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Abstract-  Computational grids  aarree believed to be the 
ultimate framework to meet the growing 
computational needs of the scientific community. 
Here, the processing power of geographically 
distributed resources working under different 
ownerships, having their own access policy, cost 
structure and the likes, is logically coupled to make 
them perform as a unified resource. The continuous 
increase of availability of high-bandwidth 
communication as well as powerful computers built of 
low-cost components further enhance chances of 
computational grids becoming a reality. However, the 
question of grid security remains one of the important 
open research issues. Here, we present some novel 
ideas about how to implement grid security, without 
appreciable performance degradation in grids. A 
suitable alternative to the computationally expensive 
encryption is suggested, which uses a key for message 
authentication. Methods of secure transfer and 
exchange of the required key(s) are also discussed.  
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I. Introduction 

Grid computing started in the 1990s as a response 
to the need for large amount of computing power. 
Scientific problems needed such computing power 
but (a) were bound by financial constraints that 
prevented investments in “supercomputers,” and (b) 
it was realized that there exists an enormous pool of 
available and unused resources among computers 
connected across the internet. As a result, the 
concept of “coordinated resource sharing and 
problem solving among dynamic collections of 
individuals, institutions and resources” arose [2]. 

Currently, grid-related research is focused mostly 
on delivering the best available performance, 
including questions of load balancing, on the 
questions of resource discovery (which recently has 
been clouded due to some substantial changes in 
the underlying framework), grid-enabling existing 
legacy software and the likes. At the same time the 

question of grid security, while recognized as an 
important issue, remains somewhat on the 
backburner. There is a reasonable explanation for 
this situation. Security matters only if the 
computational infrastructure of the grid works well 
and effectively. Until the desired work is correctly 
distributed to the appropriate resources on the grid 
and the problem is efficiently solved and the results 
returned to the originator, there is no real reason to 
worry if the whole process can be done in a secure 
fashion. 

Obviously, the research devoted to security has 
proceeded in the meanwhile, and currently the state 
of the art suggests the use of encryption techniques 
for security purposes [12] [14]. At the same time, 
Foster et al. [6] suggest to avoid the use of 
encryption on the grounds of exportability issues. 
While one can discuss the validity of the latter’s 
arguments, it is obvious that the area of encryption-
based solutions and encryption-oriented research is 
rather controversial from the point of view of its 
social implications [17]. Therefore, it is important 
to seek solutions that do not rely directly on 
cryptography. Furthermore, another issue that arises 
is that use of encryption requires a substantial 
amount of computational resources. This is 
particularly so since the size of the key has to 
increase to protect the encrypted data. This means 
that the computing power available on the grid, 
which is the primary reason for the grid's setup, is 
utilized to encrypt and decrypt information rather 
then to perform computations. This situation is 
particularly important when the grid is set up to 
complete a large number of short jobs rather then a 
very large job like the cancer research conducted by 
United Devices [16]. In this case, each of these 
smaller chunks has to be encrypted and decrypted 
and the portion of time used to perform these 
functions (instead of solving the problem) is 
relatively much larger than in the case when each 
job takes hours to complete. Therefore, in this 
paper, we propose less resource consuming 
methods of secure authentication and secure data 



transfer. For authentication, we discuss the idea of 
temporal distribution of key information. We also 
believe that Winnowing and Chaffing [3] provides 
a good substitute for encryption in terms of the 
secure data transfer. 

The organization of this paper is as follows. A 
brief summary of research, carried out in the field 
of grid security, is presented in Section 2; then, we 
discuss our ideas about security methods for key 
exchange and offer a brief description of 
Winnowing and Chaffing, in Section 3 and finally, 
we conclude in Section 4.  

II. Related Research 

Currently, the most renowned grid-related 
research is concentrated around the Globus project 
[1]. It consists of the work done by the Globus 
project researchers themselves and all the 
subsequent research that utilizes the Globus toolkit. 
Our brief introduction to the research activities in 
the area of grid computing is therefore based 
mainly on the work done under the Globus project 
umbrella. Foster et al. [2] offer an exposition of the 
“grid problem”. They present a comprehensive 
introduction to the issues involved in grid 
computing. The Open Grid Services Architecture 
(OGSA) model is presented in [2] and [8]. A 
thorough overview of computational grids and 
technologies that existed at that time was presented 
in [9] though it is now outdated. 

