never change. To be
impartial, we treated all four protocols using the same sam-
pling scheme. Since the Internet topology takes substantially
longer, we increased the time slices to a tenth of a second,
while in the subnetwork topologies, the time value is repre-
sented in the nearest hundredth of a second.
For the sake of this simulation, a typical packet is 1050 bytes.
This allows around 1000 bytes for the security key and group
key management overhead, leaving 50 bytes for network
communication overhead. Packet size selection does not af-
fect the trends and results that were discovered. Table 2 sum-
marizes the parameters of the test cases. The first four (Join,
Leave, Mass Leave, and Merge) are for Part 1. The latter six
(5+3 Join, 10+3 Join, and 30+3 Join, and Mass Merge (5, 10,
30)) are for Part 2. Initial size is the number of individual
members in the group at the start of the experiment. Ending
size is the number of members in the group at the end of the
experiment. The ”# of Groups” is the number of groups used
in the experiment and the ”# of Ops” is the number of op-
erations (e.g. sequential join operations) in the experiment.
Lastly, the ”# of Topologies” is the number of unique topolo-
gies tested in the experiment. Table 3 summarizes the overall
NS-2 network parameters for all experiments.

D. Part 1: Bandwidth utilization and timing costs with two
network topologies

For Part 1, the test of the join operation involves 10 se-
quential join operations, the leave operation involves three
sequential leave operations, and the merge and mass leave
are both one operation each. Furthermore, the merge oper-
ation consists of two groups of size five merging together,
while the mass leave operation is a simultaneous mass leave

of three members. All operations in Part 1 are simulated
on both the Internet and subnetwork (routed) topology. The
simulations are run on both the “internet” and “subnetwork”
topologies. Each operation (except for join) starts with 10
members. The link speed (bandwidth) is 100 Mbps for the
subnetwork topology and 1 Mbps for the Internet topology.

1) Incremental Join Method

For the first experiment, we start with 10 individual nodes
and a group size of zero. The nodes are added sequentially
to this group for both topologies.

2) Incremental Leave Method

For the leave experiment, we start with a group of size 10 and
sequentially remove three members for both topologies (as
with all experiments in Part 1). We selected nodes 9, 3, and 0
to be removed from our group. These nodes were randomly
selected before the experiments were started. These were
selected to give the simulator a more realistic approach than
simply removing the first three nodes.

3) Mass Leave

The mass leave operation experiment starts with a group of
size 10 and then three (3, 4, and 9) members perform a mass
leave for both topologies. These members were randomly
selected before the start of the simulation to provide a more
realistic mass leave operation.

4) Merge

For the merge operation experiment, we start with two
groups of size 5 and merge them together for both topolo-
gies.

E. Part 2: Bandwidth utilization and timing costs with dif-
fering group sizes

The goal of Part 2 of the simulation is to determine the real-
istic communication costs for two operations, join and mass
leave, when the group size varies. Due to similarities be-
tween performance of these operations over the subnetwork
and Internet topologies, we use only the subnetwork topol-
ogy for this experiments. We simulate the total bandwidth
utilization per protocol for groups of size 5, 10, and 30. The
simulation illustrates trends that are affected by group size
and allows meaningful comparison between protocols.

1) n+3 Join

For the n+3 join, we start with a group with n members and
sequentially join three additional members to it where n is 5,
10, or 30.
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Table 2: Simulation Design Parameters
Initial Ending # of # of # of

Part 1 size size Groups Ops Topologies
Join 0 10 1 10 2

Leave 10 7 1 3 2
Mass Leave 10 7 1 1 2

Merge 10 10 2 1 2
Part 2

5+3 Join 5 8 1 3 1
10+3 Join 10 13 1 3 1
30+3 Join 30 33 1 3 1

Mass Leave 5 5 2 1 1 1
Mass Leave 10 10 7 1 1 1
Mass Leave 30 30 27 1 1 1

Table 3: Summary of Common Parameters for all Experiments
Packet Size 1050 bytes* (for one sender to one receiver)
Simulator NS-2

Underlying Network Protocol TCP/IP
Network Speed (Internet) 1 Mbps

Network Speed (Subnetwork) 100 Mbps
Link Noise none

Router queuing DropTail

2) Mass Leave n

For the Mass Leave n, we start with a group with n members
and simultaneously remove three members from the group
where n is 5, 10, or 30.

