
Journal of Information Assurance and Security 1 (2008) 38-50

Received January 14, 2008. 1554-1010 $03.50 © Dynamic Publishers, Inc.

Authorization Constraints Specification and
Enforcement

Wei Zhou1, Christoph Meinel1, Yidong Xiang2, and Yang Shao2

1Potsdam University, Hasso-Plattner-Institute,

Prof.-Dr.-Helmert-Str. 2-3, Potsdam D-14482, Germany

{wei.zhou, meinel}@hpi.uni-potsdam.de

2Beijing Shenzhou Aerospace Software Technology Co., Ltd,

No.73 Fu cheng lu, Hai dian Dist., Beijing 100036, China

{xiangyidong, shaoyang}@bjsasc.com

Abstract: Constraints are an important aspect of role-based
access control (RBAC) and its different extensions. They are often

regarded as one of the principal motivations behind these access
control models. There are two important issues relating to
constraints: their specification and their enforcement. However, the

existing approaches cannot comprehensively support both of them.
On the other hand, the early research effort mainly concentrates on
separation of duty. In this paper, we introduce two novel
authorization constraint specification schemes named prohibition

constraint scheme and obligation constraint scheme respectively.
Both of them can be used for both expressing and enforcing
authorization constraints. These schemes are strongly bound to

authorization entity set functions and relation functions that could
be mapped to the functions that need to be developed in
application systems, so they can provide the system developers a

clear view about which functions should be developed in an
authorization constraint system. Based on these functions, various
constraint schemes can be easily defined. The security
administrators can use these functions to create constraint schemes

for their day-to-day operations. A constraint system could be
scalable through defining new entity set functions and entity
relation functions. This approach goes beyond the well known

separation of duty constraints, and considers many aspects of entity
relation constraints.

Keywords: Access control, authorization constraints, constraints

specification, constraints enforcement.

1. Introduction

Authorization constraints (also simply called constraints) as

an important protection mechanism for handling important

business processes or information should be integrated with

all access control mechanisms, such as Discretionary Access

Control (DAC), Mandatory Access Control (MAC), and

especially Role-Based Access Control (RBAC) since most

tasks within organizations are performed by roles [1]. In

RBAC, access rights are associated with roles, and users are

assigned to appropriate roles thereby acquiring the

corresponding permissions. It can provide more flexibility to

security management over the traditional approach of using

user and group identifiers. Constraints as an important

aspect of role-based access control are powerful mechanism

for laying out higher-level organizational policy. They have

been part of most RBAC models of recent years [2, 3, 4, 5,

6, 7].

Separation of duty is an important control principle in

management whereby sensitive combinations of duties are

partitioned between different individuals in order to prevent

the violation of business rules [20]. It is widely considered to

be a fundamental principle in computer security [8, 9, 10].

The purpose of this principle is to discourage fraud by

spreading the responsibility and authority for an action or

task over multiple people, thereby raising the risk involved

in committing a fraudulent act by requiring the involvement

of more than one individual. A very simple example of this

is that checks might require two different signatures.

Although the importance of constraints in RBAC has

been recognized for a long time and various approaches

have been proposed to model authorization constraints,

there are still some issues have not received much attention

in the research literature. The early work mainly addresses

constraint expression rather than constraint enforcement.

Currently there is still no useful approach for both

expressing and enforcing constraints. On the other hand, the

early research effort mainly concentrates on separation of

duty. Other kinds of constraints, such as prerequisite

constraints, have received less attention. An example of

prerequisite constraint is that a user can be assigned to role

A only when he/she is already a member of role B. To our

knowledge, there is still no dedicated work on this topic.

In this paper we propose two authorization constraint

specification schemes named prohibition constraint scheme

and obligation constraint scheme respectively. They can be

used for both expressing and enforcing constraints. Unlike

existing approaches, we do not assume that these schemes

are confined in RBAC or limited to some predefined entity

relations, such as user-role assignments. On the contrary,

our constraint schemes could be used in various access

control models and the entity relations can be arbitrary.

These schemes are strongly bound to entity set and relation

functions that can be directly mapped to the functions need

to be developed in application systems. So we also call them

function-based authorization constraint schemes. These

schemes can provide the system designers and developers a

clear view about what functions should be defined and

developed in an authorization constraint system. Based on

these functions, various constraint schemes can be easily

Authorization Constraints Specification and Enforcement 39

defined. The security administrators can use these functions

to create constraint schemes for their day-to-day operations.

An authorization constraint system is scalable through

defining new entity set and relation functions. On the other

hand, this approach goes beyond the well known separation

of duty constraints, and considers many aspects of the

authorization constraints, such as prerequisite constraints.

The rest of this paper is organized as follows. Section 2

presents the background of authorization constraints and

introduces the context for the constraint schemes. Section 3

gives the formal definition of the constraint schemes.

Section 4 describes these constraint schemes’ evaluation

processes. Section 5 shows the constraint schemes’

expressive power. Section 6 introduces the implementation

of the function-based authorization constraint system.

Section 7 provides some application cases. Section 8

summarizes the results of this paper.

2. Background

In this section we first discuss the related work and

enumerate various constraint forms identified in the

literature. We then introduce the TT-RBAC access control

model that provides the context for the constraint schemes

and enforcement model. Finally, we discuss the constraint

classification used by the constraint schemes.

 2.1 Related work

Natural language is originally used to describe authorization

constraints in the context of RBAC. In RBAC96 [2], the

role-based separation of duty is described as “the same user

can be assigned to at most one role in a mutually exclusive

set”. Simon and Zurko [11] also develop a readable rule

format to express the constraint policy at architectural level.

Natural language specification has the advantage of ease to

be understood by human beings, but may be prone to

ambiguities, and the specifications do not lend themselves to

the analysis of properties of the set of constraints [16]. For

example, one may want to check if there are conflicting

constraints in a set of authorization constraints for an

organization. Another major drawback of using natural

language is that constraint specification cannot be

automatically dealt by computer systems.

In order to overcome the drawback of the informal

definition of constraints, a variety of formal rule-based

approaches have been proposed. Giuri and Iglio [12] defined

a formal model for constraints on role-activation. Gligor et

al. [13] formalize separation of duty constraints enumerated

informally by Simon and Zurko [11]. This important theme

is also addressed by Kuhn [14], Lupu and Sloman [15],

Sandhu et al. [6], and Ferraiolo et al [7]. Unfortunately,

rule-based systems, while highly expressive, are harder to

visualize and thus to use; thus far they have been avoided by

practitioners [19].

Ahn and Sandhu [16] propose a limited logical language

called RCL 2000 for expressing separation of duty

constraints in the context of RBAC. RCL 2000 reduces the

length of the statement of the constraints. However, some

constraints require iteration over the members of one set or

the other, and the addition of this expression starts to make

the constraints complex. The combination of quantification

functions and modeling concept functions makes the

constraints expressed in the language difficult to visualize.

Thus, this approach is an improvement over a completely

general logical language, but it is still too complex [19].

Graphical models are also used to express constraints.

Nyanchama and Osborn [17] define a graphical model for

role-role relationships that includes a combined view of role

inheritance and separation of duty constraints based on

roles. Osborn and Guo [18] extended the model to include

constraints involving users. However, neither the basic

model nor the extended model distinguishes between

accidental relationships and explicitly constructed

relationships. Thus, these models do not support policies

with a historical component. Jaeger and Tidswell [19]

proposed a graphical constraint model for constraint

specification. An access control policy is expressed using a

graphical model in which the nodes represent sets (e.g., of

subjects, objects, etc.) and the edges represent binary

relationships on those sets and constraints are expressed

using a few, simple set operators on graph nodes. This

model has been designed to be applicable in a general access

control model, not just in role-based access control models.

