
Grid Security and Integration with Minimal Performance Degradation

Sugata Sanyal
School of Technology and Computer Science
Tata Institute of Fundamental Research, India

sanyal@tifr.res.in

Rangarajan A. Vasudevan
Department of Computer Science and Engineering

Indian Institute of Technology, Madras, India
ranga@cs.iitm.ernet.in

Ajith Abraham

Computer Science Department
Oklahoma State University, USA

ajith.abraham@ieee.org

Marcin Paprzycki

Computer Science Department
Oklahoma State University, USA

marcin@cs.okstate.edu

Abstract- Computational grids aarree believed to be the
ultimate framework to meet the growing
computational needs of the scientific community.
Here, the processing power of geographically
distributed resources working under different
ownerships, having their own access policy, cost
structure and the likes, is logically coupled to make
them perform as a unified resource. The continuous
increase of availability of high-bandwidth
communication as well as powerful computers built of
low-cost components further enhance chances of
computational grids becoming a reality. However, the
question of grid security remains one of the important
open research issues. Here, we present some novel
ideas about how to implement grid security, without
appreciable performance degradation in grids. A
suitable alternative to the computationally expensive
encryption is suggested, which uses a key for message
authentication. Methods of secure transfer and
exchange of the required key(s) are also discussed.

Keywords- Grid computing, Security, Temporal
distribution, Spatial distribution

I. Introduction

Grid computing started in the 1990s as a response
to the need for large amount of computing power.
Scientific problems needed such computing power
but (a) were bound by financial constraints that
prevented investments in “supercomputers,” and (b)
it was realized that there exists an enormous pool of
available and unused resources among computers
connected across the internet. As a result, the
concept of “coordinated resource sharing and
problem solving among dynamic collections of
individuals, institutions and resources” arose [2].

Currently, grid-related research is focused mostly
on delivering the best available performance,
including questions of load balancing, on the
questions of resource discovery (which recently has
been clouded due to some substantial changes in
the underlying framework), grid-enabling existing
legacy software and the likes. At the same time the

question of grid security, while recognized as an
important issue, remains somewhat on the
backburner. There is a reasonable explanation for
this situation. Security matters only if the
computational infrastructure of the grid works well
and effectively. Until the desired work is correctly
distributed to the appropriate resources on the grid
and the problem is efficiently solved and the results
returned to the originator, there is no real reason to
worry if the whole process can be done in a secure
fashion.

Obviously, the research devoted to security has
proceeded in the meanwhile, and currently the state
of the art suggests the use of encryption techniques
for security purposes [12] [14]. At the same time,
Foster et al. [6] suggest to avoid the use of
encryption on the grounds of exportability issues.
While one can discuss the validity of the latter’s
arguments, it is obvious that the area of encryption-
based solutions and encryption-oriented research is
rather controversial from the point of view of its
social implications [17]. Therefore, it is important
to seek solutions that do not rely directly on
cryptography. Furthermore, another issue that arises
is that use of encryption requires a substantial
amount of computational resources. This is
particularly so since the size of the key has to
increase to protect the encrypted data. This means
that the computing power available on the grid,
which is the primary reason for the grid's setup, is
utilized to encrypt and decrypt information rather
then to perform computations. This situation is
particularly important when the grid is set up to
complete a large number of short jobs rather then a
very large job like the cancer research conducted by
United Devices [16]. In this case, each of these
smaller chunks has to be encrypted and decrypted
and the portion of time used to perform these
functions (instead of solving the problem) is
relatively much larger than in the case when each
job takes hours to complete. Therefore, in this
paper, we propose less resource consuming
methods of secure authentication and secure data

transfer. For authentication, we discuss the idea of
temporal distribution of key information. We also
believe that Winnowing and Chaffing [3] provides
a good substitute for encryption in terms of the
secure data transfer.

The organization of this paper is as follows. A
brief summary of research, carried out in the field
of grid security, is presented in Section 2; then, we
discuss our ideas about security methods for key
exchange and offer a brief description of
Winnowing and Chaffing, in Section 3 and finally,
we conclude in Section 4.

