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Abstract: This paper surveys the Internet worms-related literature
and how stealthy worm behaviour can be discovered. Discussion is
provided on the anatomy of worms, specifically covering the mech-
anisms by which worms spread, how they are detected, and how
they may attempt to hide. The paper presents common detection
mechanisms that we divide based on worm architecture properties.
Namely, we summarize how worms can be detected at each of the
following stages: target discovery, while they are being distributed,
while being activated at the hosts, and when they run their payloads
(where applicable). We also discuss some attack patterns for famous
recent worms. The paper concludes with a discussion on current so-
lutions (academic research, commercial products, and open-source
tools) to detect worms and a comparative summary of these solu-
tions/tools’ capabilities.
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I. Introduction

We survey the worm-related literature to highlight worm
stealthy behaviour and methods of detecting it. A common
question that arises when discussing worms is What is the
difference between a worm and a virus?[57] Both are con-
sidered to be malware and can perform the same malicious
actions. Viruses typically don’t self-propagate, and rely on
users to activate and transport the virus to a new destina-
tion. Worms are generally self-propagating, though the line
between worms and viruses blurs when discussing mass-
mailing viruses, since they self-propagate but usually rely on
the receiving user to activate them [1]. The line also blurs
when discussing newer all-encompassing malware which in-
clude features from viruses, worms, trojan horses and bot-
nets, such as Storm [58]. In this paper, the term ‘worm’ is
used to describe both worms and viruses, though the focus is
on those which self-propagate across a network.
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A. Host based vs Network-based Intrusion Detection Sys-
tems (IDS)

Most of the solutions presented in this report can be de-
scribed as network-based or host-based. The distinction be-
tween the two is where each is implemented. Host-based so-
lutions are implemented on the servers which run the services
under scrutiny, and are useful for observing and changing the
way the services operate when threats are detected. Host-
based solutions can be implemented as modifications to the
network stack, modifications to the operating system, modi-
fications to the application, or even implemented by running
the desired programs within an emulated environment.

Network-based IDS collect data directly from the network,
and are installed at gateways between internal networks and
the Internet. At these locations, the network-based IDS can
analyze both incoming and outgoing traffic for malicious
traffic. They can also be placed between subnetworks of
larger organizations, such as between the networks of sep-
arate departments. Some existing host-based and network-
based IDS are described in Sections VIII and IX.

B. Anomaly Detection vs Signature detection

Intrusion detection systems fall into two other general cate-
gories; anomaly detectors and signature detectors. The two
categories fill different niches. Signature detectors, such as
Snort, Bro and Shield, use pre-generated signatures to de-
tect traffic or behaviour that is known to be malicious or un-
desirable. The signatures can be either man-made, or au-
tomatically generated, though in either case, an ideal signa-
ture should match only the malicious traffic and no legitimate
traffic. Signature detectors can detect known attacks but are
unable to detect new attacks. Since fast-spreading worms
can infect most of the Internet before man-made signatures
can be crafted [39], automated signature generating systems
are needed. These signature-generating systems are typically
called anomaly detectors.
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Anomaly detectors detect unusual patterns, or anomalies, in
network traffic or in the behaviour of a running program. The
anomaly being detected depends strongly on which anomaly
detector is being used. Examples of some current methods
include detecting segments of executable code, unusual byte
frequencies, unusual flags in packet headers, packet data be-
ing used to overwrite the return address within a program and
infrequent sequences of bytes in network traffic. Once an
anomaly is detected, most anomaly detectors can then gen-
erate a signature which can be used by signature based IDS.
Existing anomaly and signature-based IDS are described in
Sections VIII and IX.
The contributions of this paper can be summarized as fol-
lows: (a) surveying and analyzing different strategies for de-
tecting worm behaviour at different stages of worm propoga-
tion with emphasis on the stealthy worm cases, and (b) com-
paring existing tools and solutions according to their capabil-
ities of detecting different types of worm behaviour.
The rest of this paper is organized as follows: Sections II
through V discuss detection of worms based on different
architectural properties [1]. Section VI describes common
worm behaviour, with examples of attack patterns. Section
VII discusses techniques worms may take to avoid detec-
tion. Sections VIII and IX describe existing tools that are
either sold commercially or developed academically to de-
tect worms. Section X contains a grid which describes which
tools are effective at detecting or blocking different aspects
of worm propagation.

II. Detecting Target Discovery

A. Target discovery

The process of target discovery or scanning is the process
where worms find new hosts to infect and is a characteris-
tic behaviour that worms exhibit which can be detected and
stopped at the network level. A host-based approach could
also be used, however, detecting target discovery at the net-
work level would yield more scans since it detects the traffic
directed at multiple hosts. A detailed discussion on target
discovery by Staniford et al. can be found in [57]. It dis-
cusses
• random scanning
• permutation scanning
• localized scanning
• hit-list scanning
• topological scanning
• metaserver scanning
• passive scanning

The simplest form of scanning is random scanning. The at-
tacker selects a target at random, probes that target, and then
continues the cycle by generating a new random target. Per-
mutation scanning is an improvement on random scanning,
allowing the attacker to avoid probing the same address mul-