The major advantage of a graphical model is as an aid to

visualize a system’s policy rather than enforce it.

Recently, constraint enforcement has received more

attention in the research literature. The rule-based and

graph-based approaches still provide significant expressive

power in constraint expression, but they are not designed for

constraint enforcement. To address this problem, several

scheme-based approaches have been proposed.

Crampton [20] proposed a simple specification scheme

for separation of duty constraints in the context of RBAC.

The specification scheme is set-based and has a simpler

syntax than the early approaches. This constraint scheme is

defined as a triple (s, c, x), where s is the scope set, c is the

constraint set and x is the context and takes one of the

following values: static, dynamic and historical. But this

specification scheme cannot specify those constraints that

are based on the aggregation of users and permissions with

quantification over sets and members of sets. For example,

in the object-based separation of duty constraint, this

scheme cannot express that a subject is restricted from

performing an operation on a particular object twice. This

shortcoming will limit its usages in many cases.

The role-based constraint scheme designed by Li et al.

[21] is SMER({r1, …, rn}, m) where ri is a role, and n and m

are integers such that nm ≤<1 . This constraint forbids a

user from being a member of m or more roles in {r1, …, rn}.

Chadwick et al. [1] extend this constraint scheme through

adding application context for supporting separation of duty

constraints among multiple sessions. The extended role-

based constraint scheme is MMER({r1, …, rn}, m, BC)

where BC identifies the particular business context to which

the m mutually exclusive roles apply, in which ri is a role,

and nm ≤<1 . This constraint forbids a user from activating

m or more roles among {r1, …, rn} in the same business

40 Zhou et al.

context. Similarly, the permission-based constraint scheme

is defined as MMEP({p1, …, pn}, m, BC). The major

drawback of these constraint schemes is that they cannot

explicitly specify the scope set and assume the scope set is

always a user set. So these constraint schemes cannot

express certain constraints, such as mutually exclusive

permissions cannot be assigned to the same role.

 2.2 RBAC constraints

Various constraint forms have been identified in the

literature. In the standard RBAC language, the taxonomy of

constraints is summarized by Jaeger and Tidswell [19] are:

• User-user conflicts are defined to exist if a pair of users

should not be assigned to the same role.

• Privilege-privilege conflicts are defined to occur

between two privileges (permissions) when they should

not both be assigned to the same role.

• Static user-role conflicts exclude users from ever being

assigned to the specified roles.

• Static separation of duty exists if two particular roles

should never be assigned to the same person.

• Simple dynamic separation of duty disallows two

particular roles from being assigned to the same person

due to some dynamic event (e.g., Chinese Wall).

• Session-dependent separation of duty disallows a

principal from activating two particular roles at the same

time (e.g., within the same session).

• Object-based separation of duty constrains a user never

to act on the same object twice. They can also be

specified to constrain the same role from acting on the

same object twice.

• Operational separation of duty breaks a business task

into a series of stages and ensures that no single person

can perform all stages. Thus, the roles that are entitled to

perform each stage may have users in common so long

as no user is a member of all the roles entitled to perform

each stage of a business task.

• Order-dependent history constraints restrict operations

on business tasks based on a predefined order in which

actions may be taken.

• Order-independent history constraints restrict operations

on business tasks requiring two distinct actions (such as

two distinct signatures) where there is no ordering

requirement between the actions.

 2.3 TT-RBAC

Role-based access control [2, 7] has emerged as a widely

accepted alternative to classical discretionary and mandatory

access controls. The essence of RBAC is that permissions

are assigned to roles rather than to individual users. Roles

are created for various job functions, and users are assigned

to roles based on their qualifications and responsibilities.

Users can be easily reassigned from one role to another

without modifying the underlying access structure. RBAC is

thus more scaleable than user-based security specifications

and greatly reduces the cost and administrative overhead

associated with fine-grained security administration at the

level of individual users, objects, or permissions. But

subsequent attempts to apply RBAC in collaborative

environments revealed some of RBAC’s limitations. RBAC

lacks the ability to specify a fine-grained access control on

individual users in certain roles and on individual object

instances. For collaborative environments, it is insufficient

to have role permissions based on object types. Rather, it is

often the case that a user in an instance of a role might need

a specific permission on an instance of an object [22]. On

the other hand RBAC does not provide an abstraction to

capture a set of collaborative users who operate in different

roles. Furthermore, the lack of object typing in RBAC

models makes it hard to model workflow constraints [19].

Motivated by these requirements, we defined the Team

and Task-based RBAC (TT-RBAC) access control model

that extends RBAC model through adding sets of two basic

data elements called teams and tasks [23, 24]. TT-RBAC

model element sets and relations are defined in Figure 1.

ROLES

USERS

PERMS

TEAMS TASKS

(URA)
User Role

Assignment

(UMA)
User Team
Assignment

(PKA)
Permission Task

Assignment

SESSIONS

session-roles

session-teams

user-sessions

(MH)
Team Hierarchy

(KH)
Task Hierarchy

CONSTRAINTS

(RH)
Role Hierarchy

(PRA)
Permission Role

Assignment

(KMA)
Task Team
Assignment

(RMA)
Role Team
Assignment

ROLES

USERS

PERMS

TEAMS TASKS

(URA)
User Role

Assignment

(UMA)
User Team
Assignment

(PKA)
Permission Task

Assignment

SESSIONS

session-roles

session-teams

user-sessions

(MH)
Team Hierarchy

(KH)
Task Hierarchy

CONSTRAINTS

(RH)
Role Hierarchy

(PRA)
Permission Role

Assignment

(KMA)
Task Team
Assignment

(RMA)
Role Team
Assignment

Figure 1. TT-RBAC access control model

A task is a fundamental unit of business work or activity.

A set of tasks connecting together can form a business

process (workflow). Tasks can be defined in any granularity.

They can be type-based or instance-based. A team

encapsulates a collection of users in various roles and a set

of roles with the objective of accomplishing specific tasks.

The TT-RBAC model as a whole is fundamentally defined

in terms of individual users being assigned to teams and

roles, tasks being assigned to teams, and permissions being

assigned to roles and tasks. The relations among of them are

many-to-many. In addition, the TT-RBAC model includes a

set of sessions where each session is a mapping onto an

activated subset of roles and an activated subset of teams

that are assigned to the user. By virtue of team membership,

users get access to team’s resources specified by assigned

tasks. However, for each team member, the exact

permissions he/she obtains to a team’s resources will

determined by his/her role and the current activity of the

team. A team member can only activate the roles that are

assigned to both him/her and the team. Thus, the team

defines a small RBAC application zone, through which we

can preserve the advantages of scaleable security

administration that RBAC model provides and yet offers the

Authorization Constraints Specification and Enforcement 41

ability to specify a fine-grained control on individual users

in certain roles and on individual object instances.

Central to TT-RBAC is the concept of team relations,

around which users, roles and tasks are connected together.

Besides the entity relations defined in the RBAC model,

Figure 1 illustrates user-team assignment (UMA), role-team

assignment (RTA), task-team assignment (KMA) and

permission-task assignment (PKA) relations defined in the

TT-RBAC model. Similar to the constraints defined in

RBAC, some constraints should be defined to restrict the

ability to form these relations. For example, conflict roles or

conflict tasks cannot be assigned to the same team.