II. Related Research

Currently, the most renowned grid-related
research is concentrated around the Globus project
[1]. It consists of the work done by the Globus
project researchers themselves and all the
subsequent research that utilizes the Globus toolkit.
Our brief introduction to the research activities in
the area of grid computing is therefore based
mainly on the work done under the Globus project
umbrella. Foster et al. [2] offer an exposition of the
“grid problem”. They present a comprehensive
introduction to the issues involved in grid
computing. The Open Grid Services Architecture
(OGSA) model is presented in [2] and [8]. A
thorough overview of computational grids and
technologies that existed at that time was presented
in [9] though it is now outdated.

Coming now to the security aspect, [6] presents
the security issues coexisting within a grid, and
builds an architecture to address them. Some
approaches to handle the issue of interoperability of
local security solutions with global grid security
policies are proposed in [7] and [10]. The topics of
dynamic creation of services and trust domains, and
diverse local mechanisms, as viewed from the angle
of implementation for the Globus Project are
presented in [11]. Data integrity is also one of the
central concerns of large-scale distributed
computing systems such as the grid, whose primary
products are the results of computation. In order to
maintain the integrity of this data, the system must
be resilient to diverse attacks. Gilbert et al.
proposes a trust-based model for grid participants
based on use of reputation systems and associated
feedback mechanisms [14]. Trust is essential
especially to maintain the integrity of data being
processed/produced in a grid environment. The
problem of determining which resources to trust
and distrust for the purposes of data integrity
closely resembles some of the trust issues

(reputation models) present in online auctions [22].
Online auctions like eBay have adopted such
reputation systems to help cope with trust
uncertainties inherent in Internet applications.
Sarmenta addresses the grid security issues using a
voting and spot-checking technique [15].

III. Encryptionless Security

We begin this section with a technical comparison
between encryption versus Winnowing and
Chaffing (W&C) with an emphasis on the
computational cost. Firstly, any encryption method
like RSA and Advanced Encryption Standard
(AES) does not guarantee data integrity and
therefore it becomes essential to use a system of
Message Authentication Codes (MAC) in addition
to the encryption algorithm. Compared to this,
W&C provides both data privacy and data integrity
using MAC only. Hence, by a clear margin, W&C
has smaller computational cost by avoiding the
encryption completely. In the case when encryption
is used with other forms of data integrity that are
less computationally expensive than MAC –
calculated using hashing functions – we will show
that W&C is still cheaper than encryption. The only
computationally intensive step in this method is the
calculation of the MAC, which is done at the
sender's and receiver's end. MACs are calculated
using a combination of HMAC with a secure
hashing algorithm like SHA-1 or MD-5. Let us now
look at the cost involved in the AES encryption and
in the HMAC-SHA1.

For a common data block size of 512-bits,
calculation of the MAC using HMAC-SHA1
effectively requires around 700 of 32-bit XOR
operations and 132 shifts of 32-bit words. Note that
the maximum message size supported by SHA-1 is
264, and the algorithm deals with messages in block
increments of 512-bits. AES has no limit on the
maximum data size and handles 128 message bits at
a time. For a 128-bit message block, assuming the
least key length of 128-bits, AES requires
effectively nearly 400 32-bit XORs and 33 shift
operations on 32-bit words. Including the
multiplication and inverse operations, and scaling
the above values for a message size of 512-bits, we
find that AES effectively requires more than 1000
32-bit XORs, an equal number of 32-bit word shifts
as W&C, 68 operations of calculating
multiplicative inverses of 8-bit words and more
than 350, 8-bit multiplications [18][19].

Figure 1. Computational grid model

For data sizes of lesser than 512-bits, the MAC

algorithm pads the data to fit the 512-bit limit and
then performs the operations. Padding is a low-cost
operation that is comparative to a bit shift plus
XOR operation. Thus across all data sizes,
winnowing and chaffing is definitely cheaper than
an encryption algorithm like AES. As for
asymmetric key algorithms like RSA, the
computational cost involved is more prohibitive
than symmetric key encryption algorithms.

One big disadvantage of W&C is the increase in
amount of transferred data due to the addition of
chaff packets. To provide minimum security, for a
"wheat" packet, at least one "chaff" packet is to be
added. Therefore, for N blocks of "wheat", we need
to transfer 2*N blocks. However, this does not
translate to an analogous increase in the
computational cost since, as specified in the
algorithm, the MAC for the "chaff" packets are
assigned randomly and not calculated. Therefore,
the computational cost incurred is for the original N
blocks of "wheat" data only, irrespective of the
number of “chaff” blocks transferred. Also, a point
to be noted is that the probability that a randomly
generated MAC (which is 160-bits in length for the
HMAC-SHA1) for a "chaff" packet is its correct
MAC (thereby making the "chaff" look like
"wheat" to the receiver) is 1/2160, which is
practically negligible. A summary of the effective
number of different operations performed in the
course of each algorithm is presented below.