tiple times and to coordinate the scanning of many infected
hosts. Staniford et al. [57] suggest a simple implementation
of permutation scanning for a 32-bit address space.
Another form of target discovery is localized scanning. An
attacking host would preferentially scan local network ad-
dresses. Vogt [63] shows that worms using localized scan-
ning can spread faster in the initial stages, but that once a
large fraction of vulnerable hosts are infected, the infection
process slows down. One of the attacker’s advantages of
scanning in this manner is that once a host behind a firewall
is infected, it can directly infect other hosts without passing
through the firewall, depending on network topology.
Worms can also use a pre-generated list of potential targets,
known as a hit-list, to speed the rate of initial infections. The
hit-list usually contains a list of addresses which are likely
running vulnerable services. This hit-list can then be split up
and distributed to newly infected hosts. A variant on this idea
is to distribute an anti-hit list along with the worm which con-
tains a list of networks to avoid scanning [63], [51]. These
networks could simply be empty and thus be a waste of time
to attempt to probe, or could be known to harbour network
telescopes attempting to automatically generate worm signa-
tures. After exhausting the hit-list, a worm could switch to
permutation scanning and avoiding hosts in the anti-hit list.
Worms which employ topological scanning gather potential
targets from the local machine. This includes the email ad-
dresses in a user’s contact list, URLs in the user’s brows-
ing history. In a similar manner, the worms can query a
metaserver to find potential targets, such as the services pro-
vided by Google, Gamespy or Netcraft, or by querying a
peer-to-peer network or an instant messaging server for vul-
nerable peers.
A different and less common approach is for the worm to
passively wait for incoming or outgoing connections and ex-
tract information from these connections to determine new
targets [57],[1]. This form of scanning is much slower than
the previous techniques but can be harder to detect by intru-
sion detection systems (IDS). Two examples are Gnuman [6]
and CRClean [21] (described below).

B. Detection

The scanning of most worms can be detected by using
anomaly detection. The idea is to put bounds on what is
considered ‘normal’ traffic and trigger an alarm when those
bounds are exceeded. Recent high-profile worms have tried
to spread as quickly as possible. The anomaly in this case
may be that the infected host is contacting many unique IP
addresses in a short time span, or is receiving too many TCP
RST packets, indicating many failed connection attempts.
Multiple IDS’ are compared in [11], where the IDS’ attempt
to identify scanning hosts.
Random, permutation and localized scanning may exhibit
both anomalies since they can target the whole IP range and
will not know whether the vulnerable service is running at
each address. Hit-list, topological and metaserver scanning



Computer Worms: Architectures, Evasion Strategies, and Detection Mechanisms 71

are less likely to exhibit the TCP RST packets anomaly, since
they have a greater likelihood of targetting a host running the
desired service. Passive scanning is unlikely to show either
anomaly, and may potentially only be detectable by means
other than target discovery.
Honeypots are another way to detect scanning hosts. Hon-
eypots are hosts to which should have no incoming traffic.
When traffic is received by a honeypot, it means that ei-
ther someone connected to the honeypot by mistake, or a
worm is attempting to connect. Unless using a comprehen-
sive anti-hit list, the random, permutation and localized scan-
ning worms will likely send packets to a honeypot eventually.
The larger the number of addresses feeding the honeypot, the
more quickly scanning hosts will be discovered. However,
a larger honeypot, depending on its behaviour, is also more
likely to be added to an anti-hit list. Some honeypot systems
can be set up to respond to traffic sent to an organization’s un-
used IP addresses. An attacker scanning these organizations
would see that an unnaturally high percentage of IP addresses
contain hosts and infer that it is running a honeypot. Hit-list,
topological, metaserver and passive worms are unlikely to be
discovered by a honeypot because the hit-list will have been
generated using likely-vulnerable hosts, and the metaserver,
topological and passive worms will not include the honey-
pots since honeypots are unannounced and don’t provide any
useful publicly available services.
Another approach is to use network address space random-
ization [9]. The goal of this approach isn’t to detect the
worms, but rather reduce the usefulness of hitlists by chang-
ing the IP addresses of hosts periodically. Shorter DHCP
leases and changing IP addresses would lead to fewer valid
hosts in a hitlist after a period of time. With fewer hosts to
infect, simulations in [9] show that if this approach is imple-
mented by a small fraction of organizations, the propagation
of a worm to 90% of it’s vulnerable population can take twice
as long as without address space randomization.

III. Detecting Worm Distribution

A. Distribution mechanisms

Three main mechanisms for worm distribution are identified
by Weaver et al. [1]. They can be
• self-carried
• embedded, or
• use a secondary channel

Self-carried worms are fully transmitted during the initial
communication with the target. Worms that rely on a second
channel, such as the Blaster worm, send the infection in two
stages. The worm first sends a small message which includes
a small program which will download and run the rest of the
worm. The third type is embedded worms, which transmit
themselves within normal communications channels either
by appending themselves to normal messages, or replacing
normal messages.

B. Detection

Worm distribution can be detected with network-based IDS
which can scan both incoming and outgoing traffic. Since
worm distribution may occur at the same time as target dis-
covery (such as with UDP-based worms like Slammer), some
worms may be detected by the same mechanisms as ex-
plained above in Section II-B. Single-packet UDP worms
can spread very quickly [37], and only warrant special atten-
tion because of that speed. They can be detected in a manner
similar to other worms.
In addition to the previously described methods, the contents
of the worm itself can be analyzed when the worm is trans-
mitted over the network. A simple worm will send identi-
cal copies of itself across the network. If many packets are
found to contain identical byte sequences, this may signal
the presence of a new worm. EarlyBird [54] operates with
this strategy and can automatically generate a signature for
such worms. Encrypted or polymorphic worms would be
able to bypass this detection method since there would be
fewer byte sequences common between each variation of the
worm. Section VII-B discusses encrypted and polymorphic
worms in more detail.
Worms requiring a second channel have a higher chance of
being detected since they initiate at least two connections.
One problem with developing a worm which uses a second
channel is that firewall rules may prevent the second channel
communication entirely.

