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Abstract. The campaign against drug abuse is fought by all countries, most no-

tably on ATS drugs. The identification process of ATS drugs depends heavily 

on its molecular structure. However, the process becomes more unreliable due 

to the introduction of new, sophisticated, and increasingly complex ATS mo-

lecular structures. Therefore, distinctive features of ATS drug molecular struc-

ture need to be accurately obtained. In this paper, two variants of refined 3D 

Geometric Moment Invariants for ATS drug molecular structure representation 

are discussed. This paper is also meant for comparing the performance of these 

two variants. The comparison was conducted using drug chemical structures ob-

tained from Isomer Design’s PiHKaL.info database for the ATS drugs, while 

non-ATS drugs are obtained randomly from ChemSpider database. The assess-

ment highlights the best technique which is suitable to be further explored and 

improved in the future studies so that it is wholly attuned with ATS drug mo-

lecular similarity search domain. 

Keywords: 3D moment invariants, geometric moment invariants, ATS drugs, 

molecular similarity, molecular descriptors 

1 Introduction 

Amphetamine-type Stimulants (ATS) drug abuse, such as amphetamine, metham-

phetamine, and substances of the “ecstasy”-group, is recognized as universal, disturb-

ing social delinquents. The struggles of finding tangible resolution of drugs abuse 
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prevention are encountered by every national law enforcement authorities, because of 

the presence of new variety or unidentified ATS drugs. Nevertheless, the focus of 

cheminformatics research community is toward the advancement of chemical com-

pounds that induces preferred biological outcome. Contrariwise, less devotion is 

demonstrated to the molecular similarity search which can be used to identify unfa-

miliar substances. 

Ordinarily, the identification process depends on the chemical composition and 

conformation of a molecule, or generally referred as molecular structure. However, 

relying on these criteria alone for identification has been proved to be more unde-

pendable, mainly because the designs of novel ATS molecular structures are continu-

ously more complex and sophisticated. Furthermore, it is a challenge for national law 

enforcement authorities and scientific staff of forensic laboratories, because present 

testing unit is very inadequate to identify new variety or unidentified ATS drug, in 

addition to likely detecting false negatives. 

Geometrical shapes have been used for a long time to represent two-dimensional 

(2D) and three-dimensional (3D) molecular structures, and these geometric shapes 

can be described numerically using shape descriptors. There are two types of 2D 

shape descriptors, which are boundary-based and area-based. On the other hand, 3D 

shape descriptors are emphasized into volume- and surface-based descriptors. It is 

commonly pronounced that 3D shape descriptor as more potent and more correctly 

represents an object’s shape. Thus, this study believes that 3D descriptor is capable to 

identify distinctive features of ATS drug’s molecular structure, notwithstanding new 

variety of ATS drug, because of its analogous ring substitutes. 

This paper aims to propose two variants of more accurate computations, or simply 

refined, 3D Geometric Moment Invariants (GMI), and compare the performance of 

proposed refined variants of 3D GMI for ATS drug molecular structure representa-

tion. The rest of this paper is organized in this manner. The ensuing section will pro-

vide a summary of ATS drug molecular structure similarity search, while Section 3 

will offer a brief introduction of 3D Geometric Moment Invariants. In Sections 4 and 

5, the proposed more accurate computations of 3D Geometric Moment Invariants 

techniques are discussed and the experimental setup which describes the dataset pre-

processing and experimental design are defined. Furthermore, the results are present-

ed in Section 6, and finally, conclusion and future work is formed in Section 7. 

2 ATS Drug Molecular Similarity Search 

United Nations Office of Drugs and Crime (UNODC) have outlined a set of standard 

methods to perform identification of ATS drugs to determine the exact, or at least 

similar, molecular structure. However, forensic laboratories staff occasionally doesn’t 

meticulously follow these standards, hence the fluctuations of results attained from 

different testing laboratories is expected. However, most of testing laboratories agree 

that the most effective method for chemical substance identification is Gas Chroma-

tography/Mass Spectrometry (GC/MS) [1-3]. 