Coming now to the security aspect, [6] presents 
the security issues coexisting within a grid, and 
builds an architecture to address them. Some 
approaches to handle the issue of interoperability of 
local security solutions with global grid security 
policies are proposed in [7] and [10]. The topics of 
dynamic creation of services and trust domains, and 
diverse local mechanisms, as viewed from the angle 
of implementation for the Globus Project are 
presented in [11]. Data integrity is also one of the 
central concerns of large-scale distributed 
computing systems such as the grid, whose primary 
products are the results of computation. In order to 
maintain the integrity of this data, the system must 
be resilient to diverse attacks. Gilbert et al. 
proposes a trust-based model for grid participants 
based on use of reputation systems and associated 
feedback mechanisms [14]. Trust is essential 
especially to maintain the integrity of data being 
processed/produced in a grid environment. The 
problem of determining which resources to trust 
and distrust for the purposes of data integrity 
closely resembles some of the trust issues 

(reputation models) present in online auctions [22].  
Online auctions like eBay have adopted such 
reputation systems to help cope with trust 
uncertainties inherent in Internet applications. 
Sarmenta addresses the grid security issues using a 
voting and spot-checking technique [15]. 

III. Encryptionless Security 

We begin this section with a technical comparison 
between encryption versus Winnowing and 
Chaffing (W&C) with an emphasis on the 
computational cost. Firstly, any encryption method 
like RSA and Advanced Encryption Standard 
(AES) does not guarantee data integrity and 
therefore it becomes essential to use a system of 
Message Authentication Codes (MAC) in addition 
to the encryption algorithm. Compared to this, 
W&C provides both data privacy and data integrity 
using MAC only. Hence, by a clear margin, W&C 
has smaller computational cost by avoiding the 
encryption completely. In the case when encryption 
is used with other forms of data integrity that are 
less computationally expensive than MAC – 
calculated using hashing functions – we will show 
that W&C is still cheaper than encryption. The only 
computationally intensive step in this method is the 
calculation of the MAC, which is done at the 
sender's and receiver's end. MACs are calculated 
using a combination of HMAC with a secure 
hashing algorithm like SHA-1 or MD-5. Let us now 
look at the cost involved in the AES encryption and 
in the HMAC-SHA1. 

For a common data block size of 512-bits, 
calculation of the MAC using HMAC-SHA1 
effectively requires around 700 of 32-bit XOR 
operations and 132 shifts of 32-bit words. Note that 
the maximum message size supported by SHA-1 is 
264, and the algorithm deals with messages in block 
increments of 512-bits. AES has no limit on the 
maximum data size and handles 128 message bits at 
a time. For a 128-bit message block, assuming the 
least key length of 128-bits, AES requires 
effectively nearly 400 32-bit XORs and 33 shift 
operations on 32-bit words. Including the 
multiplication and inverse operations, and scaling 
the above values for a message size of 512-bits, we 
find that AES effectively requires more than 1000 
32-bit XORs, an equal number of 32-bit word shifts 
as W&C, 68 operations of calculating 
multiplicative inverses of 8-bit words and more 
than 350, 8-bit multiplications [18][19]. 

 
 



 

Figure 1. Computational grid model
 
 
For data sizes of lesser than 512-bits, the MAC 

algorithm pads the data to fit the 512-bit limit and 
then performs the operations. Padding is a low-cost 
operation that is comparative to a bit shift plus 
XOR operation. Thus across all data sizes, 
winnowing and chaffing is definitely cheaper than 
an encryption algorithm like AES. As for 
asymmetric key algorithms like RSA, the 
computational cost involved is more prohibitive 
than symmetric key encryption algorithms.  

One big disadvantage of W&C is the increase in 
amount of transferred data due to the addition of 
chaff packets. To provide minimum security, for a 
"wheat" packet, at least one "chaff" packet is to be 
added. Therefore, for N blocks of "wheat", we need 
to transfer 2*N blocks. However, this does not 
translate to an analogous increase in the 
computational cost since, as specified in the 
algorithm, the MAC for the "chaff" packets are 
assigned randomly and not calculated. Therefore, 
the computational cost incurred is for the original N 
blocks of "wheat" data only, irrespective of the 
number of “chaff” blocks transferred. Also, a point 
to be noted is that the probability that a randomly 
generated MAC (which is 160-bits in length for the 
HMAC-SHA1) for a "chaff" packet is its correct 
MAC (thereby making the "chaff" look like 
"wheat" to the receiver) is 1/2160, which is 
practically negligible. A summary of the effective 
number of different operations performed in the 
course of each algorithm is presented below. 