In fact, the added two new entity sets make the relations

among the entities in TT-RBAC more complicated than in

RBAC. Besides the separation of duty constraints, some

other types of constraints need to be considered. For

example, at least five users should be assigned to a team,

each team must have one team leader and two vice-team

leaders, a medical team can be activated only when at least

one user with the role of physician is assigned to the team,

and so on. Potentially, constraints can exist in any relations

among the entities shown in Figure 1.

It is futile to try to enumerate all interesting and

practically useful constraints because there are too many

possibilities and variations. Instead, we should pursue an

intuitively simple yet rigorous approach for specifying and

enforcing various constraints, such as the function-based

constraint schemes that can express constraints for arbitrary

entity relations.

 2.4 Constraint classification

Simon and Zurko [11] use two broadest categories of

separation of duty variations: static separation of duty and

dynamic separation of duty. Static separation of duty

prevents mutually exclusive roles from assigning to the

same user and conflict privileges from assigning to the same

role. Dynamic separation of duty prevents some roles from

being activated at the same time. History-based separation of

duty is classified into this category. One example of history-

based constraints is that one user cannot perform all the

steps in a workflow instance. This kind of constraint

classification is widely adopted in research literature (see,

for example, Gligor et al. [13], Bertino et al. [5] and Li et al.

[21]).

NIST RABC [7] also classifies the constraints into static

separation of duty and dynamic separation of duty two

categories. But their static separation of duty only consider

that mutually exclusive roles cannot be assigned to the same

user and their dynamic separation of duty only consider that

conflict roles cannot be activated at the same time. History-

based separation of duty is not supported by this model.

Crampton [20] systematically discusses the history-based

constraints that are classified into static historical

constraints and dynamic historical constraints two

categories. One example of static historical constraint is that

once u has been assigned to r1, then u can never be assigned

to r2. One example of dynamic historical constraint is that

once u has activated r1, then u can never activate r2.

Chadwick et al. [1] propose multi-session separation of

duty to model the business processes which include multiple

tasks enacted by multiple users over many user access

control sessions in dynamic virtual organization

environment. Basically, the multi-session separation of duty

belongs to the history-based separation of duty.

In this paper we adopt two axes on which to classify

authorization constraints. The first axis is the objective of

constraints. The second axis is the enforcement context of

constraints.

According to the objective of constraints, we classify

constraints into two categories: prohibition constraints and

obligation constraints. Their definitions are taken from

[16]. The prohibition constraints are constraints that forbid

the entities from being (or doing) something which it is not

allowed to be (or do). Separation of duty constraints belong

to this category. Obligation constraints are constraints that

force the entities to do (or be) something. In some literature,

the obligation constraint is also called as prerequisite

constraint. An example of obligation constraint is that a user

can be assigned to one role only when he/she is already a

member of some other roles. We designed two authorization

constraint schemes that are used to express prohibition

constraints and obligation constraints, respectively.

According to the enforcement context of constraints, we

classify constraints into three categories: static constraints,

dynamic constraints and historical constraints. Static

constraints are enforced in privilege assignment stage; for

example, a user is prevented from being assigned to

mutually exclusive roles. Dynamic constraints are enforced

at runtime within or across a user’s sessions; for example, a

user is allowed to be authorized for two or more roles that

do not create a conflict of interest when acted on

independently, but produce policy concerns when activated

simultaneously. Historical constraints allow the individual

access of each user to be constrained based on what they

have done (or been); for example, the same user cannot

access the same object a certain number of times. In the

workflow environment, one user may have the privileges to

perform several steps, but the same user can only perform

one step in the same workflow instance. Such kind of

constraints is classified into historical constraints. Both

prohibition constraint scheme and obligation constraint

scheme can express static, dynamic and historical

constraints.

3. Constraint schemes

To be able to use constraints to ensure safety, we must find a

suitable formalism to express constraints and then enforce

these constraints. Jaeger and Tidswell [19] identifies that

constraints in an access control environment are set

comparisons. There are two steps in expressing a set

comparison: (1) expressing the sets to be compared and (2)

expressing the comparison to be made. We designed two

types of constraint schemes named prohibition constraint

scheme and obligation constraint scheme to express the sets

and their comparisons for various authorization constraints.

42 Zhou et al.

These constraint schemes are strongly bound to some

functions used to represent the sets to be compared. These

functions can be classified into two categories: entity set

functions and entity relation functions.

Entity set function is used to get a set of entities according

to some data query criterion. There is no limitation about

how the set functions should be implemented. The set

functions are used to represent and get data when it is

impossible or not suitable to enumerate all data items, e.g.

all the staff of a university. Set functions are used to

represent entity sets in constraint schemes and obtain the

entity sets at runtime. For example, the set function

get_account_users can be used to represent and obtain all

the users belonging to the financial department.

Entity relation function is used to get entity relation

between different types of entities. For example, the relation

function assigned_user_roles returns the set of roles

assigned to a given user, and the relation function

assigned_role_users returns the set of users assigned to a

given role.

Now we introduce the function naming rules adopted in

this paper. For static assignment functions we use the prefix

assigned_, e.g. assigned_user_roles; for single session

functions we use the prefix session_, e.g.

session_user_roles; for multiple sessions functions we use

the prefix sessions_, e.g. sessions_user_roles; for historical

assignment functions we use the prefix ever_assigned_, e.g.

ever_assigned_user_roles. In the presences of entity

hierarchies we use the prefixes authorized_ or

ever_authorized_ to replace the prefixes assigned_ and

ever_assigned_, respectively. All the entity relation

functions are set valued functions. As a general notational

device we have the following convention. For any set valued

function f defined on set X, We understand

() () () () { }nn xxxXxfxfxfXf ,...,, where,... 2121 =∪∪∪= .

For example, suppose we want to get all roles that are

assigned to a set of users U = {u1, u2, u3}. We can express

this using the function assigned_user_roles(U) as equivalent

to

() ()

()3

21

__

urolesuserassigned

urolesuserassignedurolesuserassigned ∪∪ .

 3.1 Prohibition constraint scheme

Prohibition constraint scheme can be formatted as a triple

(S, C, T), where S is the scope element that specifies what

entities are applicable to the constraint scheme, C is the

constraint element that specifies what constraints should be

applied to each entity defined in the scope element, and T is

the constraint context that takes one of the following values:

SPC, DPC and HPC, which denote Static Prohibition

Constraint, Dynamic Prohibition Constraint, and Historical

Prohibition Constraint, respectively.

The scope element S is further defined as a 4-tuple (SS,

SF, SO, SN). SS is the scope set that needs to be constrained,

e.g. a user set. The scope set can be represented by an entity

set function that is also called scope set function. For

example, the function get_users returns a set of users. SF is

the scope relation function that maps a value belonging to

the constraint set defined in the constraint element to a set

of values that have the same type with the scope set. For

example, the function assigned_role_users returns a set of

users assigned to a given role. SO is a relational operator

that can be “>”, “>=”, “<”, “<=”, “=” or “≠”. SN as the right

operand of SO is a natural number. The (SO, SN) pair

expresses the cardinality constraint to the scope set. If SF is

not specified, then all the members in the scope set are

applicable to the constraint element. An example of scope

element is ({u1, u2, u3}, assigned_role_users, <, 3) that

states that less than three users defined in the scope set can

be assigned to a given role.

The constraint element C is further defined as a 4-tuple

(CS, CF, CO, CN). CS is the constraint set that expresses

the constraint entities applied to the scope set, e.g. a role set.