MAC using HMAC-SHA1
132 shift operations on 32-bit words; and, 762 XOR
operations on 32-bit words.

AES
132 shift operations on 32-bit words; 1214 XOR
operations on 32-bit words; 320 modulo
multiplications in Finite Field of 28 on 8-bit words;
44 multiplications of 8-bit words; and, 68
multiplicative inverse calculations in Finite Field of
28 on 8-bit words.

While the computational nodes become
constantly more powerful, the size of the key has to
increase as well and thus the resource usage will
remain relatively unchanged. Thus, a node may be
constantly encrypting and decrypting data if it
constantly receives requests and has to handle
queries. One more fact, that is somewhat ironic, is
that it is the very nature of distributed, grid-based
computing that enables the breaking down of many
encryption algorithms (for example, by a fast brute-
force search across the complete space of available
keys). Thus, minimal use of encryption would
lessen computing time and reduce the risk of
compromise-by-extensive-usage. Before we discuss
our proposal for encryption-less security, we first
present the model of the computational grid that we
consider.

A. Our Model of the Computational Grid

We consider the following computational grid
model. A computational grid is created primarily to
share the burden of solving a computational
problem by accessing the computing power of its
nodes. Figure 1 depicts the general framework for
grid computing focusing on the interaction between
Grid Resource Broker (GRB), Domain Resource

Manager (DRM) and the grid information server
[20]. The Grid Resource Broker (GRB) is
responsible for resource discovery, deciding
allocation of a task (job) to a particular resource,
binding of user applications (files), hardware
resources, initiation of computations, adaptation to
the changes in grid resources, and presentation of
the grid to the user as a single, unified resource. It
finally controls the physical allocation of the tasks
and manages the available resources constantly
while dynamically updating the grid scheduler
whenever there is a change in resource availability.
It is assumed that a resource or a group of resources
having the program code and necessary data that
together define the computational problem and
coordinate the solution to the computational
problem with the GRB. The DRMs with different
capabilities that are networked to the GRB are
dedicated to the grid. That is, these DRMs play a
single role only, that of being members of that
particular computational grid. As we will see later,
this model has its advantages and disadvantages.
The problem to be solved is split and concurrently
solved at these dedicated DRMs in parallel. The
result or results of execution of the program code
on separate DRMs are collected by the GRB and
organized into meaningful information that is used
either as is or is kept for further processing.

The process that needs to execute at a dedicated
DRM must first authenticate itself with that DRM.
This authentication procedure should be secure to
prevent entry to unauthorized programs. For this,
we suggest the following methods, either one of
which could be used, based on particular
requirements. They all pertain to exchange of key
information to secure subsequent communication
and data transfer.

B. Methods of Authentication and Key Transfer

The first method involves the only suggested use
of encryption. Encrypting the authentication
information and the secret key and transferring it to
the receiver is a viable though costly option. This
option facilitates dynamic generation of keys for
communication with various nodes and at various
times. However, as was elucidated before, this
method is likely to be broken into in the case when
the same set of authentication information is
utilized over an extended period. The extended time
gives adequate opportunities for an intruder to
obtain the authentication information that is
transmitted, and by using cryptanalysis combined
with the power of the grid itself, the encryption

could be broken. Thus, the information needed for
authentication with a particular DRM should be
differentiated across time. For example, a randomly
generated key could be used but this key has to be
conveyed to the DRMs beforehand, which creates a
case of a vicious circle: to be able to securely send
the key, we need to securely send the key first.

A second alternative to key exchange is the
spatial split-distribution of key information. It is
based on an extension of Shamir's secret sharing
method [4] and utilizes the existence of multiple
disjoint paths from the GRB to a DRM. In this
method, the secret key K is sent in the form of N
parts say f1, f2, ..., fN (as specified in what follows).
First, let us consider a (T, N)-threshold scheme,
where

a) knowledge of any T or more pieces makes K
easily computable;

b) knowledge of any T-1 or lesser pieces leaves K
completely undetermined.