IV. Detecting Worm Activation

A. Activation mechanisms

Four methods by which worms are activated are discussed by
Weaver et al. [1]. They can be
• human activated
• activated based on human activity
• activated by a scheduled processes, or
• self activated

Human activated worms need a human to manually exe-
cute the worm and are often referred to as viruses. Worms
which are activated when a user clicks on an email, such
as the Melissa virus, or which copy infected files onto a
shared folder, such as the Nimda worm, fall into this human-
activated category. The second worm activation method is
human activity-based activated worms, which are activated
by a user’s actions which wouldn’t normally be expected to
execute a worm, such as via a user’s login scripts, or when a
CD or memory card is inserted into the computer.
Scheduled process activated worms are activated by a legiti-
mate automated process which hasn’t been properly secured,
such as a legitimate program which automatically updates it-
self from an infected web server.
Self activating worms are the most worrisome and begin ex-
ecution immediately after being transmitted to the target.
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These worms generally exploit a vulnerability in a running
application. Buffer overflow vulnerabilities are a common
target, and there have been attempts to detect packets con-
taining buffer overflows [71]. Code Red I and II are examples
of self activating worms.

B. Detection

Since the activation occurs on the host, only host-based IDS
will be able to detect the activation. Network-based IDS may
detect anomalous traffic once the worm has already been ac-
tivated. Host-based IDS which monitor system calls, im-
plement taint tracking or detect buffer overflows can detect
self-activated worms. IDS which monitor system calls, such
as pH [56] and [52], detect the worm based on unusual se-
quences of system calls. Taint-based IDS such as TaintCheck
[41], or Vigilante [20] mark incoming network data with a
‘taint’ as well as the results of any calculations which oper-
ate on the tainted data. These systems detect malicious be-
haviour when the return address to a function is overwritten
by tainted data. Other methods of detecting buffer overflows
include checking that a function’s return address hasn’t been
changed, relying on a modified return address pointing to an
invalid location, or pointing to invalid instructions. Vigilante
uses the former and COVERS [32] uses both, and another
system [16] combines taint analysis with anomaly detection.
The previous techniques work for detecting self-activated
worms, however may not work for the other three activation
methods. The taint-based IDS and the ones relying on mod-
ified return addresses will not detect a worm if it is executed
directly by the user. Host-based antivirus solutions are ef-
fective at detecting known worms and preventing them from
infecting a host. Since antivirus solutions are often signature-
based, they may not detect novel worms for which signatures
have not yet been created.

V. Detecting Worm Payloads

A. Different forms of worm payloads

The payload of a worm refers to the behaviour or actions
taken by the worm. Weaver et al. [1] discuss many types
of payloads that a worm can contain, which are presented
below.
Worms can allow an attacker to remotely control the infected
host. In this case, the attacker can execute arbitrary code
and can cause the infected host to take any desired action.
This could include mounting a DoS attack against a target,
collecting data from the infected host, such as keylogging, or
erasing, modifying or encrypting files on the infected host.
A worm can cause the host to act as a mail relay or a web
proxy. Mail relays are used by spammers to cloak the source
of spam and web proxies would be used to cloak the source
of undesirable websites, such as phishing sites.
Worms can also be used to cause physical damage such as re-
flashing a host’s BIOS or swamping 911 services by dialling

with a modem.

B. Detection

Detecting worm payloads (behaviours) can be done by actu-
ally running the worm, either in a simulated or instrumented
environment, or by analyzing the instructions and system
calls made by the worm. If running the worm produces be-
haviours that generate network traffic, that traffic can signify
the presence of a worm, but will only be useful for signature
generation if the worm attempts to spread. A system such as
the double honeypot, described in section VIII, would detect
this kind of network traffic.

VI. Attack Patterns

Identifying worm attack patterns would be similar to identi-
fying the behaviour of a worm. There are endless permuta-
tions of how a worm can behave, limited only by the imagi-
nation of the author of the worm. In practice, the behaviour
of the worm is limited to delaying for arbitrarily long peri-
ods of time and the activities listed in section V. To give a
flavour of what worm behaviours have been seen in the past,
a summary of some of the more interesting worms in recent
history are detailed below.

• Code Red [38] used a buffer overflow vulnerability to
infect Microsoft IIS web servers. Code Red would scan
and infect other hosts until the 20th day of the month and
then send a DoS attack to the whitehouse website un-
til the 28th and then become dormant for the remainder
of the month. Some of the infected web servers added
the phrase ‘Hacked by Chinese’ to the web pages they
served. This process would repeat every month, how-
ever it did not cause very much damage. Code Red was
a memory-resident worm, so it did not persist across re-
boots.

• Code Red II [38] used the same buffer overflow vul-
nerability as Code Red, but was otherwise completely
different. It first determined if Code Red II was already
installed, and if not it installed a backdoor, went dor-
mant for a day and then rebooted the machine. It then
began to spread. Installing the backdoor allowed a re-
mote user to execute arbitrary code at a later date.

• Nimda [34] used four exploits to infect web servers run-
ning IIS, IE web browsers and Office 2000 programs.
It infected IIS web servers, which then infected visi-
tors who use IE. It also copied itself to network drives,
shared the computer’s folders, and created a guest ac-
count with Administrator privileges. It attached itself to
explorer.exe to hide itself. It emailed itself to email ad-
dresses in the user’s contact list. It was self-modifying,
so hashes wouldn’t identify it. Similar to the Code Red
II worm, the Nimda worm allowed remote access to the
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infected host, as well as decreasing the security of that
host by sharing the C drive.

• Slammer [37] was a fast-spreading worm that contained
no malicious payload. It was fully contained in a 404-
byte UDP packet and used a crippled implementation
of random scanning. It took advantage of a buffer-
overflow vulnerability in SQL Server.

• Slapper [10] spread by exploiting a vulnerability in
the OpenSSL implementation used by the Apache web
server. It scanned for targets by randomly choosing a
network, and then sequentially scanning each IP in that
network. The Slapper worm maintained a P2P network
of other infected hosts and could be used to anony-
mously forward commands from the controller to any
infected machine. The commands could cause the in-
fected hosts to participate in a denial of service attack
against arbitrary targets.

• The Witty worm targeted an overflow vulnerability in
eEye’s Internet Security System’s [3] protocol analy-
sis module for ICQ communications. The worm had a
large initial population, which suggests the use of a hit-
list and reached saturation after infecting 12000 hosts in
under 45 minutes. It used random scanning, and alter-
nated between scanning for new targets and overwriting
random sections of the local hard drive.