The constraint set can be represented by an entity set

function that is also called constraint set function. For

example, the function get_roles returns a set of roles. CF is

the constraint relation function that maps a value belonging

to the scope set defined in the scope element to a set of

values that have the same type with the constraint set. For

example, the function assigned_user_roles returns a set of

roles assigned to a given user. CO is a relational operator

which can be “>”, “>=”, “<”, “<=”, “=” or “≠”. CN as the

right operand of CO is a natural number. The (CO, CN) pair

expresses the cardinality constraint to the constraint set. An

example of constraint element is ({r1, r2, r3},

assigned_user_roles, <, 2) that states that less than two

roles defined in the constraint set can be assigned to a given

user.

In TT-RBAC, the scope set and constraint set are a subset

of the following data sets: USERS, ROLES, PERMS,

TEAMS, TASKS and OBJS. Any constraints can be defined

among these entity sets if the corresponding entity set

functions and entity relation functions are defined. An

example of prohibition constraint scheme is shown as:

(({u1, u2, u3}, assigned_role_users, <, 3), ({r1, r2, r3},

assigned_user_roles, <, 2), SPC).

This constraint scheme specifies that no user defined in the

scope set {u1, u2, u3} can be assigned to more than one role

defined in the constraint set {r1, r2, r3}, and less than three

users defined in the scope set can be assigned to any role

defined in the constraint set.

 3.2 Obligation constraint scheme

The obligation constraint scheme can be formatted as a 4-

tuple (S, R, C, T), where S is the scope element that defines

the entities needs to be constrained, R is the request element

that defines the entities requested by the entities defined in

the scope element, C is the constraint element that expresses

what kind of constraints should be applied to each entity

defined in the scope element, and T is the constraint context

that takes one of the following values: SOC, DOC and HOC,

which denote Static Obligation Constraint, Dynamic

Obligation Constraint and Historical Obligation Constraint,

Authorization Constraints Specification and Enforcement 43

respectively.

The scope element S only contains the scope set SS, in

which the entities need to be constrained, e.g. a user set. The

request element R only contains the request set RS, in which

the entities defined in the scope set want to be assigned or

activate, e.g. a role set. The scope set and request set can be

represented by entity set functions called scope set function

and request set function respectively. The constraint element

C has the same structure and meaning as in the prohibition

constrain scheme.

In TT-RBAC, the scope set, request set and constraint set

are a subset of one of the following sets: USERS, ROLES,

PERMS, TEAMS, TASKS and OBJS. An example of

obligation constraint scheme is shown as:

({u1, u2, u3}, {r3, r4}, ({r1, r2}, assigned_user_roles, >,

1), SOC).

This constraint scheme states that any user defined in the

scope set {u1, u2, u3} can be assigned to any role defined in

the request set {r3, r4} if and only if he/she is already be

assigned to more than one role defined in the constraint set

{r1, r2}.

4. Constraint scheme evaluation

The prohibition constraint schemes and obligation

constraint schemes are not only used for expressing

authorization constraints, but also used for enforcing

authorization constraints. In this section, we investigate how

these constraint schemes are evaluated at runtime.

 4.1 Functions for constraint scheme evaluation

Authorization constraint request can be expressed as: (s, o,

a), where s is the request subject, o is the request object, and

a is the request action. For example, (u1, r1, RUA) is a role-

user assignment request. The RUA is the request action that

denotes the action of assigning a role to a user. We define

CRS, CRO and CRA three functions to get constraint request

subject, object and action, respectively. Other functions

related to the constraint scheme evaluation are defined as

follows.

• SRF(X) represents the scope relation function that maps

a set value X to another set value that have the same type

with the scope set. At runtime, the SRF is replaced by

the scope relation function of a constraint scheme, and

the value X is replaced by the constraint set of the

constraint scheme. For example,

assigned_role_users({r1, r2}) = {u1, u2, u3}.

• CRF(x) represents the constraint relation function that

maps a value to a set value that have the same type with

the constraint set. At runtime, the CRF is replaced by the

constraint relation function of a constraint scheme, and

the value x is replaced by the constraint request subject.

For example, assigned_user_roles(u) = {r1, r2}.

• EN(X) is a function to get the element number of a set

value X. For example, EN({r1, r2, r3}) = 3.

 4.2 Prohibition constraint scheme evaluation

The prohibition constraint scheme evaluation comprises two

steps. One is the scope element evaluation that is composed

of scope element applicable check and scope element

cardinality check. The other is the constraint element

evaluation that is composed of constraint element

applicable check and constraint element cardinality check.

When ((SS, SF, SO, SN), (CS, CF, CO, CN), T) is the

prohibition constraint scheme and q is the constraint

request, the prohibition scope element evaluation can be

formulated as:

()

()

() () ()()()

()

≠

∩∪∧∈

=∈

=

nullSFSNSO

SSqCRSCSSRFENSSqCRS

nullSFSSqCRS

qESE

 if ,satisfy

 if
.

ESE is the function for the scope element evaluation.

There are two cases for this evaluation. In the case of scope

relation function is null, we only need to do the scope

element applicable check. The scope element is

“Applicable” if and only if the constraint request subject is

defined in the scope set; otherwise the scope element is

“NotApplicable”. If the scope element is applicable, the ESE

then does the scope element cardinality check. In the case of

SF is null, the ESE returns the value of “Permit”. In the case

of SF is not null, the ESE then checks if it still satisfies the

scope element cardinality constraint after the object is

assigned to the subject or activated by the subject. If so, the

ESE returns the value of “Permit”, otherwise returns the

value of “Deny”.

The prohibition constraint element evaluation can be

formulated as:

() ()

()() ()()() ()CNCOCSqCROqCRSCRFEN

CSqCROqECE

,satisfy ∩∪

∧∈= .

ECE is the function for the constraint element evaluation.

Here we need to do the constraint element applicable check

and constraint element cardinality check. The constraint

element is “Applicable” if and only if the constraint request

object is defined in the constraint set; otherwise the

constraint element is “NotApplicable”. If the constraint

element is applicable, the ECE then checks if it still satisfies

the constraint element cardinality constraint after the object

is assigned to the subject or activated by the subject. If so,

the ECE returns the value of “Permit”, otherwise returns the

value of “Deny”.

A prohibition constraint scheme evaluation result is

“Permit” if and only if both scope element check and

constraint element check return “Permit”. The prohibition

constraint scheme evaluation can be formulated as:

() () ()qECEqESEqEPC ∧= .

The EPC is the function for the prohibition constraint

scheme evaluation. The prohibition constraint scheme true

table is shown in Table 1.

44 Zhou et al.

“Indeterminate”“Indeterminate”“Permit”, “Applicable” or

“Indeterminate”

“Indeterminate”“Permit”, “Applicable” or

“Indeterminate”

“Indeterminate”

“NotApplicable”“NotApplicable”“Permit”, “NotApplicable”

or “Indeterminate”

“NotApplicable”“Permit”, “NotApplicable”

or “Indeterminate”

“NotApplicable”

“Deny”Do not care“Deny”

“Deny”“Deny”Do not care

“Permit”“Permit”“Permit”

Value of EPC(q)Value of ECE(q)Value of ESE(q)

“Indeterminate”“Indeterminate”“Permit”, “Applicable” or

“Indeterminate”

“Indeterminate”“Permit”, “Applicable” or

“Indeterminate”

“Indeterminate”

“NotApplicable”“NotApplicable”“Permit”, “NotApplicable”

or “Indeterminate”

“NotApplicable”“Permit”, “NotApplicable”

or “Indeterminate”

“NotApplicable”

“Deny”Do not care“Deny”

“Deny”“Deny”Do not care

“Permit”“Permit”“Permit”

Value of EPC(q)Value of ECE(q)Value of ESE(q)

Table 1. Prohibition constraint scheme truth table.