IV. Simulation Results Part 1

A. Incremental Join Method

The join operation was analyzed for the four protocols. Ex-
amining the time axis of Figure 3 for the routed topology, it
is clear that CCEGK and EGK are following similar paths,
differing only in a bit of amplitude. This is because CCEGK
and EGK both perform the join operation in one round (per
addition). The only real variance is EGK’s additional over-
head (a bit of extra traffic), which accounts for the greater
magnitude. Specifically, the CCEGK protocol calls for one
broadcast message and one unicast message. Given that ev-
ery broadcast message is sent to every member of the group,
it makes sense that any given broadcast message will con-
sume more bandwidth than a given unicast message. Con-
sequently, the EGK protocol, which performs essentially the
same join operation that CCEGK does (but uses two broad-
cast operations and no unicast), utilizes more bandwidth be-
cause of added overhead. Additionally, STR performs ex-
actly the same as TGDH, while taking longer to finish than
EGK and CCEGK (because STR and TGDH use multiple
rounds per add). Again, because the STR protocol is based
on the TGDH protocol, it makes sense that their join costs
are the same.
For the Internet topology (Figure 4), CCEGK and EGK once
again have similar contours; however, both STR and TGDH

take over three times as long to complete. This added time
is attributed to their use of multiple rounds per add. When
a topology contains several links (as in the Internet topol-
ogy with up to 20 hops in one TCP connection), the round-
trip time becomes a significant factor. Additionally, because
TGDH and STR are broadcasting, every message sent is
forced to be sent to every member, which greatly adds to
bandwidth consumption or utilization. Finally, since both
TGDH and STR broadcast the full key tree for much of their
traffic, their messages can be up to 10 times as large, com-
pared to the standard 1050 bytes for CCEGK and EGK. This
also contributes to their much higher bandwidth utilization.
When looking at total network traffic for join (Figure 7),
TGDH and STR utilize around four times as much bandwidth
as EGK, which is more expensive than CCEGK.

B. Incremental Leave Method

For the subnetwork topology (Figure 5), we note that
CCEGK, STR and TGDH all perform identically. This cor-
roborates our prior theoretical results [16]. Indeed, each of
the three protocols implements the same operation for leave,
so it should be no surprise that their performance on a routed
network is identical. Unfortunately, because EGK recreates
the entire tree each time a node leaves, the costs in time and
bandwidth utilization are larger. Looking at EGK’s cost, it is
clear that it follows an inclining sawtooth-shaped cost curve.
This is due to the fact that the EGK protocol has to recreate
the key tree three times, one for each remove. The ampli-
tude of all the values gets slightly smaller for each successive
leave operation because there are fewer nodes in the key tree.
The Internet topology (Figure 6) results are quite similar to
the subnetwork topology, as expected. However, the time
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Figure. 3: Bandwidth Utilization for Join Method Routed

Figure. 4: Bandwidth Utilization for Join Method Internet
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Figure. 5: Bandwidth Utilization for Leave Method (Routed)

Figure. 6: Bandwidth Utilization for Leave Method (Internet)
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table is much longer for the Internet topology. What took the
subnetwork topology 0.3 seconds takes the Internet topology
nearly four seconds. This again is attributed to the vastly
longer path the packets must take.
When looking at total bandwidth utilization (Figures 7-8), it
is clear that CCEGK, TGDH and STR consume the same
amount of bandwidth EGK, however, consumes over four
times more.

C. Mass Leave

TGDH and CCEGK protocols both can implement the same
mass leave operation as the STR protocol, which is quite
inexpensive. Additionally, however, they can implement a
mass leave operation that re-balances the tree [16], some-
thing STR does not do.
The costs for CCEGK and EGK are identical (Figure 9).
CCEGK and TGDH have no better means of performing the
mass leave operation, so they implement a similar operation
to the one that EGK uses for mass leave (and leave), a com-
plete rebuild of the internal tree structure. However, it is im-
portant to note that while TGDH and CCEGK implement the
same operation for mass leave, TGDH again broadcasts the
full tree structure which greatly increases overall bandwidth
consumption1.
For the mass leave operation in the Internet topology (Fig-
ure 11) there are two things to note. First, the time axis is
far longer than its companion subnetwork topology. This is
due to the fact that the Internet topology takes much longer
to traverse. Second, unlike the preceding graph, CCEGK and
EGK are no longer identical, and even though they are per-
forming the exact same operation with the same amount of
traffic, their graphs appear different. After careful examina-
tion, we find that the two protocols are still essentially the
same, but the sampling rate has affected how they are dis-
played. For example, if one takes the bandwidth utilization
slice of CCEGK that occurs at 4 seconds and adds it to the
slice at 3.5, it will equal the bandwidth utilization for EGK at
3.5 seconds, and so on. The data have become offset because
one sampling slightly lagged behind the other, and since this
is a discrete bandwidth utilization analyzer, our sampling rate
managed to make it look like CCEGK was offset in time.
STR still costs less than the other protocols.
CCEGK and EGK are identical in bandwidth consumption
(Figures 9). Furthermore, STR is cheaper than either of
these, while TGDH is more expensive.