• Blaster [5][13] exploited a buffer overflow vulnerability
in the RPC implementations of Windows XP and 2000.
Blaster was uploaded to the target in two stages. The
first stage transmitted itself via the RPC vulnerability,
which then retrieved and executed the rest of the worm.
Blaster was designed to send a SYN flood to window-
supdate.com on certain dates.

• Conficker [48] was another recent worm. Variants of
Conficker would install themselves onto flash drives and
network shares, but originally used a vulnerability in
RPC on Windows XP and 2000. Conficker could up-
date itself by locating updates at regular intervals, or
the attacker could push updates to the infected hosts.

• Gnuman [6] joined a Gnutella network as a normal node
and propagates by tricking users into downloading and
executing it. The deception was done by responding
to any search with an infected executable file with the
same filename as the search phrase. Gnuman did noth-
ing else.

• CRclean (Code-Red Clean) [21] was a proof-of concept
worm that was never released. It was designed to wait
for attacks from hosts infected with Code Red II and
then infect the attacking host, disable Code Red II, and
filter out subsequent Code Red II infection attempts.

VII. Evasion Strategies

In order to spread as widely as possible, worms can either
attempt to propagate quickly in an attempt to outrun the au-
tomated signature generators, or by avoiding the automated
signature generators entirely by spreading in a covert manner.
This section discusses some evasion strategies that worms
can take, such as scanning slowly, using polymorphism or
encryption, blending with normal traffic, and different at-
tempts the worms can make to mislead signature generators.

A. Slow Scanning

Some strategies for detecting worms rely on worms revealing
themselves by quickly scanning many addresses in a short
time. Solutions such as EarlyBird [54] rely on gathering
multiple pieces of similar network traffic before sounding
an alarm. To reduce the amount of processing and/or the
amount of memory needed, EarlyBird and other approaches
set a threshold at which infrequent or uncommon packets are
discarded. If a worm spreads at a slow enough rate such that
it is always discarded, the automated system will never gen-
erate a signature and the worm can continue to spread.
Current research doesn’t seem to be focused on detecting a
worm based on its speed, but rather by making an anomaly
detection system so accurate that it can reliably detect a ma-
licious packet the first time it is received. An advanced
network-based IDS such as Anagram [68] would be able
to detect the anomalous packets, and any host-based IDS
such as TaintCheck [41] would be able to detect harmful be-
haviour in a running service.

B. Polymorphic Worms and Encrypted worms [29]

To evade signature-based IDS, worms may try to modify
themselves using either polymorphism, encryption or both.
The idea is that the modified worm will no longer match the
existing signature and so it will pass through the IDS un-
detected. Since the polymorphic or encrypted worm must
run to properly infect a host, a host-based IDS will be able
to detect the worm [41]. Any other constants that are re-
quired in a packet to successfully exploit a vulnerability can
be detected by most IDS, so a polymorphic and encrypted
worm would not be a useful strategy if the exploit is easily
detectable. Such a worm would be detected by either host-
or network-based IDS.
A polymorphic worm will modify its code by rearranging
functional blocks of code, by replacing instructions with
functionally equivalent instructions, or by inserting groups
of instructions which do not change the behaviour of the pro-
gram, but rather act as padding [29]. Since the code for the
worm can change each time it is transmitted, the code of
the worm will not match any worm signatures. Polygraph
[43](VIII) was designed to detect polymorphic worms. In-
stead of looking for one common byte sequence among pack-
ets, it looks for smaller sequences of common bytes, which
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are then used as part of a new signature.
An encrypted worm will generate a random encryption key,
encrypt itself, and then transmit that encrypted version along
with the key and a short decryptor program. The decryp-
tor program itself can be polymorphic so that the whole exe-
cutable part of the worm can change. Similarly to the poly-
morphic worms, the encrypted and polymorphic portion of
the worm will not be detectable by signature-based IDS.
Assuming an encrypted and polymorphic worm which uses
an exploit that has few detectable constants, a host-based IDS
such as Vigilante [20](VIII) or TaintCheck would be needed
to detect it, or a network-based IDS which looks for payload
anomalies, such as PAYL [69] and Anagram. Both Vigilante
and TaintCheck detect when code at incorrect addresses are
being run, and can trace those addresses back to a location
in received packets. The data at those locations can be used
to generate signatures. PAYL determines whether a packet is
suspicious based on its byte distribution. After receiving a
few more similar packets, it can generate a signature based
on the longest common substring, or longest common sub-
sequence of the similar packets. This common substring or
subsequence would likely be the constant parts of the worm.

C. Blending/Mimicry

Blending attacks, or mimicry attacks occur when a worm at-
tempts to pass through an IDS without detection by chang-
ing itself or its behaviour to appear similar to normal traffic
or normal behaviour. Mimicry approaches, as described in
[29] and [24], can be used to evade network-based IDS such
as PAYL. Both techniques involve giving a worm a learning
step before attempting to infect other hosts. The worm would
analyze local network traffic to generate a normal traffic pro-
file, and then modify its outgoing traffic to match that normal
profile. The IDS PAYL and NETAD [35] each detect changes
in the byte frequency distributions of packets. To avoid these
IDS, a worm could append filler bytes at the end of packets
in order to make the byte frequency distribution match the
normal profile.
Host-based IDS which instrument running processes can de-
tect worms which send mimicked traffic since the behaviour
of the executing worm would be the same. Network-based
IDS such as Anagram [68] can also be used. Anagram was
designed specifically to defeat mimicry attacks. Since pre-
vious mimicry strategies generate packets which match the
overall statistics of normal network traffic, Anagram subdi-
vides the packets into separate partitions. Normal network
traffic statistics are determined for each partition. Since the
worm will not know where the bounds of the partitions are,
it will not be able to effectively create a ‘normal’ looking
packet.
Mimicry can also be used at the host level. Some host-based
IDS, such as pH [56], monitor system calls used by a pro-
gram. D. Wagner and P. Soto [65] describe how a worm
could call the system calls in a manner that mimics the pat-
tern of normal programs. They describe how pH keeps track

of sequences of system calls to determine if a program is sus-
picious, and then describe how some system calls calls can
be used as no-ops. A worm can intersperse its regular sys-
tem calls with the no-op system calls in order to avoid IDS
which monitor system calls. J. Griffin, et al. [25] propose a
host-based system which analyzes the system calls of a pro-
gram to automatically determine if any system call sequence
exists in the program which could result in a security breach.
Since the tool described in [25] analyses the system calls of
an executable, it will not detect buffer overflow attacks.