 4.3 Obligation constraint scheme evaluation

The obligation constraint scheme evaluation comprises three

steps. The first is the scope element evaluation that is

composed of scope element applicable check. The second is

the request element evaluation that is composed of request

element applicable check. The third is the constraint

element evaluation that is composed of constraint element

cardinality check. When (SS, RS, (CS, CF, CR, CN), T) is

the obligation constraint scheme and q is the constraint

request, the obligation scope element evaluation can be

formulated as:

() () SSqCRSqESE ∈= .

ESE is the function for the scope element evaluation. It

only needs to do the scope element applicable check. The

scope element is “Applicable” if and only if the constraint

request subject is defined in the scope set; otherwise the

scope element is “NotApplicable”.

The obligation request element evaluation can be

formulated as:

() () RSqCROqERE ∈= .

ERE is the function for the request element evaluation. It

only needs to do the request element applicable check. The

request element is “Applicable” if and only if the constraint

request object is defined in the request set; otherwise the

request element is “NotApplicable”.

The obligation constraint element evaluation can be

formulated as:

() ()() ()()() ()CNCOCSqCROqCRSCRFENqECE ,satisfy ∩∪= .

ECE is a function for the constraint element evaluation. It

only needs to do the constraint element cardinality check. It

checks if the constraint element still satisfies the constraint

element cardinality constraint after the object is assigned to

the subject or activated by the subject. If so, the ECE returns

the value of “Permit”, otherwise returns the value of

“Deny”.

An obligation constraint scheme evaluation result is

“Permit” if and only if both scope element applicable check

and request element applicable check return the value of

“Applicable” and constraint element cardinality check

returns the value of “Permit”. The obligation constraint

scheme evaluation can be formulated as:

() () () ()qECEqEREqESEqEOC ∧∧= .

EOC is the function for the obligation constraint scheme

evaluation. The obligation constraint scheme true table is

shown in Table 2.

“Indeterminate”Do not care“Indeterminate”“Applicable” or

“Indeterminate”

“Indeterminate”Do not care“Applicable” or

“Indeterminate”

“Indeterminate”

“NotApplicable”Do not care“NotApplicable”Do not care

“NotApplicable”Do not careDo not care“NotApplicable”

“Indeterminate”“Indeterminate”“Applicable”“Applicable”

“Deny”“Deny”“Applicable”“Applicable”

“Permit”“Permit”“Applicable”“Applicable”

Value of EOC(q)Value of ECE(q)Value of ERE(q)Value of ESE(q)

“Indeterminate”Do not care“Indeterminate”“Applicable” or

“Indeterminate”

“Indeterminate”Do not care“Applicable” or

“Indeterminate”

“Indeterminate”

“NotApplicable”Do not care“NotApplicable”Do not care

“NotApplicable”Do not careDo not care“NotApplicable”

“Indeterminate”“Indeterminate”“Applicable”“Applicable”

“Deny”“Deny”“Applicable”“Applicable”

“Permit”“Permit”“Applicable”“Applicable”

Value of EOC(q)Value of ECE(q)Value of ERE(q)Value of ESE(q)

Table 2. Obligation constraint scheme truth table.

 4.4 Example of constraint scheme evaluation

In this subsection we show the prohibition constraint

scheme evaluation process via an example. The prohibition

constraint scheme is defined as:

(({u1, u2, u3}, assigned_role_users, <, 3), ({r1, r2, r3},

assigned_user_roles, <, 2), SPC).

This constraint scheme specifies that less then three users

defined in the scope set {u1, u2, u3} can be assigned to any

role defined in the constraint set{r1, r2, r3}, and each user

defined in the scope set can only be assigned to less than

two roles defined in the constraint set. We assume that user

u1 is already assigned to role r1. Thus, there are:

() { }

() { }11

11

__

__

urusersroleassigned

rurolesuserassigned

=

= .

Now we use this prohibition constraint scheme to check a

series of constraint requests.

Constraint request1: q = (u2, r2, RUA).

Scope element evaluation:

{ }

() ()()()

{ }() { }() { }()

{ } { }() { }() { }()

() Permit

32,,,

,,,,__

AND

Applicablecheck applicable scope,,

2132121

3212321

3212

=⇒

<==∩∪

=∩∪

=∩∪

=⇒∈

qESE

uuENuuuuuEN

uuuurrrusersroleassignedEN

SSqCRSCSSRFEN

uuuu

Constraint element evaluation:

{ }

()() ()()()

() { }() { }()

{ } { }() { }() { }()

() Permit

21,,

,,__

AND

Applicable check applicable constraint,,

23212

32122

3212

=⇒

<==∩∪

=∩∪

=∩∪

=⇒∈

qECE

rENrrrrEN

rrrrurolesuserassignedEN

CSqCROqCRSCRFEN

rrrr

Constraint scheme evaluation:

() () () PermitPermitPermit ⇒∧=∧= qECEqESEqECE

So this request is permitted. After r2 is assigned to u2, there

are:

Authorization Constraints Specification and Enforcement 45

() { }

() { }

() { }

() { }22

11

22

11

urusersroleassigned

urusersroleassigned

rurolesuserassigned

rurolesuserassigned

=

=

=

=

__

__

__

__

.

Constraint request2: q = (u1, r2, RUA).

Scope element evaluation:

{ }

() ()()()

{ }() { }() { }()

{ } { }() { }() { }()

() Permit

32,,,,

,,,,__

AND

Applicablecheck applicable scope,,

21321121

3211321

3211

=⇒

<==∩∪

=∩∪

=∩∪

=⇒∈

qESE

uuENuuuuuuEN

uuuurrrusersroleassignedEN

SSqCRSCSSRFEN

uuuu

Constraint element evaluation:

{ }

()() ()()()

{ }() { }() { }()

{ } { }() { }() { }()

() Deny

2,,,

,,__

AND

Applicable check applicable constraint,,

2132121

32121

3212

=⇒

==∩∪

=∩∪

=∩∪

=⇒∈

qECE

rrENrrrrrEN

rrrrurolesuserassignedEN

CSqCROqCRSCRFEN

rrrr

Constraint scheme evaluation:

() () () DenyDenyPermit ⇒∧=∧= qECEqESEqECE

So this request is denied, and role r2 cannot be assigned to

user u1.

5. Expressive power of constraint schemes

In this section, we demonstrate the expressive power of our

constraint schemes by showing how they can be used to

express a variety of constraints. For comparative purposes,

we indicate the correspondence between our examples and

those in the paper by Jaeger and Tidswell [19], which

provides probably the most comprehensive set of examples

in the literature.

Example 1. A user-user conflict separation of duty

constraint. It is forbidden for two users to both be assigned

to any common authorization type (role). In this case, it

belongs to the user-based separation of duty and the

constraint set is a subset of USERS. This constraint is

expressed as:

((R, , ,), ({u1, u2}, assigned_role_users, <, 2), SPC).

It requires that no role defined in the scope set R can be

assigned to both u1 and u2.

Example 2. A privilege-privilege conflict separation of

duty constraint. It is forbidden for two permissions to both

be assigned to a common authorization type (role). It

belongs to the permission-based separation of duty

constraint and the constraint set is a subset of PERMS. This

constraint is expressed as:

((R, , ,), ({p1, p2}, assigned_role_permissions, <, 2),

SPC).

It requires that no role defined in the scope set R can be

assigned to both p1 and p2.

 Example 3. A role-role conflict separation of duty

constraint. It is forbidden for two roles to both be assigned

to the same user. It belongs to the role-based separation of

duty constraint and the constraint set is a subset of ROLES.

This constraint is expressed as:

((U, , ,), ({r1, r2}, assigned_user_roles, <, 2), SPC).