MAC using HMAC-SHA1 
132 shift operations on 32-bit words; and, 762 XOR 
operations on 32-bit words. 

 

AES 
132 shift operations on 32-bit words; 1214 XOR 
operations on 32-bit words; 320 modulo 
multiplications in Finite Field of 28 on 8-bit words; 
44 multiplications of 8-bit words; and, 68 
multiplicative inverse calculations in Finite Field of 
28 on 8-bit words. 

While the computational nodes become 
constantly more powerful, the size of the key has to 
increase as well and thus the resource usage will 
remain relatively unchanged. Thus, a node may be 
constantly encrypting and decrypting data if it 
constantly receives requests and has to handle 
queries. One more fact, that is somewhat ironic, is 
that it is the very nature of distributed, grid-based 
computing that enables the breaking down of many 
encryption algorithms (for example, by a fast brute-
force search across the complete space of available 
keys). Thus, minimal use of encryption would 
lessen computing time and reduce the risk of 
compromise-by-extensive-usage. Before we discuss 
our proposal for encryption-less security, we first 
present the model of the computational grid that we 
consider.  

A. Our Model of the Computational Grid 

We consider the following computational grid 
model. A computational grid is created primarily to 
share the burden of solving a computational 
problem by accessing the computing power of its 
nodes. Figure 1 depicts the general framework for 
grid computing focusing on the interaction between 
Grid Resource Broker (GRB), Domain Resource 



Manager (DRM) and the grid information server 
[20]. The Grid Resource Broker (GRB) is 
responsible for resource discovery, deciding 
allocation of a task (job) to a particular resource, 
binding of user applications (files), hardware 
resources, initiation of computations, adaptation to 
the changes in grid resources, and presentation of 
the grid to the user as a single, unified resource. It 
finally controls the physical allocation of the tasks 
and manages the available resources constantly 
while dynamically updating the grid scheduler 
whenever there is a change in resource availability.  
It is assumed that a resource or a group of resources 
having the program code and necessary data that 
together define the computational problem and 
coordinate the solution to the computational 
problem with the GRB. The DRMs with different 
capabilities that are networked to the GRB are 
dedicated to the grid. That is, these DRMs play a 
single role only, that of being members of that 
particular computational grid. As we will see later, 
this model has its advantages and disadvantages. 
The problem to be solved is split and concurrently 
solved at these dedicated DRMs in parallel. The 
result or results of execution of the program code 
on separate DRMs are collected by the GRB and 
organized into meaningful information that is used 
either as is or is kept for further processing. 

The process that needs to execute at a dedicated 
DRM must first authenticate itself with that DRM. 
This authentication procedure should be secure to 
prevent entry to unauthorized programs. For this, 
we suggest the following methods, either one of 
which could be used, based on particular 
requirements. They all pertain to exchange of key 
information to secure subsequent communication 
and data transfer. 

 
B. Methods of Authentication and Key Transfer 

The first method involves the only suggested use 
of encryption. Encrypting the authentication 
information and the secret key and transferring it to 
the receiver is a viable though costly option. This 
option facilitates dynamic generation of keys for 
communication with various nodes and at various 
times. However, as was elucidated before, this 
method is likely to be broken into in the case when 
the same set of authentication information is 
utilized over an extended period. The extended time 
gives adequate opportunities for an intruder to 
obtain the authentication information that is 
transmitted, and by using cryptanalysis combined 
with the power of the grid itself, the encryption 

could be broken. Thus, the information needed for 
authentication with a particular DRM should be 
differentiated across time. For example, a randomly 
generated key could be used but this key has to be 
conveyed to the DRMs beforehand, which creates a 
case of a vicious circle: to be able to securely send 
the key, we need to securely send the key first. 

A second alternative to key exchange is the 
spatial split-distribution of key information. It is 
based on an extension of Shamir's secret sharing 
method [4] and utilizes the existence of multiple 
disjoint paths from the GRB to a DRM. In this 
method, the secret key K is sent in the form of N 
parts say f1, f2, ..., fN (as specified in what follows). 
First, let us consider a (T, N)-threshold scheme, 
where 

a) knowledge of any T or more pieces makes K 
easily computable; 

b) knowledge of any T-1 or lesser pieces leaves K 
completely undetermined. 