The scheme is designed as follows:

a) Construct a polynomial

f(x) =a0+a1x+a2x
2+ ... +aT-1x

T-1

where a1, a2, aT-1 are chosen randomly while a0 is
assigned to K.

b) Evaluate f(x) at N values x1, x2, xN. That is,
calculate f(x1), f(x2), f(xN).

Now given any T of these N values, it is possible to
reconstruct f(x) and hence obtain the value of the
secret key a0. These N values are sent along N
mutually disjoint paths to the DRM so that the
chances of an unauthorized intermediate DRM
obtaining the secret key is minimal. The
assumption behind this method is that it is
practically infeasible for an intruder to monitor T or
more paths to obtain T or more packets from a
sender, simultaneously. This method also facilitates
the distribution of randomly generated keys.

The third method takes a multimodal approach to
security. In this system, the secret key could be
agreed upon at the time of a contractual agreement
between the parties that own a resource and the
parties that run the processes (remember, that in our
model, the DRMs belong 100% to the grid and are
not used for any other purposes). The actual
transfer of authentication information and data,
however, could be carried out through the regular
channels of communication in the grid. This might,
however, mean a prior personal contact between a
DRM that wants to participate in the grid and the

group operating the grid, which might not always
be possible. However, by following this multimodal
approach, we can practically eliminate the chance
of any compromise in confidential information.
One disadvantage of this scheme is that every time
the key needs to be changed, a meeting between the
concerned parties should be arranged (thus making
it susceptible to the brute-force cryptanalysis
attacks if the key exchange – meeting – does not
happen for an extended period of time).

It is possible to further modify the latter scheme
by applying to it the temporal split-distribution of
information. This facilitates dynamic generation of
keys and at the same time benefits from the
extended secrecy of the multimodal approach. The
algorithm of the modified scheme is similar to the
spatial split-distribution method presented earlier,
but does not require the existence of multiple paths.
In this algorithm, the information exchanged in
person or by a contractual agreement is not the
secret key. It is a prime number, p, use of which is
essential to convey the key information in a secure
manner, subsequently. The algorithm used by the
sender for this method is as follows:

1. Split K into N arbitrary parts.

2. Assign the values of the bit positions where the
splits took place to R1, R2 ... RN-1.

3. Construct polynomial P(x) using these Ri's as
roots.

4. Evaluate P(x) at the N different values x1, x2, ... ,
xN modulo the prime number p. Let us denote
the pairs as (xi, P(xi)) for all i from 1 to N.

5. Club Ki along with the respective (xi,P(xi)) and
send them across, one by one.

At the receiver's end, the algorithm for obtaining
back the entire key K is as follows:

1. Collect all the (xi,P(xi)) pairs from the packets
and determine the polynomial P(x) completely,
since p is known.

2. Calculate the roots of P(x). These give the
position of the splits that took place at the
sender's end.

3. Using this knowledge of the positions of the
splits and the packet sequence number, obtain
the correct sequence of bits from the respective
packets. From this, the key K can be obtained
immediately.

This method is secure from key leakage because
of two reasons. Firstly, the key K is split arbitrarily

and hence the data content in a packet that contains
Ki, (xi,P(xi)) pair and some random bits cannot be
determined easily. Secondly, the polynomial used
by the sender cannot be constructed without
knowing the prime p. When a new key is generated
and it needs to be communicated, this method can
be used. As can be seen, it is therefore possible to
retain the advantage of dynamic generation of keys
and at the same time benefit from the security
provided by an exchange in person.

Thus, we have provided three methods and their
subsequent modifications for the purposes of
authentication and key exchange. This key
subsequently helps in ensuring secure data transfer.

C. Secure Data Transfer

For the issue of security in the transfer of data, an
encryption-less method that still offers similar level
of security, could be used. A good method that fits
the bill is the Winnowing and Chaffing approach
suggested by Rivest [3], which is summarized as
below.