D. Merge

The merge operation separates the protocols and is a great
example of how similar the pairs of protocols are. CCEGK
and EGK perform identically, as do STR and TGDH (Fig-
ures 13-14). This will come as little surprise to those who
know the history of these particular group key management

1After these experiments were completed, we developed a more efficient
mass leave for CCEGK [16].

Figure. 7: Total Utilization Bandwidth for Join

Figure. 8: Total Utilization Bandwidth for Leave

protocols. CCEGK is an evolution of EGK, as STR is an evo-
lution of TGDH. Consequently, the lineage is quite apparent
in the merge operation. Again, STR and TGDH take more
time and consume more bandwidth (sending more informa-
tion per packet than necessary; see Figures 13-14).
When looking at the total bandwidth utilized (Figure 12) we
still see that CCEGK behaves identically to EGK, and TGDH
behaves identically to STR in this experiment.
Additionally, the merge operation is a significant deviation
from the theoretical results found in Zheng [16]. This is
readily explained by the fact that the theoretical results were
based upon a paper by Kim, Perrig, and Tsudik, published
in 2000 [9]. However, this simulator uses data from a 2004
paper by Amir, Kim, Nita-Rotaru and Tsudik [2]. The pub-
lished results for STR and TGDH differ greatly between
these two papers which accounts for this discrepancy.
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Figure. 9: Total Utilization Bandwidth for Mass Leave

Figure. 10: Bandwidth Utilization for Mass Leave (Routed)

V. Simulation Results Part 2

Part 2 compares protocols for varying group sizes. The goal
of Part 2 is to determine the realistic communication costs
for two operations, join and mass leave, when the group size
varies. Due to similarities between subnetwork and Internet
topologies, we use only the subnetwork topology for these
experiments. We simulate the total bandwidth utilized per
protocol for groups of size 5, 10, and 30. Illustrating trends
that are affected by group size and allows meaningful com-
parison between protocols.

A. Join

Figure 15 depicts the results of the three experiments. The
three entries along the bottom are for a sequential add of
three members to groups sized 5, 10, and 30, respectively.
Starting with CCEGK and EGK, we notice a gradual increase
in the bandwidth utilized as group size increases. Given that
the same operation (adding one member) requires more traf-

Figure. 11: Bandwidth Utilization for Mass Leave (Internet)

Figure. 12: Total Utilization Bandwidth for Merge

fic on larger groups, since the message must be sent to every-
one in the group, the increase in cost is expected. The major
change is in TGDH and STR, each exhibit a significant in-
crease in cost for groups of size 30. This cost far exceeds
a predicted linear triple increase in the cost for a group of
size 10. Again this can be attributed directly to the increased
number of recipients (and therefore more traffic on the net-
work) but also an increased packet size, since these protocols
send all keys to all members. This linear increase in packet
size, in addition to the linear increase in the total number
of traffic recipients, accounts for a considerable increase in
overall bandwidth consumption. Therefore, while CCEGK
and EGK have a linear increase in bandwidth utilization in
relation to the increasing number of group members, STR
and TGDH have a polynomial increase in costs due to the
increasing group size and the increased packet payload.
We can create a formula for bandwidth utilized where we
sum up all packets transmitted on the network. This is a func-
tion of the number of transmitters (senders) which broadcast
to everyone in the group. Additionally, because each packet
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Figure. 13: Bandwidth Utilization for Merge (Routed)

Figure. 14: Bandwidth Utilization for Merge Method

Figure. 15: Bandwidth Utilization for Join Method over
three group sizes

Figure. 16: Bandwidth Utilization for Mass Leave Method
on three group sizes

has a payload of every key for every member, that too is a
function of group size.
Bandwidth Utilized = total traffic =

N∑

#ofpackets

packetsize = N · s

= (group size · # transmitters in group) · group size =
(groupsize)3

Note that (groupsize)3 is the worst case where every person
in the group is broadcasting to everyone else in the group.