It requires that no user defined in the scope set U can be

assigned to both r1 and r2.

Example 4. A user can access one permission or the

other, but not both. This constraint can be used to enforce a

Chinese Wall restriction. That is, the history of users

granted permission p1 must not overlap with the history of

users granted permission p2. It belongs to the permission-

based separation of duty constraint and the constraint set is

a subset of PERMS. This constraint can be expressed as:

((U, , ,), ({p1, p2}, ever_assigned_user_permissions, <,

2), HPC).

It requires that no user defined in the scope set U can be

assigned to both p1 and p2.

Example 5. A object-object conflict separation of duty

constraint. It is forbidden for two objects to both be assigned

to a common authorization type (role). It belongs to the

object-based separation of duty constraint and the constraint

set is a subset of OBS. This constraint can be expressed as:

((R, , ,), ({o1, o2}, assigned_role_objects, <, 2), SPC).

It requires that no role defined in the scope set R can be

assigned to both o1 and o2.

 Example 6. A user is restricted from accessing an object

more than once. It belongs to the object-based separation of

duty constraint and the constraint set is a subset of OBS.

This constraint can be expressed as:

((U, , ,), ({o1}, ever_assigned_user_objects, <, 2), HPC).

It requires that each user defined in the scope set U can only

be assigned to o1 less than two times.

Example 7. An alternative interpretation of the user-user

conflict constraint expressed in Example 1 in which two sets

of users are restricted form being assigned to any common

authorization type (role). This constraint can be expressed

with two prohibition constraint schemes specifying that two

teams are restricted from being assigned to any common

user or authorization type (role). In both constraint schemes,

the constraint sets are the subsets of TEAMS. The constraint

scheme

 (({u1, u2, …, un}, , ,), ({m1, m2}, assigned_user_teams,

<, 2), SPC)

specifies that no user is assigned to both m1 and m2. The

constraint scheme

(({r1, r2, …, rn}, , ,), ({m1, m2}, assigned_role_teams, <, 2),

SPC)

specifies that no role is assigned to both m1 and m2.

46 Zhou et al.

Example 8. Another user-user conflict separation of duty

constraint. Here two users are restricted from sharing any

authorization type (role) in the set of restricted types (roles).

In this case, it belongs to the user-based separation of duty

and the constraint set is a subset of USERS. The constraint

can be expressed as:

(({r1, r2, …, rn}, , ,), ({u1, u2}, assigned_role_users, <,

2), SPC).

It requires that no role defined in the scope set {r1, r2, …,

rn} can be assigned to both u1 and u2.

Example 9. A user-role conflict separation of duty

constraint. A user or set of users are prohibited from being

assigned to any authorization type (role) in a set. It belongs

to the role-based separation of duty constraint and the

constraint set is a subset of ROLES. This constraint can be

expressed as:

 (({u1, …, un}, , ,), ({r1, r2, …, rm}, assigned_user_roles,

<, 1), SPC).

It requires that no user defined in the scope set {u1, …, un}

can be assigned to any role defined in the constraint set{ r1,

r2, …, rm}.

Example 10. Operational separation of duty. In this

constraint, no user is permitted to obtain all the permissions

necessary to perform all the tasks in a process. Typically,

each task in a process is represented by an authorization

type (role), and the execution of a task is assumed to be

equivalent to the invocation of a sequence of permissions

assigned to an authorization type (role). In this case, it

belongs to the role-based separation of duty constraint and

the constraint set is a subset of ROLES. This constraint can

be expressed as:

((U, , ,), ({r1, …, rn}, assigned_user_roles, <, m), SPC).

It requires that each user defined in the scope set U can only

be assigned to less than m roles defined in the constraint set

{r1, …, rn}, where nm ≤<1 .

Example 11. A session-dependent separation of duty

constraint. In this constraint, all the users in an aggregate

are prevented from being assigned to all the authorization

types (roles) during their sessions. In this case, it belongs to

the role-based dynamic separation of duty constraint and the

constraint set is a subset of ROLES. This constraint can be

expressed as:

((U, , ,), ({r1, …, rn}, session_user_roles, <, m), DPC).

It requires that each user defined in the scope set U can only

activate less than m roles defined in the constraint set {r1,

…, rn} in a session, where nm ≤<1 .

Example 12. A universal quantification. In this

constraint, all users are restricted from being assigned to

more than one conflicting authorization type (role). In this

case, it belongs to the role-based separation of duty

constraint and the constraint set is a subset of ROLES. The

constraint can be expressed as:

((USERS, , ,), ({r1, …, rn}, assigned_user_roles, <, 2),

SPC).

It requires that no user can be assigned to more than one

role defined in the constraint set {r1, …, rn}.

Example 13. Reconsider the Example 10 in the context of

authorization type (role) hierarchy. In this case, it belongs to

the static role-based separation of duty constraint and the

constraint set is a subset of ROLES. The constraint can be

expressed as:

((U, , ,), (authorized_role_roles({r1, …, rn}),

authorized_user_roles, <, m), SPC).

It requires that each user defined in the scope set U can only

be assigned to less than m roles defined in the constraint set

{r1, …, rn} and the roles inherited by these roles. The

function authorized_role_roles returns the roles that are

inherited by a given role.

Example 14. Kuhn [14] identified that there may exist a

mutual exclusion between authorization types whereby some

permissions not involved in the mutual exclusion may be

shared. In this constraint a mutual exclusion is set between

types A' and B', but the inheritance of this constraint only

excludes the permissions of B' from A and A' from B. It is

possible for A and B to each inherit permissions from

another authorization type C as long as the permissions

inherited from C are disjoint from those in A' and B'. It

means only part of the roles gotten through role hierarchies

are mutually exclusive. This kind of constraints cannot be

directly supported by our schemes. But we can use several

simple constraint schemes to accomplish this complex

constraint. For the previous example, the constraint can be

expressed with next four constraint schemes:

((PERMS, , ,), ({A', B'}, authorized_user_roles, <, 2),

SPC),

((A, , ,), ({B' }, authorized_role_roles, <, 1), SPC),

((B, , ,), ({A'}, authorized_role_roles, <, 1), SPC),

((C, , ,), ({A', B'}, authorized_role_roles, <, 1), SPC).

Example 15. Both order-dependent and order-

independent history constraints specify that a certain history

must have taken place before an operation can be executed.

For example, two sign signature tasks must be executed

before the approve task can be performed in a workflow

instance. In this case, it belongs to the order-independent

historical task-based obligation constraint and the constraint

set is a subset of TASKS. Here we assume that the sign

signature tasks are t1 and t2, the approve task is t3. The

constraint can be expressed as:

(USERS, {t3}, ({t1, t2}, ever_performed_tasks, >, 2),

HOC).

It is a historical obligation constraint that requires that any

user who can perform t3 only when t1 and t2 have been

performed. The function ever_performed_tasks is used to

obtain the performed tasks in a workflow instance. For this

function input parameters, the user-id is not important, but

the workflow-instance-id must be provided. If we want the

Authorization Constraints Specification and Enforcement 47

performing sequence is t1, t2 and t3, then we can use two

obligation constraint schemes to specify the execution order.

The constraint scheme

(USERS, {t2}, ({t1}, ever_performed_tasks, >, 0), HOC)

requires that any user can perform t2 only when t1 has been

performed. The constraint scheme

(USERS, {t3}, ({t2}, ever_performed_tasks, >, 0), HOC)

requires that any user can perform t3 only when t2 has been

performed.

6. Implementation

In this section we first introduce the constraint schema that

organizes a set of constraint schemes for authorization

constraint check, and then describe the implementation of

the function-based authorization constraint system.