Ref. [4] found that GC/MS is imperfect in identifying several varieties of ATS 

drugs, particularly methamphetamine. There are two stereo-isomers of methamphet-

amine, which are l-methamphetamine and d-methamphetamine. Ref. [5] terms iso-

mers as “one of several species (or molecular entities) that have the same atomic 

composition (molecular formula) but different line formulae or different stereo-

chemical formulae and hence different physical and/or chemical properties.” Moreo-

ver, GC/MS is gradually more powerless in determining numerous substances with 

altered conformations are actually ATS drugs. Whereas l-methamphetamine gives 

meager pharmacodynamics effect, d-methamphetamine in contrast is a controlled 

substance which is frequently abused and severely addictive [6]. 

Drugs molecular structure heavily determines the results of manual identification 

process, which is continuously deteriorated with the introduction of new chemical 

compositions or conformations. Hence, false positive detection of ATS drugs is regu-

larly occurred due to the flaws of present drug testing unit. Therefore, this study be-

lieves that by depending on the global shape of the molecular structure, the identifica-

tion process can be refined. Molecular structures are often represented by 2D and 3D 

models. However, the characteristics of the ring substitutes in a molecule are imper-

ceptible in 2D model, as opposed to 3D model. Hence, the latter is vital in discrimi-

nating the distinctive features at a ring substitute. 

Geometrical shapes have been used for a long time to represent 2D and 3D mo-

lecular structures, and these geometric shapes can be describe numerically using 

shape descriptors. However, there is another type of molecular structure representa-

tion in the cheminformatics domain, which is known as molecular descriptors. Mo-

lecular descriptors are acquired after molecules are modeled into a molecular repre-

sentation allowing for mathematical treatment [7]. Many researches are confronted by 

the difficulties in extracting the image or object shape features which is capable of 

representing and describing the shape [8]. 

There are two types of molecular descriptors: topological or 2D descriptors and 

geometrical or 3D descriptors which derived from a geometrical representation. Since 

a geometrical representation comprises information of the relative positions of the 

atoms in 3D space, 3D descriptors generally offer supplementary information and 

more discrimination rule than 2D descriptors for same molecular structure. There are 

various 3D molecular descriptors exist, such as 3D-MoRSE descriptors, WHIM de-

scriptors, GETAWAY descriptors, etc. 

Invariance with respect to labelling, numbering of the molecule atoms, and mole-

cule translation and rotation is a required property of a molecular descriptor. Further-

more, it also must have an clear algorithmically quantifiable definition, and the values 

must be in a appropriate numerical range for the molecule set where it is applicable to 

[9,10]. Since a molecular descriptor is independent of the particular characteristics of 

the molecular representation, it is possible to consider the molecular shape as an im-

age, and thus apply image processing methods to represent the shape of the molecular 

structure. One of the applications of image processing methods to represent 2D and 

3D image is Moment Invariants, which can easily achieve these invariance properties. 

The first application of Moment Invariants to represent molecular structure is 3D 

Zernike Descriptors [11]. 



3 3D Geometric Moment Invariants 

Moment Invariants (MI) is introduced to describe the objects by a collection of com-

putable magnitudes called invariants using moments that are resistant to certain dis-

tortions and that offer sufficient discrimination power to recognize objects belonging 

to different classes. Moments, on the other hand, are scalar magnitudes employed to 

characterize an image function and to acquire its distinctive features [12]. 

MI was first introduced to pattern recognition and image processing by [13], and it 

is recognized as one of the most vital and regularly engaged 2D and 3D shape de-

scriptors [14]. Although it is subject to numerous fundamental disadvantages, it is 

often designated as first-choice descriptors and as a benchmark to assess the quality of 

other shape descriptors [12]. One of the most commonly used moments as a basis of 

MI construction is Geometric Moments (GM). 3D GM of image intensity function f(x, 

y, z) is commonly expressed as [14]: 
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where p, q, r = 0, 1, 2, …. Conversely, several researches also try to fit the object into 

a unit box, thus (1) can also be expressed as [15,16]: 
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The order of the moment is calculated from the total of p, q, and r. A special case 

of 3D GM is 3D Central Geometric Moments (CGM) [12], which can easily provide 

translation invariance. It is expressed as: 
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where the center of gravity (centroid) of image intensity function f(x, y, z) is calculat-
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Rotation invariance for 3D GM was just recently proposed by [17] using moment 

tensor method. The authors proposed 1185 invariants constructed from moments of 

order 2 until order 16. The first 2 rotation invariants are presented as follows: 
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The zeroth-order moment (m000) is used as divisor to normalize the GM with re-

spect to scaling. Therefore, 3D Geometric Moment Invariants (3D GMI) is the term 

coined to express 3D GM which is invariance with respect to translation, scale, and 

rotation transformations. 