D. Misleading signature generators

To avoid detection, worms can attempt to deceive the IDSs
which try to generate new signatures. The effectiveness of
each approach depends on the IDS that is implemented. The
approaches include misleading the IDS by
• causing it to generate useless signatures
• sending ’allergy attacks’ or other learning attacks
• splitting up packets, or
• overloading the IDS

Perdisci et al. [47] discuss how IDS such as Polygraph can be
fooled into generating signatures which are of no use and al-
low worms to avoid being detected. This is one type of learn-
ing attack, other such learning attacks are described in [14].
In order to fool signature generators, the normal infection at-
tempt is sent to the target host along with a second (or third)
‘fake’ infection attempt. The fake attempts are crafted such
that they closely match the real infection attempt in many
of the ‘polymorphic’ areas of the worm, but not in the in-
variant areas of the worm. This approach causes the IDS to
notice the common bytes in the polymorphic areas and gen-
erate a signature which matches that specific variation of the
worm, but will fail to identify any other variations of that
same worm. The technique discussed in [47] showed that
Polygraph could be evaded 85% of the time on average. Part
of this approach relies on knowing or learning some common
sequences of bytes in normal traffic. This technique can be
used to avoid some network-based IDS, but will still be de-
tected by host-based IDS, since the unexpected execution of
the worm can be detected.
While the previous learning attack causes IDS to generate
useless signatures, another learning attack, called a causative
integrity attack [14], can be used to prevent any signature
from being generated in the first place. This attack is dis-
cussed briefly in [68] and in more detail in [53]. The attacks
can generally be done in two scenarios: where the original
training data contains unkown malicious traffic, and where
an IDS is set to continuously learn from incoming traffic. In
the latter case, a worm may be able to train the IDS to rec-
ognize data from the worm payload as normal traffic. By
sending traffic which successively changes from normal to
worm traffic, an IDS may be gradually convinced that the
worm traffic is legitimate and so it will not generate a sig-
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nature. Another learning attack, called an availability attack,
or ’allergy attack’, could cause the IDS to erroneously block
innocuous traffic and lead to the network administrator dis-
abling the IDS. M. Barreno et al. [14] describe how many of
these learning attacks can be prevented, while S. Chung [19]
describes how allergy attacks are possible in recent IDS.
They suggest biasing a decision if the data is particularly
noisy (regularization), changing the boundary at which traf-
fic is classified as malicious or not (randomization) and re-
ducing the information available to the attacker (information
hiding).
Since TCP traffic can be fragmented into smaller packets, an
attacker may be able to split up large anomalous worm pack-
ets into many small packets which raise no alarms. Many
IDS such as EarlyBird and Snort take this into consideration
and attempt to reassemble fragmented packets in order to de-
tect these evasion attempts.
An attacker could also mount a denial of service attack
against an IDS in an attempt to overload the IDS such that
it can no longer detect worms. Host-based approaches which
instrument a running program, such as TaintCheck, are par-
ticularly at risk since the running program already runs much
more slowly than normal. IDS designers reduce the like-
lihood of an overloaded IDS by pre-filtering the incoming
traffic so that known-good traffic doesn’t unduly burden the
IDS and by using data structures that require very little mem-
ory. Snot is a program which was designed to generate large
amounts of malicious-seeming traffic. It generates traffic
based on Snort rules, so is likely to generate large numbers
of alerts on a Snort IDS. A similar approach is described in
[45].

VIII. Academic Approaches

These approaches are described in papers and either attempt
to identify, slow or stop the spread of worms. Commercial
implementations for these approaches, however, are not read-
ily available or not publicized. The network-based intrusion
detection systems are listed at the beginning of the list while
host based systems appear at the end.

• EarlyBird [54] generates Bro and Snort signatures auto-
matically based on how many sources and destinations
are sending similar packets. The idea is that when many
copies of a worm send copies of themselves to infect
other hosts, there will be many hosts sending copies of
the worm and many hosts receiving them. EarlyBird
flags packets as suspicious if multiple senders send,
and multiple receivers receive similar traffic. EarlyBird
keeps a small amount of state to keep track of com-
mon sequences of bytes and generates a signature when
many IP addresses are sending and receiving these com-
mon sequences of bytes. EarlyBird is a network-level
implementation and was measured to run at line speeds
of 200Mbps, but can scale higher.

• Autograph [28] is a distributed system for automatically
generating worm signatures for Bro and Snort. It is in-
tended to be installed at the DMZ of edge networks.
The suggested sample implementation classifies traffic
as suspicious if a RST packet was generated inside the
network, so this will only work if the connection is sym-
metric. The idea is that worms will scan many hosts
which aren’t running the vulnerable service, and will
generate TCP packets with the RST bit in response to
the worm’s scanning. Autograph is designed to share
suspicious sources of traffic with other Autograph hosts.