 6.1 Constraint schema

Constraint schema is the basic unit of managing constraint

schemes and checking constraint requests. The combining

algorithm for these constraint schemes are “deny-overrides”

that is described in the following.

In the entire set of schemes in a schema, if any scheme

evaluates to “Deny”, then the result of the scheme

combination is “Deny”. If any scheme evaluates to “Permit”

and all other schemes evaluate to “NotApplicable”, then the

result of the scheme combination is “Permit”. If all schemes

evaluate to “NotApplicable”, then the scheme combination

is “NotApplicable”. If an error occurs while evaluating a

scheme, then the scheme combination is “Indeterminate”.

Now we illustrate how to use prohibition constraint

schemes and obligation constraint schemes to construct a

constraint schema through an example. The application

scenario is: all the users (U) with the role “Staff” can be

assigned to the role “President” or “Vice-President”, there is

only one user can be assigned to the role “President”, there

are no more than two users can be assigned to the role

“Vice-President”, and role “President” and role “Vice-

President” are mutually-exclusive roles. In order to

implement these constraints, the corresponding constraint

schema should include the following schemes:

(U, {President, Vice-President}, ({Staff},

assigned_user_roles, >, 0), SOC);

((U, assigned_role_user, <, 2), ({President},

assigned_user_roles, <, 2), SPC);

((U, assigned_role_user, <, 3), ({Vice-President},

assigned_user_roles, <, 2), SPC);

((U, , ,), ({President, Vice-President},

assigned_user_roles, <, 2), SPC).

The first scheme specifies only users with the role “Staff”

can be assigned to roles “President” and “Vice-President”.

The second scheme specifies less than two users can be

assigned to the role “President”. The third scheme specifies

less than three users can be assigned to the role “Vice-

President”. The fourth scheme specifies that “President” and

“Vice-President” are mutually-exclusive roles. In order to

enforce these constraint schemes, the functions that should

be implemented are get_employees, assigned_user_roles

and assigned_role_users.

 6.2 Implementation

We have implemented the function-based authorization

constraint system. This system is developed with Java and

named authorization constraint monitor. The essential class

relations of the authorization constraint monitor is shown

Figure 2. ConstraintSPC, ConstraintDPC, ConstraintHPC,

ConstraintSOC, ConstraintDOC and ConstraintHOC are

classes used to hold and enforce the six types of constraint

schemes, respectively. All the prohibition constraint scheme

classes inherit from the superclass ConstraintPC. All the

obligation constraint scheme classes inherit from the

superclass ConstraintOC. ConstraintPC and constraintOC

further inherit from the superclass Constraint.

ConstraintSchema is the class for holding and enforcing

constraint schemas. Their functionalities are described as

follows:

Constraint

ConstraintPC ConstraintOC

ConstraintSPC ConstraintDPC ConstraintSOC ConstraintDOCConstraintHPC ConstraintHOC

ConstraintSchema

1*
1

*
1

*

1

*
1

*
1 *

Figure 2. Essential class relations of constraint monitor

• ConstraintSchema serves as an interface for the

constraint monitor, that is, it hides the internal structures

from other components that use this service. Thus, each

external component uses constraint service through a

well-defined API offered by the ConstraintSchema. Each

ConstraintSchema instance holds only one constraint

schema that specifies which constraint schemes must be

satisfied before agreeing one constraint request.

• ConstraintSPC, ConstraintDPC, ConstraintHPC are

used to hold and evaluate static prohibition schemes,

dynamic prohibition schemes and historical prohibition

schemes, respectively. Each class instance holds one

scheme. They are responsible for extracting data from

the constraint request and invoking the methods defined

in the superclass to complete the corresponding

prohibition constraint scheme evaluation.

• ConstraintSOC, ConstraintDOC, ConstraintHOC are

used to hold and evaluate static obligation schemes,

dynamic obligation schemes and historical obligation

schemes, respectively. Each class instance holds one

scheme. They are responsible for extracting data from

the constraint request and invoking the methods defined

48 Zhou et al.

in the superclass to complete the corresponding

obligation constraint scheme evaluation.

• ConstraintPC defines the variables used to hold a

prohibition constraint scheme and the methods used to

implement the logic for evaluating a prohibition scheme.

• ConstraintOC defines the variables used to hold an

obligation constraint scheme and the methods used to

implement the logic for evaluating an obligation scheme.

• Constraint defines the common variables and methods

used by both ConstraintPR and ConstraintSD. The entity

set functions and entity relation functions are also

implemented or registered in this class.

Constraint request is evaluated by a constraint monitor

against to a given constraint schema that contains a set of

constraint schemes. The evaluation result could be “Deny”,

“Permit”, “NotApplicable” or “Indeterminate”.

7. Applications

Our function-based authorization constraints system has

been integrated into some real application systems. In this

section, we briefly introduce two application cases. Both of

them are from a R&D project that cooperates with the

Beijing Shenzhou Aerospace Software Technology Co., Ltd

(www.bjsasc.com) that is a subcompany of the China

Aerospace Science and Technology Corporation (CASC).

Case 1. Constraints in management information system.

The first project is “CASC Material Management

Information System Integration Tool”. As a whole, the

“Material Management Information System” comprises

many subsystems. Currently, each subsystem has its own

authentication and authorization systems. In order to access

different functionalities, users have to logon different

subsystems separately. This integration tool will provide

single sign on function for all the subsystems. The

authorization mechanism adopted by the integration tool is

role-based access control. Due to a very big system and the

requirement of fine-grained access control, many roles and

subsystems have been defined. Because their businesses are

special and sensitive, one of the most important issues that

must be considered is information security, such as

separation of duty. Basically, the authorization constraints to

the privilege management are summarized as follows.

• Mutually exclusive roles cannot be assigned to the same

user.

• Mutually exclusive permissions (subsystems) cannot be

assigned to the same role.

• Mutually exclusive permissions (subsystems) cannot be

assigned to the same user.

• Some roles have cardinality constraints.

• Prerequisite roles are required in some user-role

assignments and prerequisite permissions (subsystems)

are required in some role-permission assignments.

Here both prohibition constraints and obligation

constraints are involved. Obviously, it is better to have some

mechanism that can automatically detect any improper

privilege assignments. This issue is addressed by our

function-based authorization constraints. In this project we

developed an authorization constraint module that is

invoked by the integration tool through its API. All the user-

role assignments, role-permission assignments and user-

permission assignments will be checked by the module

according to some authorization constraint rules. With the

help of the authorization constraint module, any intentional

or unintentional privilege assignment that could cause a

violation of an authorization constraint will be avoided.

Case 2. Constraints in workflow management system.

The second project is “CASC Material Management

Information System”. This system manages the materials’

whole lifecycle such as planning, purchase, storage,

distributing, and so forth. The system development adopts

the Actionsoft Workflow Suite (AWS) that is a Business

Process Management (BPM) application developing

platform (http://www.actionsoft.com.cn). AWS provides

comprehensive functionalities for workflow design, running

and maintenance. But some complex application scenarios

cannot be directly implemented by AWS, e.g. authorization

constraints in a workflow instance.

In order to automatically search the operators for different

nodes in a workflow instance, the workflow designers need

to set a route policy for each node. The AWS platform

predefines many route schemes. For example, one route

scheme permits the system automatically looks for a valid

operator according to users’ roles. But these route schemes

do not consider any kind of authorization constraints, such

as separation of duty. When the role-based route scheme is

adopted, it is possible that all the steps are performed by the

same user in a workflow instance if he/she has all the

required roles. Our authorization constraint mechanism can

be used to avoid such kind of situations happening.