4 Refined 3D Geometric Moment Invariants 

A digital 3D image of size N × N × N is an array of voxels (volume pixels), therefore 

the triple integral in (1) is substituted by triple summation. The most frequently used 

procedure is to employ the rectangular, i.e., zero-order method of numeric integration. 

And thus, (1) takes the following discrete form: 
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where i, j, k are coordinates of the voxels and fijk is the gray-level of the voxel i, j, k. It 

should be noted that pqrm̂  is just an approximation of mpqr. 

However, [18] and later generalized by [19], proposes a formula to obtain a more 

precise estimation for calculating 2D GM, where the author integrate the monomials 

xpyq precisely by the Newton–Leibnitz formula on each pixel, which is so-called Pre-

cise Geometric Moments (PGM): 

  
  




N

i

N

j

ijqp

N

i

N

j
A

qp
ijpq fjUiU

qp
dxdyyxfm

ij 1 11 1

)()(
)1)(1(

1
  (7) 

 11 )5.0()5.0()(   ss
s aaaU  (8) 

This study proposes the extension of 2D PGM into 3D PGM and thus (7) takes the 

following form: 
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where Aij and Aijk denotes the area of the pixel (i, j) and voxel (i, j, k) respectively. 

Eqs. (7) and (9) are still a zero-order approximation of moments of the original image, 

but only the image is approximated, the monomials are integrated precisely. 

On the other hand, centers of these aforementioned voxels are the points (xi, yj, zk), 

where the image intensity function is defined only for this discrete set of points (xi, yj, 

zk)  [−1, 1] × [−1, 1] × [−1, 1]. ∆xi = xi+1 – xi, ∆yj = yj+1 – yj, and ∆zk = zk+1 – zk are 

sampling intervals in the x-, y-, and z-directions, respectively. In the literature of digi-

tal image processing, the intervals ∆xi, ∆yj, and ∆zk are fixed at constant values ∆xi = 

∆x = 2 / N; i, ∆yj = ∆y = 2 / N; j, ∆zk = ∆z = 2 / N; k. Therefore, the set of points 

(xi, yj, zk) will be expressed as follows: 

   nana  5.01  (10) 



with a = 1, 2, 3, …, N. For the discrete-space version of the image, (2) is usually ap-

proximated as: 
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Eq. (11) is purported as direct method for GM computation, which is the approxi-

mated version using zero-order approximation. As indicated by [20], (11) is not a very 

accurate approximation of (2). The author proposed to use the approximated form to 

improve the accuracy, which is then refined by [16]. The formula is then extended 

into 3D form, which has been presented in the previous publication of this study [21]: 

 
  


N

i

N

j

N

k

kjirqppqr zyxfkVjViVm

1 1 1

),,()()()(  (12) 

  11
1

2

2
1

1
)( 












 
s
a

s
a

n
n

n
n

s
s II

s
dnnaU

a

a

 (13) 

 na
n

nIna
n

nI aaaa 





 )1(1
2

   ; 1
2

1  (14) 

The basis of the formula is alternative extended Simpson’s rule, proposed by [20]. 

The rule was used to evaluate the triple integral defined by (2), and calculate exactly 

the GM, thus it is known as Exact Geometric Moments (EGM). However, it is rather 

difficult to achieve translation invariance by calculating accurately CGM, either by 

using (9) or (12). Fortuitously, [22] provides a relationship between central and non-

central moments for regular GM, and defines a convenient formula to calculate cen-

tral moments from non-central moments, and vice versa: 
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Despite the fact (15) and (16) were intended for regular GM, this study found that 

(15) can also be used to compute Central Precise Geometric Moments [23] and Cen-

tral Exact Geometric Moments [21]. These central moments are then used to derive 

3D rotation invariants by using moment tensor method, thus the proposed techniques 

are known as 3D Precise Geometric Moment Invariants (3D PGMI) and 3D Exact 

Geometric Moment Invariants (3D EGMI) [21], respectively. In the next section, the 

performance of both techniques on ATS and non-ATS dataset is revealed. 