• ‘Throttling viruses’: A small network or system-level
approach to reducing the speed at which worms can
propagate. The idea is to keep a small cache of the most
recent connections that were initiated. Each new con-
nection which connects to a host that isn’t in the cache
gets queued, and the queue is processed at X (˜=1 or
2) connections per second. Since worms will generally
try to spread by making connection as quickly as pos-
sible, most of the new connections will be queued and
processed slowly. [72]

• Polygraph [43]: A network-level approach to automat-
ically generating signatures for polymorphic worms.
The idea is to detect multiple invariant byte sequences
instead of a single large sequence. Polygraph is trained
on some known-good traffic and some likely-malicious
traffic before being deployed.

• Threshold Random Walk (TRW): This method attempts
to discover worms by their scanning behaviour. It de-
tects scanning IP addresses based on how many des-
tinations are scanned and how many of those connec-
tion attempts are rejected or unanswered. The idea is
that legitimate clients are more likely to be looking up
servers using DNS, and will likely succeed in connect-
ing to the desired server, while scanners are more likely
to be choosing targets randomly, which may not be run-
ning the expected server software. Whether a host is
scanning or not can be determined after a host makes 5
connection attempts. [27]

• NETAD [35] is a network-based IDS. It takes the first
48 bytes of the first few packets (which contains mainly
IP and TCP header information) between a server and
client. NETAD determines whether a packet is anoma-
lous or not based on how ‘novel’ a byte in one of the 48
first bytes is. The more ‘novel’ bytes the more anoma-
lous the packet appears. PHAD, ALAD and LERAD are
briefly discussed in the same paper and seem similar.

• SigFree [71] is a host-based IDS which generates sig-
natures in traffic that contains long sequences of exe-
cutable code. A common buffer overflow technique is
to include a NOP sled (or equivalent instructions) along
with the exploit code to save the attacker from needing
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to know the exact address where the exploit code will
be located. Since the sled is by definition executable
code, SigFree can detect packets with long sequences
of executable code and flag them as suspicious. SigFree
is a server- or client-side proxy through which the de-
sired communications are passed. SigFree seems to be
an extension of Abstract Payload Execution [61], which
is implemented as an Apache module.

• PAYL (PAYLoad Anomaly Detection) [69] [67] is a
network-based IDS which can generate signatures for
malicious traffic. PAYL is initially trained with nor-
mal traffic, which gives PAYL the chance to learn the
average distribution of bytes within packets. PAYL
learns the distributions for each combination of port and
packet length. A distance metric is used to determine
how close a packet is to the normal data. If the distance
is above a specified threshold, the packet is marked as
suspicious. PAYL also correlates anomalous incoming
packets with anomalous outgoing packets, for example,
if a suspicious packet arrives on port i, and the recipient
then sends out a similar suspicious packet destined for
port i on another host, it is likely the result of the host
being infected. This behaviour allows PAYL to detect
the very early stages of worm propagation. PAYL can
then generate a signature based on the longest common
substring (LCS) or longest common subsequence (LC-
seq), which can be used in other IDS. There are mul-
tiple variations of PAYL’s strategy, one of which [60]
attempts to speed up IDS processing by reducing the
amount of packet data passed to PAYL.

• Anagram [68] is a recent network-based IDS which is
designed to detect mimicry attacks and generate signa-
tures which can be used by others. Anagram uses two
Bloom filters to keep track of normal and bad traffic.
The ‘normal traffic’ Bloom filter is trained using normal
traffic and the ‘bad traffic’ Bloom filter can be generated
from previously generated signatures which match un-
desirable traffic.

Anagram searches incoming packets for n-grams (byte
sequences with length n) which either exist or do not
exist in its Bloom filters. If either many n-grams from
the ‘bad traffic’, or very few n-grams from the ‘normal
traffic’ filter exist in the packet, that packet is flagged as
malicious. The authors suggest that Anagram could use
feedback from a heavily instrumented ‘shadow server’
to improve its filters. The authors expect Anagram to
be able to handle traffic at 100Mbps while using around
20MB of memory.

• The double honeypot [59] is both a network- and host-
based IDS which consists of an inbound honeypot and
an outbound honeypot. The inbound honeypot is a high-
interaction honeypot, meaning that it runs an operat-
ing system and one or more programs. The inbound

honeypot is configured such that, by default, it never
makes outgoing connections. Any outgoing connec-
tions are evidence that a worm has taken over the hon-
eypot. Any outgoing connections are redirected to the
outgoing honeypot for analysis. The paper which de-
scribes the double honeypot also describes two methods
for generating signatures for polymorphic worms.

• TaintCheck [41] is a host-based IDS which can gener-
ate signatures to identify malicious traffic. It does so by
running the program of interest in an emulated environ-
ment and by considering any incoming data as ‘tainted’.
Any calculations derived from that tainted data are also
considered tainted. When tainted data is used to deter-
mine the next executable instruction, TaintCheck will
consider this malicious and will generate a signature.
Programs run 1.5 to 30 times slower when TaintCheck
is used.

• Vigilante [20] is a host-based IDS which generates a
signature that can be verified by other hosts without re-
quiring trust between hosts. An instrumented version
of the desired service is run inside a virtual machine
such that it will trigger alerts either when taint anal-
ysis has determined that tainted instructions are being
executed, or when code is being executed from mem-
ory pages marked non-executable. Such an alert would
cause Vigilante to generate a signature (or SCA, self-
certifying alert) describing the offset in the received
message which caused the alert. Vigilante is designed
to run as a honeypot with low traffic. Minos [22] is an-
other host-based IDS which operates in a similar man-
ner to Vigilante.

• Shield [66] is a host-based intrusion prevention sys-
tem which can prevent remote exploits by modifying
or stopping malicious packets before they reach a vul-
nerable service. Shield uses signatures to detect the
malicious packets. Since applying patches usually dis-
rupts the running service, and patches may not be com-
pletely reliable, Shield can be used to prevent known
exploits without having to restart the running service,
allowing the administrator to decide when to apply soft-
ware patches. Each signature is a small Shield-specific
program which modifies the malicious packets.