In this method, a Message Authentication Code
(MAC) is added to every packet that is sent by the
GRB. MAC is calculated using a standard
algorithm like HMAC-SHA1 [5]. The parameters to
this algorithm are the packet sequence number, the
contents of the packet, and the secret key, which
was exchanged earlier (see previous section). Once
the grid DRM receives a packet, it first calculates
the MAC itself and then checks whether it matches
with the MAC sent with the packet. If so, it
“knows” that the sender is the GRB, else it discards
the packet as originating from a false source. In this
way, data can be authenticated. Note that usage of a
secret key for authentication is not “encryption”
and does not involve computationally intensive
operations with large operands.

Now, security is implemented on top of this
message authentication by adding the so-called
“chaff” packets. These are packets, which have the
same format as the genuine data packets, but the
MACs are deliberately set to the wrong value. On
seeing a packet with a non-matching MAC, the grid
DRM can promptly ignore it. However, any
intruder monitoring traffic has no way of
differentiating the right value of the MAC from the
wrong, as he has no knowledge of the secret key.
For some practical issues in the implementation of
this idea, the reader is referred to [3].

The algorithm can be summarized as follows:

1. Calculate MAC using packet contents, packet

sequence number and secret key.

2. Create the “wheat” packets using the sequence
number, contents and the MAC.

3. Create the “chaff” packets by randomly
generating MAC numbers. For maximum
security, the contents of the packet should be
the inverted result of the contents of the “wheat”
packet with the same sequence number.

At the receiver's end:

1. Calculate MAC using the packet contents, packet
sequence number and secret key.

2. If the calculated MAC matched with MAC of the
packet, then it is a “wheat” packet. Else, it is a
“chaff” packet and can be thrown away.

Using winnowing and chaffing, data can be
securely transmitted across the grid. There is
minimal computing power waste on the part of the
DRMs since all that is to be done is to calculate the
MACs of the packets and accordingly perform a
check. Similarly, there is minimal overhead for the
GRB to calculate the MACs and generate the chaff.
The former by a similar argument involves low
computational time compared to encryption, while
the latter can be done randomly with low
computational cost again. There is no way a chaff
packet can be distinguished from a wheat packet by
anybody other than the base station and the grid
node without knowledge of the secret key. Thus,
we can obtain high security at lesser performance-
degradation of the grid than when compared to the
use of encryption algorithms.

D. Discussion on the Computational Grid Model

The model of the computational grid used in the
previous section lends itself to the implementation
of security we had illustrated earlier. This is
because of the “dedicated” nature of the DRMs of
the grid. By “dedicated”, the implicit assumption is
that the owner(s) of the grid, which in this case
could be the GRB, are assured of the DRMs
integrity. That is, it is assumed that a DRM would
not participate in activities that are disruptive to the
principles and functioning of the grid. This is
important especially since data have to be
processed at the DRMs and information returned to
the GRBs. In the eventuality that the DRMs are
indeed compromised, then, for instance, the output
of the processing that is returned to the GRB could
contain malicious code that might bring down the
entire grid. Thus, dedicated DRMs are required to

avoid using publicly shared resources that could be
potential points of security failure.

The single biggest disadvantage of this model is
the requirement of DRMs to be dedicated to the
computational grid. Practical constraints like
money and space impose restrictions on the number
of dedicated nodes procurable by the owners of a
grid. In fact, it is easier to establish a grid amongst
publicly shared DRMs, which is also more
economically viable than having dedicated DRMs.
This has given rise to another model of the
computational grid that is prevalent today (a sample
implementation being the Search for Extra-
Terrestrial Intelligence: SETI@Home project [13]).
It is common for an implementation of such a
model to have the Internet as the connecting
network. Here, the GRBs rely on DRMs that are not
dedicated and are used by people not associated
with the grid but which “donate” unused computing
power to the grid. In this case, the same security
considerations that arise in the previous model of
the grid reappear. However, owing to the public
nature of the underlying network connecting the
grid DRMs, there are additional security issues that
are to be dealt with.

In this model of the computational grid, a DRM
of the grid has a ‘stub’ program that controls the
procurement of new sets of data from the GRB,
processes these sets at the DRM and transmits
information back to the GRB. The key reason for a
security breach in this scenario could be the use of
a false ‘stub’ program at the node. These false
‘stub’s’ could have been distributed over the World
Wide Web, for example, by miscreants and
hackers, and could have been unknowingly
downloaded and installed at the DRM by its owner.
This and more such issues form one aspect of
security that is to be considered by users before
they join a computational grid.