The scheme is designed as follows: 

a) Construct a polynomial 

f(x) =a0+a1x+a2x
2+ ... +aT-1x

T-1 

where a1, a2, aT-1 are chosen randomly while a0 is 
assigned to K. 

b) Evaluate f(x) at N values x1, x2, xN. That is, 
calculate f(x1), f(x2), f(xN). 

Now given any T of these N values, it is possible to 
reconstruct f(x) and hence obtain the value of the 
secret key a0. These N values are sent along N 
mutually disjoint paths to the DRM so that the 
chances of an unauthorized intermediate DRM 
obtaining the secret key is minimal. The 
assumption behind this method is that it is 
practically infeasible for an intruder to monitor T or 
more paths to obtain T or more packets from a 
sender, simultaneously. This method also facilitates 
the distribution of randomly generated keys.  

The third method takes a multimodal approach to 
security. In this system, the secret key could be 
agreed upon at the time of a contractual agreement 
between the parties that own a resource and the 
parties that run the processes (remember, that in our 
model, the DRMs belong 100% to the grid and are 
not used for any other purposes). The actual 
transfer of authentication information and data, 
however, could be carried out through the regular 
channels of communication in the grid. This might, 
however, mean a prior personal contact between a 
DRM that wants to participate in the grid and the 



group operating the grid, which might not always 
be possible. However, by following this multimodal 
approach, we can practically eliminate the chance 
of any compromise in confidential information. 
One disadvantage of this scheme is that every time 
the key needs to be changed, a meeting between the 
concerned parties should be arranged (thus making 
it susceptible to the brute-force cryptanalysis 
attacks if the key exchange – meeting – does not 
happen for an extended period of time).  

It is possible to further modify the latter scheme 
by applying to it the temporal split-distribution of 
information. This facilitates dynamic generation of 
keys and at the same time benefits from the 
extended secrecy of the multimodal approach. The 
algorithm of the modified scheme is similar to the 
spatial split-distribution method presented earlier, 
but does not require the existence of multiple paths. 
In this algorithm, the information exchanged in 
person or by a contractual agreement is not the 
secret key. It is a prime number, p, use of which is 
essential to convey the key information in a secure 
manner, subsequently. The algorithm used by the 
sender for this method is as follows: 

1. Split K into N arbitrary parts. 

2. Assign the values of the bit positions where the 
splits took place to R1, R2 ... RN-1. 

3. Construct polynomial P(x) using these Ri's as 
roots. 

4. Evaluate P(x) at the N different values x1, x2, ... , 
xN modulo the prime number p. Let us denote 
the pairs as (xi, P(xi)) for all i from 1 to N.  

5. Club Ki along with the respective (xi,P(xi)) and 
send them across, one by one. 

At the receiver's end, the algorithm for obtaining 
back the entire key K is as follows: 

1. Collect all the (xi,P(xi)) pairs from the packets 
and determine the polynomial P(x) completely, 
since p is known. 

2. Calculate the roots of P(x). These give the 
position of the splits that took place at the 
sender's end. 

3. Using this knowledge of the positions of the 
splits and the packet sequence number, obtain 
the correct sequence of bits from the respective 
packets. From this, the key K can be obtained 
immediately. 

This method is secure from key leakage because 
of two reasons. Firstly, the key K is split arbitrarily 

and hence the data content in a packet that contains 
Ki, (xi,P(xi)) pair and some random bits cannot be 
determined easily. Secondly, the polynomial used 
by the sender cannot be constructed without 
knowing the prime p. When a new key is generated 
and it needs to be communicated, this method can 
be used. As can be seen, it is therefore possible to 
retain the advantage of dynamic generation of keys 
and at the same time benefit from the security 
provided by an exchange in person. 

Thus, we have provided three methods and their 
subsequent modifications for the purposes of 
authentication and key exchange. This key 
subsequently helps in ensuring secure data transfer. 

 
C. Secure Data Transfer 

For the issue of security in the transfer of data, an 
encryption-less method that still offers similar level 
of security, could be used. A good method that fits 
the bill is the Winnowing and Chaffing approach 
suggested by Rivest [3], which is summarized as 
below. 