• Vulnerability-specific execution-based filtering
(VSEF): VSEF [42] is a host-based IDS which
can ‘harden’ a program against a specific vulnerability.
The patching works for programs where the source
code isn’t available and incurs just a small overhead.
To operate, VSEF requires an execution trace of
the program receiving the traffic which included the
exploit. This trace is obtained by a fully-instrumented
program somewhere else on the network, for example,
using TaintCheck. Once VSEF has the trace, it can
generate a VSEF filter which can then be sent to other
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servers running the same program. VSEF can then
‘harden’ the program by adding code which filters out
the exploit. Hardened programs run between 3 to 14%
slower when VSEF filters are installed.

• The shadow honeypot [8] architecture is a host- and
network-based IDS. It contains multiple anomaly de-
tectors, such as Abstract Payload Execution (similar to
SigFree) and EarlyBird. These IDS determine whether
traffic is suspicious, and if it is, the traffic is redirected
to a second ‘shadow’ server which runs an instrumented
version of the server software. If the shadow server de-
tects an attack, it reverts any changes it made and noti-
fies a filtering component which filters out similar traf-
fic before it arrives at the honeypot. Implementations
for both client and server software were created.

• pH [56] (process homeostasis) is a host-based IDS
which detects uncommon sequences of system calls. pH
collects sequences of system calls during its training pe-
riod, and stores subsequences of six consecutive system
calls in a database. A program which generates a se-
quence that does not appear in the database is consid-
ered suspicious and will either be delayed or aborted.
Many similar host based IDS are referenced in [65].

• COVERS [32] is a host-based IDS which can gener-
ate signatures. COVERS identifies attacks by detect-
ing buffer overflows, by using address-space random-
ization, and instruction set randomization. It then corre-
lates the attack with the packets involved in the attack,
identifies the sections of the packets containing the at-
tack and then generates a signature including this infor-
mation. COVERS can be used with programs for which
the source code is not available and runs with a low
overhead of under 10%. This technique will not be able
to generate specific signatures if the traffic is encoded
or encrypted.

• Other promising IDS techniques include POSEIDON
[15], a PAYL-based IDS, Argos [50], a taint-based IDS,
Packet Vaccine [70], a host-base IDS, Sting [40], a taint-
based IDS, SweetBait [49], a honeypot-based IDS, Net-
Bait [18], a honeypot-based IDS, Prospector [55], taint-
based honeypot IDS, WormTerminator [17], a polymor-
phic worm detector IDS, Hamsa [31], a polymorphic
worm detector IDS, and Nemean [74], a signature gen-
erator IDS.

IX. Available Tools

These are tools that are available and can be purchased or
downloaded immediately and put into production. They fall
into two categories: honeypots and intrusion detection and
prevention systems (IDS). The IDS can be either network-
based or host-based. Network-based IDS detect malicious
traffic and can take action before that traffic reaches the hosts

in the network. Host-based IDS can detect malicious traf-
fic once it has reached a host, and can analyze the contents
of encrypted packets and detect when administrative policies
are changed. Host-based IDS can be disabled if the host is
compromised. The commercial products listed below were
chosen because they represent the offerings from well-known
companies or are frequently referred to. The descriptions of
these commercial products are based on marketing material
from each product’s website.

• LaBrea [33] is A honeypot-like project which attempts
to slow scanning worms. It responds to pings and re-
sponds to SYN packets with SYN-ACK packets, and
does nothing else. It relies on the attacker waiting for
the TCP connection to time out before continuing to
scan. It can be set up to respond for unused IP addresses.

• Honeycomb [30] is a honeypot project which automat-
ically creates worm signatures based on the traffic that
is captured in the honeypot. Since the honeypot doesn’t
advertise any services, any traffic directed to the hon-
eypot can be considered to be malicious. It uses a
longest-common substring approach to find similarities
in packet payloads. Other honeypot systems include
HoneyTank [62], HoneyStat [23], Collapsar [26], iSink
[73], Potemkin [64], nepenthes [12]. A summary of
some of these approaches can be found in [44].

• Bro [46] is an open-source network based IDS which
can detect and take action against malicious traffic. It
can generate alerts or execute programs which take the
desired action, such as terminating an existing connec-
tion or blocking future traffic from a hostile host. Bro
uses rules describing restricted activities, policies for
what activities should generate alerts and signatures to
determine which action it should take.

Bro is designed to provide real-time notification and to
be extensible and resistant to attack. It is designed to
do so in a high-speed network without dropping pack-
ets. Bro relies on libpcap to get packets from the net-
work. Bro then generates events from the packets, such
as connection established or connection attempted, and
processes these events using the specified policies or
scripts.

Bro’s signatures are based on regular expressions,
which can be generated by automated tools.

To resist attacks against the IDS, attacks are split into
three categories: overload, crash and subterfuge attacks.
Overload attacks attempt to overburden the IDS such
that it fails to keep up with incoming packets. Over-
loading Bro is difficult since the attacker will not know
when Bro becomes overloaded, and will also not know
what policy scripts are being run. Crash attacks aim to
disable the IDS, either by exploiting a vulnerability or
by exhausting resources. Bro resists these by running a
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watchdog process which terminates Bro when it detects
when Bro is executing too slowly. Whenever Bro is ter-
minated, either by the watchdog process or from a crash,
tcpdump is started to continue logging any packets.

• Snort [4] is an open-source network based IDS similar
to Bro. The detection rules to detect malicious traffic
can be specified either as regular expressions or using
Snort’s built-in rule description language. The actions
Snort can take in response to malicious traffic is limited
to logging, alerting and changing iptable’s rules to block
traffic. Though less powerful than Bro’s ability to run
arbitrary commands, Snort’s available actions provide
the needed functionality of an IDS. Depending on the
speed of the machine and Snort’s configuration, Snort
can process traffic at gigabit speeds.