In this project we developed an authorization constraint

monitor that is responsible for enforcing authorization

constraints in workflow systems at runtime. Each

constrained request that could potentially cause a violation

of an authorization constraint is passed to the constraint

monitor. The constraint monitor checks whether granting

the request would violate an authorization constraint rules

and takes appropriate action. This authorization constraint

monitor is integrated into the workflow systems through

AWS developing interface. With the help of authorization

constraint monitor, various authorization constraints, such

as separation of duty in workflow instances, can be realized.

8. Conclusion

The major contribution of this paper is providing two novel

authorization constraint specification schemes that can be

used for both expressing authorization constraints and

enforcing authorization constraints in different access

control models. To our knowledge ours is the first constraint

specification language that can be used for both expression

and enforcement aims. These constraint schemes are

strongly bound to some functions that could be directly

mapped to the functions that should be developed in the

application systems. Thus, these schemes can provide the

system designers and security administrators a clear view

Authorization Constraints Specification and Enforcement 49

about which functions should be defined in an authorization

constraint system. Based on these functions, various

constraint schemes can be easily defined, and then enforced.

We believe that our approach is far simpler to understand,

has a much less cumbersome syntax and more closer to the

real world. Moreover, the implementation can be based on

the functions that already exist in an application system, and

an authorization constraint system could be scalable through

adding new entity set functions and entity relation functions.

On the hand, this approach goes beyond the well known

separation of duty constraints, and considers many aspects

of entity relation constraints.

References

[1] D. W. Chadwick, W. Xu, S. Otenko, R. Laborde, B.

Nasser. "Multi-Session Separation of Duties (MSoD)

for RBAC”. In Proceedings of the First International

Workshop on Security Technologies for Next

Generation Collaborative Business Applications

(SECOBAP'07), Istanbul, Turkey, April 2007.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman. “Role-based access control models”, IEEE

Computer, vol. 29, pp. 38-47, Feb. 1996.

[3] E. C. Lupu, M. Sloman. “A policy based role object

model”. In Proceedings of the 1st IEEE Enterprise

Distributed Object Computing Workshop, Calif, Oct.

1997.

[4] L. Giuri, P. Iglio. “Role templates for content-based

access control”. In Proceedings of the 2nd Workshop

on Role-Based Access Control, 1997.

[5] E. Bertino, E. Ferrari, V. Atluri. “The specification and

enforcement of authorization constraints in workflow

management systems”, ACM Trans. Inf. Syst. Sec.

(TISSEC) 1, 2, Feb. 1999.

[6] R. S. Sandhu, V. Bhamidipati, Q. Munawer. “The

ARBAC97 model for role-based administration of

roles”, ACM Trans. Inf. Syst. Sec. 1, 2, Feb. 1999.

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, R.

Chandramouli. “Proposed NIST standard for role-

based access control”, ACM Transactions on

Information and System Security, vol. 4, pp. 224-274,

Aug. 2001.

[8] J. H. Saltzer, M. D. Schroeder. “The protection of

information in computer systems”. In Proceedings of

the IEEE, 63(9):1278-1308, September 1975.

[9] D. D. Clark, D. R. Wilson. “A comparision of

commercial and military computer security policies”.

In Proceedings of the 1987 IEEE Symposium on

Security and Privacy, IEEE Computer Society Press,

pp. 184-194, May 1987.

[10] M. Bishop. Computer Security — Art and Science,

Addison-Wesley, 2003.

[11] R. Simon, M. E. Zurko. “Separation of duty in role

based access control environments”. In Proceedings of

the 10th IEEE Workshop on Computer Security

Foundations, pp. 183-194, Rockport, MA, June 1997.

[12] L. Giuri, P. Iglio. “A formal model for role-based access

control with constraints”. In Proceedings of 9th IEEE

Workshop on Computer Security Foundations, pp. 136-

145, Kenmare, Ireland, June 1996.

[13] V. D. Gligor, S. Gavrila, D. Ferraiolo. “On the formal

definition of separation of duty policies and their

composition”. In Proceedings of the 1998 IEEE

Computer Society Symposium on Research in Security

and Privacy, pp. 172-183, Oakland, CA, May 1998.

[14] R. Kuhn. “Mutual exclusion as a means of

implementing separation of duty requirements in role

based access control systems”. In Proceedings of the

Second ACM Workshop on Role Based Access Control,

pp. 23-30, 1997.

[15] E. Lupu, M. Sloman. “Conflicts in policy-based

distributed systems management”, IEEE Trans. Softw.

Eng. 25, 6, Nov./Dec., 1999.

[16] G. Ahn and R. Sandhu. “Role-based authorization

constraint specification”, ACM Trans. Inf. Syst. Sec. 3,

4 (Nov.), 2000.

[17] M. Nyanchama, S. Osborn. “The role graph model and

conflict of interest”, ACM Transactions on Information

and System Security 2, 1, pp. 3-33, 1999.

[18] S. Osborn, Y. Guo. “Modelling users in role-based

access control”. In Proceedings of the 5th ACM Role-

Based Access Control Workshop, July 2000.

[19] T. Jaeger and J. Tidswell. “Practical safety in flexible

access control models”, ACM Transactions on

Information and System Security 4, 2, pp. 158-190,

2001.

[20] J. Crampton, “Specifying and enforcing constraints in

role-based access control”. In Proceedings of the

Eighth ACM Symposium on Access Control Models

and Technologies (SACMAT 2003), pp. 43-50, Como,

Italy, June 2003.

[21] N. Li, Z. Bizri, M. V. Tripunitara. “On mutually

exclusive roles and separation of duty”. In Proceedings

of the CCS’04, pp. 42-51, Washington, DC, USA,

October 2004.

[22] W. Tolone, G. Ahn, T. Pai, “Access Control in

Collaborative Systems”, ACM Computing Surveys,

Vol. 37, No. 1, pp. 29-41, March 2005.

[23] W. Zhou, V. H. Raja, C. Meinel, M. Ahmad. “A

Framework for Cross-Institutional Authentication and

Authorisation”. In Proceedings of the eChallenges e-

2005 Conference (e-2005), pp. 1259-1266, Ljubljana,

Slovenia, October 2005.

[24] W. Zhou, C. Meinel. “Team and Task Based RBAC

Access Control Model”. In Proceedings of the 5th

Latin American Network Operations and Management

Symposium (LANOMS 2007), pp. 84-94, Petrópolis,

Brazil, September 2007.

Author Biographies

Wei Zhou received his BS and MS degrees in computer science in 1992 and
1997, respectively, both from the Jilin University of Technology, China. He
is a PhD student at the Hasso-Plattner-Institute (HPI), University of
Potsdam, Germany. He has rich work experience as a computer engineer in
enterprises and government (China Customs). From 2004 to 2006, he
worked at the University of Warwick, United Kingdom. His research
interests include e-commerce, e-government, information security, and
Internet applications.
Prof. Dr. Christoph Meinel is director of the Hasso-Plattner-Institute (HPI),
and head of the chair “Internet Technologies and System”. His main work
concerns security engineering technologies and methods, telemedicine
applications and innovative forms of teaching (Teleteaching) and learning
(E-Learning).

50 Zhou et al.

Yidong Xiang received his BS degree in computer science in 2004 from the
Northeast Dianli University, China. Currently, he is a senior J2EE Architect
at Beijing Shenzhou Aerospace Software Technology Co., Ltd, China.

Yang Shao received his BS degree in applied physics in 1999 from the
University of Tianjin, China. Currently, he is chief technology officer at the
Division of Integration Information Administration, Beijing Shenzhou
Aerospace Software Technology Co., Ltd, China.