In this method, a Message Authentication Code 
(MAC) is added to every packet that is sent by the 
GRB. MAC is calculated using a standard 
algorithm like HMAC-SHA1 [5]. The parameters to 
this algorithm are the packet sequence number, the 
contents of the packet, and the secret key, which 
was exchanged earlier (see previous section). Once 
the grid DRM receives a packet, it first calculates 
the MAC itself and then checks whether it matches 
with the MAC sent with the packet. If so, it 
“knows” that the sender is the GRB, else it discards 
the packet as originating from a false source. In this 
way, data can be authenticated. Note that usage of a 
secret key for authentication is not “encryption” 
and does not involve computationally intensive 
operations with large operands. 

Now, security is implemented on top of this 
message authentication by adding the so-called 
“chaff” packets. These are packets, which have the 
same format as the genuine data packets, but the 
MACs are deliberately set to the wrong value. On 
seeing a packet with a non-matching MAC, the grid 
DRM can promptly ignore it. However, any 
intruder monitoring traffic has no way of 
differentiating the right value of the MAC from the 
wrong, as he has no knowledge of the secret key. 
For some practical issues in the implementation of 
this idea, the reader is referred to [3]. 

The algorithm can be summarized as follows: 

1. Calculate MAC using packet contents, packet 



sequence number and secret key. 

2. Create the “wheat” packets using the sequence 
number, contents and the MAC. 

3. Create the “chaff” packets by randomly 
generating MAC numbers. For maximum 
security, the contents of the packet should be 
the inverted result of the contents of the “wheat” 
packet with the same sequence number. 

At the receiver's end: 

1. Calculate MAC using the packet contents, packet 
sequence number and secret key. 

2. If the calculated MAC matched with MAC of the 
packet, then it is a “wheat” packet. Else, it is a 
“chaff” packet and can be thrown away. 

Using winnowing and chaffing, data can be 
securely transmitted across the grid. There is 
minimal computing power waste on the part of the 
DRMs since all that is to be done is to calculate the 
MACs of the packets and accordingly perform a 
check. Similarly, there is minimal overhead for the 
GRB to calculate the MACs and generate the chaff. 
The former by a similar argument involves low 
computational time compared to encryption, while 
the latter can be done randomly with low 
computational cost again. There is no way a chaff 
packet can be distinguished from a wheat packet by 
anybody other than the base station and the grid 
node without knowledge of the secret key. Thus, 
we can obtain high security at lesser performance-
degradation of the grid than when compared to the 
use of encryption algorithms. 

 
D.  Discussion on the Computational Grid Model 

The model of the computational grid used in the 
previous section lends itself to the implementation 
of security we had illustrated earlier. This is 
because of the “dedicated” nature of the DRMs of 
the grid. By “dedicated”, the implicit assumption is 
that the owner(s) of the grid, which in this case 
could be the GRB, are assured of the DRMs 
integrity. That is, it is assumed that a DRM would 
not participate in activities that are disruptive to the 
principles and functioning of the grid. This is 
important especially since data have to be 
processed at the DRMs and information returned to 
the GRBs. In the eventuality that the DRMs are 
indeed compromised, then, for instance, the output 
of the processing that is returned to the GRB could 
contain malicious code that might bring down the 
entire grid. Thus, dedicated DRMs are required to 

avoid using publicly shared resources that could be 
potential points of security failure.  

The single biggest disadvantage of this model is 
the requirement of DRMs to be dedicated to the 
computational grid. Practical constraints like 
money and space impose restrictions on the number 
of dedicated nodes procurable by the owners of a 
grid. In fact, it is easier to establish a grid amongst 
publicly shared DRMs, which is also more 
economically viable than having dedicated DRMs. 
This has given rise to another model of the 
computational grid that is prevalent today (a sample 
implementation being the Search for Extra-
Terrestrial Intelligence: SETI@Home project [13]). 
It is common for an implementation of such a 
model to have the Internet as the connecting 
network. Here, the GRBs rely on DRMs that are not 
dedicated and are used by people not associated 
with the grid but which “donate” unused computing 
power to the grid. In this case, the same security 
considerations that arise in the previous model of 
the grid reappear. However, owing to the public 
nature of the underlying network connecting the 
grid DRMs, there are additional security issues that 
are to be dealt with.  

In this model of the computational grid, a DRM 
of the grid has a ‘stub’ program that controls the 
procurement of new sets of data from the GRB, 
processes these sets at the DRM and transmits 
information back to the GRB. The key reason for a 
security breach in this scenario could be the use of 
a false ‘stub’ program at the node. These false 
‘stub’s’ could have been distributed over the World 
Wide Web, for example, by miscreants and 
hackers, and could have been unknowingly 
downloaded and installed at the DRM by its owner. 
This and more such issues form one aspect of 
security that is to be considered by users before 
they join a computational grid.  