• The Cisco Security Agent [2] is a host-based IDS. Ver-
sions of the client software are available for Windows,
Solaris and Red Hat, in both server and desktop ver-
sions. The management software which coordinates
with all of the agents handles up to 100,000 agents per
management host. The software can add information to
outgoing packets which can be used by Cisco routers for
QoS purposes. Cisco’s IPS 4200 systems are network-
based IDS which operate at up to 1Gbps.

• TippingPoint [7] is a division of 3COM and offers a
range of network-based IDS. It uses customized ASICs
to scan traffic at up to 3 Gbps. It can detect zero-
day worms and also uses signatures to detect previous
worms. The signatures are provided by TippingPoint’s
‘Digital Vaccine’ service. TippingPoint’s 5000E device
passed ICSA Labs’ intrusion prevention system evalua-
tion [36].

• Host-based firewalls: Popular firewall solutions in-
clude ZoneAlarm, Windows Firewall, BlackICE prod-
ucts, Norton Personal Firewall, and Comodo Personal
Firewall. There are many others, and each may scan
incoming and outgoing traffic for malicious packets
and/or prevent unexpected incoming and outgoing con-
nections.

• Host-based anti-virus: Popular antivirus solutions in-
clude Grisoft’s AVG, Norton Antivirus, Kaspersky
Anti-virus, ALWIL Software’s Avast, and CA Anti-
virus. There are many others, and each will usually
provide services such as ‘resident protection’, periodic
scanning and on-demand scanning for files, running
programs, email attachments, instant messaging pro-
grams, etc. These products identify viruses and worms
either via signature matching or by using heuristics.
Since these are installed on the host, they can poten-
tially be disabled by worms and viruses.

X. A Comparison

The grid below contains a list of products or approaches and
lists whether each can detect or prevent existing worms, new
worms, slow scanning worms, polymorphic or encrypted
worms and worms using mimicry techniques. The ‘train-
ing required’ column specifies whether the product needs to
be trained on sample data before the system can be used.
The ‘requires multiple samples’ column specifies whether
the system detects a worm only after it receives multiple sam-
ples of that worm. The ‘speed’ column contains information
about how the system performs. The rate of network traffic
the system can handle is specified when available, otherwise
‘fast’ or ‘slow’ is included. The products are used within
small to large enterprises. Existing papers do not cover the
behaviour of products at the ISP level.

XI. Concluding Remarks

This paper is an attempt to give a complete picture of the
anatomy of computer worms, of how worms’ behaviour can
be stealthy, and of how to detect that behaviour. We dis-
cussed a number of issues that range from detection at differ-
ent infection stages to evasion and detection strategies. Also
a number of tools and research approaches have been dis-
cussed.
Despite the significant efforts by the research and develop-
ment communities, the situation is far from perfect. Solu-
tions exist to thwart the worms, but aren’t necessarily practi-
cal for small businesses to implement. As a matter of fact, a
new generation of worms is already spreading and starting to
accumulate bots by the millions while the tradition signature-
based tools are having trouble keeping up.
The change in motivation (from fame to cash) appears to be
driving innovations in malware. We expect the monetary re-
wards to grow. The research and development communities
need to be prepare for more innovative attacks and avenues
that will attempt to monetize the infected machines.
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green = good, red = bad, yellow = in between

Existing
Worms

Novel
Worms

Slow
Scanning

Polymorphic /
Encrypted

Mimicry Training Re-
quired

Requires
Multiple
Samples

Speed

Host Firewall
Incoming and outgoing connec-
tions are never established.

Yes Yes Yes Yes Yes No No Fast

Host Antivirus Yes No n/a Yes n/a No No Fast
Honeycomb Yes Yes No No Yes(3) No Yes Unk.
Bro/Snort Yes No Unknown Unknown Unknown No No Varies
Cisco(1) Yes Yes Unknown Unknown Unknown Unknown Unknown 2Gbps
TippingPoint(1) Yes Yes Unknown Unknown Unknown Unknown Unknown 3Gbps
EarlyBird Yes Yes No No No No Yes 200+ Mbps
Autograph Yes Yes No No No Yes Yes Unk.
Polygraph Yes Yes No Yes No Maybe

another system
pre-classifies
incoming traf-
fic, could use
pre-training.

Yes Unk.

TRW Yes Yes No Yes Yes
Contents of
packets not
analyzed, so
content mimicry
doesn’t affect
detection.

No Yes Fast

NETAD Some Some Some Some(2) No Yes No Unk.
SigFree
SigFree will likely perform
poorly if it is analyzing traffic
which normally transfers
executable files.

Yes Yes Yes Some No No No 100 Mbps

PAYL Yes Yes Yes Yes(2) No Yes No Fast
Anagram Yes Yes Yes Yes(2) Yes Yes No Fast
TaintCheck Yes Yes Yes Yes Yes No No Slow
Vigilante Yes Yes Yes Yes Yes(3) No No Slow
Shield Yes

Requires
a human-
generated
signature.

No Yes Yes
Shield is targeted to
the vulnerability not
the worm.

Yes No No 350 Mbps

Double Honeypot Yes Yes Yes Some Yes(3) No Yes Unk.
VSEF Yes Yes Yes Yes Yes No No Fast
Shadow Honeypot Yes Yes Yes Yes Maybe(4) Maybe(4) Maybe(4) 1Gbps
pH Yes(5) Yes(5) Yes(5) Yes(5) No Yes No Fast
COVERS Yes Yes Yes Yes Yes No No Fast

1. Claimed in marketing material.

2. Not likely if normal traffic contains large amount of encrypted traffic.

3. Since this is a honeypot, any traffic arriving is suspicious. Mimicry will not work in this case.

4. Depends on the anomaly detectors being used.

5. Yes, unless an attacker specifically attempts to avoid this type of detection.
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