B. Mass Leave

For the mass leave operation, we have three different initial
group sizes 5, 10, and 30. We simultaneously remove three
members from these initial groups to determine our costs. All
of these experiments are run on the subnetwork topology.
Figure 16 depicts a graph that looks a bit like the Join Method
graph for the three group sizes (Figure 15). While it is impos-
sible to tell from this graph, STR is cheaper on the first group
of size five. It maintains an advantage in the group of size 10,
but becomes more expensive than CCEGK and EGK in the
group of size 30. TGDH is more expensive than any other
protocol. The reason for this considerable increase in cost is
the same as that for the join operation. CCEGK, TGDH and
EGK all perform the same operation for the mass leave oper-
ation; they simply rebuild the tree. While not cheap, this is an
effective means for a mass leave. However, where CCEGK
and EGK continue to have an edge is the constant packet pay-
load; as group size increases, TGDH and STR are forced to
not only send messages to more people (just as CCEGK and
EGK do), but they also increase the packet size by including
the keys for all group members in each message. This adds
tremendous costs and is reflected in the graphs.
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VI. Conclusions

We implemented group key management protocols in a real-
istic network topology, utilizing TCP/IP, and included pre-
viously unaccounted for packet size, which enabled us to
firmly examine how CCEGK, EGK, STR, and TGDH per-
form in real-world simulations. This ground work provides
insight into how group key management protocols perform
in a practical networked environment, as opposed to the pen-
and-paper theoretical frameworks previously published.
Having set out to determine if NS-2 was a feasible program
to implement group key management protocols, we fully im-
plemented four group key management protocols on two net-
work topologies in our simulation. While NS-2 does have its
drawbacks and idiosyncrasies, it is fully featured enough to
provide the basics for network connectivity, and thus pro-
vides a capable platform upon which to simulate the pro-
tocols. Additionally, NS-2’s extensibility into the wireless
arena continues to make it an attractive choice.
We also discovered how great an effect the number of rounds
in a given operation had. Because rounds are not a fixed
size, but depend on the protocol and the network topology,
the actual cost in time is not accurately reflected in the num-
ber of rounds. Timing is of great concern, and the number
of rounds directly affects timing. When comparable proto-
cols take three times longer to complete because of a reliance
on previous rounds, it has a serious consequence on network
performance.
We also discovered how time values are strongly linked to
the underlying network topology and settings; the bandwidth
utilization values are more network-independent but still rely
on a few network variables. For example, if we had a faster
network, the time values would drastically decrease, but the
total amount of traffic would largely stay the same. This
means that the time measurements are more fundamentally
coupled with the network than the bandwidth utilization mea-
surements, which are more directly related to the protocols.
We also see that for our test cases the protocols’ bandwidth
utilization converges somewhat. This is due to the fact that
all of the measured protocols are partially based upon each
other. It is unsurprising to find that STR, which is based upon
TGDH, and CCEGK, which is based upon EGK, behave like
their respective parents. This illustrates the point that pro-
tocols designed to perform the best in rare, worst-case sce-
narios might perform little better in more ‘average’ or usual
situations. This is not to say that modifications for worst-
case eventualities are unnecessary, rather that in a simula-
tor attempting to model real network behavior, these extreme
cases might not be evidenced.
Overall this research has revealed two main points:

• The number of rounds required greatly influences the
total time for an operation to be completed.

• The number of full broadcasts (and messages with a
large payload) greatly increases the total bandwidth uti-
lization cost.

With the topology and the group key management simulator
code from a companion technical report, any trained NS-2
user could implement new and further experiments to con-
tinue researching EGK, CCEGK, TGDH, and STR’s behav-
iors on new network simulations. More work can be done
to widen the scope of these simulations. Further experiments
can give us a broader insight into how each protocol behaves.
There are other variables that could be adjusted to see how
they affect the simulator. For the sake of realism, we elected
to use the usual defaults, but factors such as link noise (and
link failure), multicasting, alternative routing, and droptail
queuing could all be changed for additional experiments.
However, the goal of our experiment simulator was to reflect
the real-world conditions as closely as possible.
Furthermore, the entire field of group key management is en-
tering into the exciting realm of wireless and ad-hoc commu-
nications. This simulator is uniquely poised to launch into
this arena. The future focus will be on wireless networks,
a field that NS-2 is well equipped to simulate and research.
With the rise in popu larity of these new arenas, designers of
group key management protocols can no longer ignore com-
munication in favor of computation, or vice versa. In some
environments, the power cost of communication may be suf-
ficiently high to warrant low-cost communication protocols,
whereas in other environments the computation cost may be
the dominant feature. Coupled with a new ad-hoc CCEGK
protocol, this extended simulator will provide an additional
contribution to the field of group key management.
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