The other side of the coin is the security failures
at the DRM that could affect the grid. Most of these
failures result from loss of integrity on the part of
the DRM either knowingly or unknowingly. That
is, a particular DRM of the grid could be executing
programs that disrupt the grid. Alternatively, due to
the transparent nature of the Internet, computer
viruses, for example, could infest a particular DRM
and these could easily control the ‘stub’ program of
the grid. Then, false and disruptive data could be
relayed back to the grid. In fact, these events could
happen without even the user of that DRM
becoming aware of the security breach. It is this
aspect of security that we discuss next. Note
however that these issues are deemed not to exist in

the earlier model where the nodes are dedicated.
The SETI@Home project, perhaps the most well
known example of large-scale distributed
computing, has already experienced data integrity
woes due to unknown and untrusted entities
tampering with the computation process [21]. In
order to maintain the data integrity of the Grid, we
must prevent or mitigate such attacks.

As a first step, towards preventing corruption of
the ‘stub’ program and/or the data of the grid, the
user at a DRM should be prompted to install all the
components of a grid program including the ‘stub’
and the raw data in a restricted segment of the
physical memory. Either restriction could be
enforced in a hardwired manner or software
restrictions could be used. For example, the user
could define a modified form of Access Control
Lists (ACL) for the ‘stub’ program where only
users/programs that have permissions to access that
memory region are allowed access. This achieves
the purpose of restricting the region over which the
‘stub’ program has access thus minimizing the
region in memory that could potentially be affected
by a false ‘stub’ installation as well.

Another way of protecting the grid from
corrupted data/‘stub’ programs is to enable
detection of corruption of these elements. Once an
unauthorized change in data and/or the ‘stub’
program is detected, that particular DRM could be
barred from logically connecting to the grid. A
possible way of providing this could be as follows.
A ‘listener’ program could be implemented and
executed independent of the ‘stub’ program. The
role of the ‘listener’ is to listen to changes
happening to the program components of the grid.
For example, in the case of the DRM operating
with the Unix OS, the ‘listener’ could be
monitoring the inode of the ‘stub’ program. An
inode of a program stores meta-information
pertaining to the program including the date of last
update or access. Whenever a change is made to the
data or a program, the ‘listener’ detects a change in
the inode. By checking in the list of processes
currently active, the ‘listener’ could verify to see
that the ‘stub’ program is currently active. If it is
not, then the change can be concluded to be
unauthorized. Now, the ‘listener’ could alert the
user of that node about this eventuality and prompt
a relay of a message to the base station.
Implementation-wise, the ‘listener’ program is
small as only a check on the inode is required to be
performed. However, some computational cycles
are expended in keeping the ‘listener’ program
active. Thus, this method could be implemented if a

marginal increase in computing power usage is
tolerable. A possible realization in the future could
be a quantum cryptographical method that helps in
instant detection of any change inflicted on data.
This would provide a foolproof way of detection.
Note that there exists no foolproof way of
communicating the detection to the GRB as all such
endeavors involve the human user. This brings us to
the final issue that we discuss in this section.

A singular point of reliance of the methods
illustrated above is the integrity of the user of the
DRM. The user’s complete cooperation is required
for any kind of security to be implemented. No
amount of security solutions can prevent a
determined hacker from using his DRM as a breach
point into the grid. Unfortunately, it has been the
humans that are the weak links in security systems,
and in many cases, it can be said that the strength of
a security solution is inversely proportional to the
number of humans involved in the functioning of
the security system.

IV. Conclusions

In this paper we have discussed ways to make a
model of the computational grid more secure and
deliver high performance simultaneously. We have
suggested the use of various schemes for process
authentication as well as for secure data transfer.
The emphasis was on using encryption only when
absolutely necessary and methods like Winnowing
and Chaffing helped in this context. Another widely
used model of the computational grid was also
presented and some associated security issues were
identified. Possible solutions and ideas were also
provided. Finally, let us note that use of quantum
cryptography in this area could be a big boon if
efficient methods become realizable.