The other side of the coin is the security failures 
at the DRM that could affect the grid. Most of these 
failures result from loss of integrity on the part of 
the DRM either knowingly or unknowingly. That 
is, a particular DRM of the grid could be executing 
programs that disrupt the grid. Alternatively, due to 
the transparent nature of the Internet, computer 
viruses, for example, could infest a particular DRM 
and these could easily control the ‘stub’ program of 
the grid. Then, false and disruptive data could be 
relayed back to the grid. In fact, these events could 
happen without even the user of that DRM 
becoming aware of the security breach. It is this 
aspect of security that we discuss next. Note 
however that these issues are deemed not to exist in 



the earlier model where the nodes are dedicated. 
The SETI@Home project, perhaps the most well 
known example of large-scale distributed 
computing, has already experienced data integrity 
woes due to unknown and untrusted entities 
tampering with the computation process [21]. In 
order to maintain the data integrity of the Grid, we 
must prevent or mitigate such attacks. 

As a first step, towards preventing corruption of 
the ‘stub’ program and/or the data of the grid, the 
user at a DRM should be prompted to install all the 
components of a grid program including the ‘stub’ 
and the raw data in a restricted segment of the 
physical memory. Either restriction could be 
enforced in a hardwired manner or software 
restrictions could be used. For example, the user 
could define a modified form of Access Control 
Lists (ACL) for the ‘stub’ program where only 
users/programs that have permissions to access that 
memory region are allowed access. This achieves 
the purpose of restricting the region over which the 
‘stub’ program has access thus minimizing the 
region in memory that could potentially be affected 
by a false ‘stub’ installation as well.  

Another way of protecting the grid from 
corrupted data/‘stub’ programs is to enable 
detection of corruption of these elements. Once an 
unauthorized change in data and/or the ‘stub’ 
program is detected, that particular DRM could be 
barred from logically connecting to the grid. A 
possible way of providing this could be as follows. 
A ‘listener’ program could be implemented and 
executed independent of the ‘stub’ program. The 
role of the ‘listener’ is to listen to changes 
happening to the program components of the grid. 
For example, in the case of the DRM operating 
with the Unix OS, the ‘listener’ could be 
monitoring the inode of the ‘stub’ program. An 
inode of a program stores meta-information 
pertaining to the program including the date of last 
update or access. Whenever a change is made to the 
data or a program, the ‘listener’ detects a change in 
the inode. By checking in the list of processes 
currently active, the ‘listener’ could verify to see 
that the ‘stub’ program is currently active. If it is 
not, then the change can be concluded to be 
unauthorized. Now, the ‘listener’ could alert the 
user of that node about this eventuality and prompt 
a relay of a message to the base station. 
Implementation-wise, the ‘listener’ program is 
small as only a check on the inode is required to be 
performed. However, some computational cycles 
are expended in keeping the ‘listener’ program 
active. Thus, this method could be implemented if a 

marginal increase in computing power usage is 
tolerable. A possible realization in the future could 
be a quantum cryptographical method that helps in 
instant detection of any change inflicted on data. 
This would provide a foolproof way of detection. 
Note that there exists no foolproof way of 
communicating the detection to the GRB as all such 
endeavors involve the human user. This brings us to 
the final issue that we discuss in this section. 

A singular point of reliance of the methods 
illustrated above is the integrity of the user of the 
DRM. The user’s complete cooperation is required 
for any kind of security to be implemented. No 
amount of security solutions can prevent a 
determined hacker from using his DRM as a breach 
point into the grid. Unfortunately, it has been the 
humans that are the weak links in security systems, 
and in many cases, it can be said that the strength of 
a security solution is inversely proportional to the 
number of humans involved in the functioning of 
the security system. 

IV. Conclusions 

In this paper we have discussed ways to make a 
model of the computational grid more secure and 
deliver high performance simultaneously. We have 
suggested the use of various schemes for process 
authentication as well as for secure data transfer. 
The emphasis was on using encryption only when 
absolutely necessary and methods like Winnowing 
and Chaffing helped in this context. Another widely 
used model of the computational grid was also 
presented and some associated security issues were 
identified. Possible solutions and ideas were also 
provided. Finally, let us note that use of quantum 
cryptography in this area could be a big boon if 
efficient methods become realizable. 
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