References

[1] The Globus Project.http://www.globus.org

[2] I.Foster, C.Kesselman, and S.Tuecke, “The
anatomy of the grid: Enabling scalable virtual
organizations”, International Journal of
Supercomputer Applications (2001)

[3] R.L.Rivest, “Chaffing and Winnowing:
Confidentiality without encryption”, 1998

[4] A.Shamir, “How to share a secret”,
Communications of the ACM, 22, 612, 1979

[5] H.Krawczyk, M.Bellare, and R.Canetti,

HMAC: Keyed-Hashing for Message
Authentication, RFC2104, 1997

[6] I.Foster, C.Kesselman, G.Tsudik, S.Tuecke,
“A security architecture for computational
grids”, Proc. 5th ACM Conference on
Computer and Communications Security
Conference, 1998. [7] R.Butler, D.Engert,
I.Foster, C.Kesselman, S.Tuecke, J.Volmer,
and V.Welch, “A national-scale authentication
infrastructure”, IEEE Computer, 33, 60, 2000.

[7] I.Foster, C.Kesselman, J.Nick, and S.Tuecke,
“The physiology of the grid: An Open Grid
Services Architecture for distributed services
integration”, Open Grid Service Infrastructure
Working Group, 2002.

[8] I.Foster, and C.Kesselman, “The Grid:
blueprint for a new computing infrastructure”,
Morgan-Kauffman, 1999.

[9] L.Pearlman, V.Welch, I.Foster, C.Kesselman,
and S.Tuecke, “A community authorization
service for group collaboration”, Proc. 3rd
International Workshop on Policies for
Distributed Systems and Networks, 2002.

[10] V.Welch, F.Siebenlist, I.Foster, J.Bresnahan,
K.Cajkowski, J.Gawor, C.Kesselman,
S.Meder, L.Pearlman, and S.Tuecke,
“Security for grid services”, 12th International
Symposium on High Performance Distributed
Computing. (HPDC-12), IEEE Press, 2003.

[11] T.Stading, “Secure communication in a
distributed system using identity based
encryption”, Proc. 3rd IEEE/ACM
International Symposium on Cluster
Computing and the Grid. (CCGRID'03), 2003.

[12] E.Korpela, D.Werthimer, D.Anderson, J.
Cobb, and M.Lebofsky, “SETI@home -
massively distributed computing for Search
for Extra-Terrestrial Intelligence (SETI)”,
Computing in Science and Engineering, 3, 78,
2001.

[13] A.Gilbert, A. Abraham and M.Paprzycki, A
Framework for Ensuring Data Integrity in
Grid Environments, IEEE International
Conference on Information Technology:

Coding and Computing (ITCC'04), USA,
IEEE Computer Society, Volume 1, pp. 435-
439, 2004.

[14] V. Welch, F.Siebenlist, I.Foster, J.Bresnahan,
K.Czajkowski, J.Gawor, C.Kesselman, S.
Meder, L.Pearlman, S. Tuecke, Security for
Grid Services, ANL/MCS-P1024-0203, In
proceedings of 12th IEEE International
Symposium on High Performance Distributed
Computing (HPDC'03), U.S.A., 2003.

[15] L.F.G.Sarmenta,Sabotage Tolerance
Mechanisms for Volunteer
Computing Systems, ACM/IEEE International
Symposium on Cluster Computing and the
Grid (CCGrid'01), Brisbane, Australia.

[16] Grid Cancer Research:
<http://www.grid.org/projects/cancer/>

[17] K. Bowyer (Editor), Ethics in Computing,
second edition, IEEE Press, 2001.

[18] Federal Information Processing Standards
Publication 197, Advanced Encryption
Standard, National Institute of Standards and
Technology, 2001.

[19] Federal Information Processing Standards
Publication 180-1, Secure Hash Standard,
National Institute of Standards and
Technology, 1995.

[20] A. Abraham, R. Buyya and B. Nath, Nature's
Heuristics for Scheduling Jobs in
Computational Grids, In Proceedings of 8th
IEEE International Conference on Advanced
Computing and Communications,
(ADCOM2000), Sinha P.S. and Gupta R.
(EdS.), Tata McGraw-Hill Publishing Co. Ltd,
India, pp. 45-52, 2000.

[21] D. Molnar, The Seti@Home Problem,
ACMCrossroads, 2000.
<http://www.acm.org/crossroads/columns/onp
atrol/september2000.html>

[22] D. Houser and J. Wooders, Reputation in
Auctions: Theory and Evidence from eBay,
http://databases.si.umich.edu/reputations/bib/b
ib.html