5 Experimental Setup 

Through the objectives specified in the previous section, a pragmatic comparative 

study is planned and performed. This section delivers a comprehensive report of the 

experimental setup. 

5.1 Dataset Preprocessing 

The process of converting 2D molecular structure into proposed 3D molecular struc-

ture representations is described in this section. Images of ATS drug 2D molecular 

structure employed in this study are collected from [24], which enlist a total of 3595 

potentially and typically abused ATS drugs. Subsequently, 3595 images of non-ATS 

(n-ATS) drug 2D molecular structure are also randomly acquired from [25]. Both 2D 

molecular structure image sets are gathered and yield a total number of 7190 images 

of 2D molecular structures for training and testing sets. 

First of all, MarvinSketch 15.11.9 [26] will be used to redraw all 2D molecular 

structure images in a standard notation, clean the structures, and lastly transform the 

structures into 3D molecular structure. These 3D molecular structures are stored as 

MDL MOL file. An example of 2D and 3D molecular structure of ATS and n-ATS 

drugs is shown in Figures 1 and 2, respectively. The proposed techniques require 3D 

array of voxels for its input. A software called binvox 1.21 [27] can be used to pro-

duce 3D array of voxels, however it requires 3D Virtual Reality Markup Language 

(VRML) object as its input. Fortunately, a software called Jmol 14.4.0 [28] is capable 

of converting MDL MOL file to VRML file. 

As mentioned earlier, VRML file is voxelated as 3D array of voxels with size of 

512 × 512 × 512 grid for the training set, and it is uniquely and randomly translated 

and rotated 90 degrees incrementally in x-, y-, and z-axis as the testing set. After the 

3D arrays of voxels have been produced, the invariants for training and testing set will 

be computed from moments of order 0 until order 16 using 3D PGMI and 3D EGMI. 

An example of the voxelated 3D molecular structure is depicted in Figure 3 and the 

invariants computed from the proposed techniques are presented in Table 1, respec-

tively. 

 

    

Fig. 1. 2D molecular structure of ATS drug, ecstasy (left) and n-ATS drug, norethandrolone 

(right), drawn using MarvinSketch [26] 



    

Fig. 2. 3D molecular structure of ATS drug, ecstasy (left) and n-ATS drug, norethandrolone 

(right), converted using Jmol [28] 

    

Fig. 3. 3D molecular structure of ATS drug, ecstasy (left) and n-ATS drug, norethandrolone 

(right), voxelated using binvox [27] 

Table 1. Invariants of the proposed MI techniques 

Structure name MI F1 F2 … F1184 F1185 

Ecstasy 

 

3D PGMI 2.139E10 1.784E10 … 3.762E24 6.057E43 

3D EGMI 0.019456 0.016225 … 0.012157 0.010609 

Norethandrolone 

 

3D PGMI 2.792E10 2.233E10 … 5.788E24 1.300E44 

3D EGMI 0.025398 0.020310 … 0.018703 0.022781 

5.2 Experimental Design 

This paper employs customary structure of pattern recognition, which consists of 

preprocessing, feature extraction, and classification phase, and compares the perfor-

mance of the proposed 3D PGMI and 3D EGMI. It is also worth mentioning that there 



are actually two types of moments to be used compute invariants, and two types of 

magnitude normalization of the invariants [17]. The first type of moments is volume 

moments, which compute the moments from all voxels, and the second type is surface 

moments, which only compute moments by double integration over the outer-most 

voxels. On the other hand, the two types of magnitude normalization are normaliza-

tion with respect to degree and with respect to weight. Both MIs in this study are 

computed as volume moments and normalized to its respective degree. 

 

 

Fig. 4. Rotated versions of ecstasy 3D molecular structure 



All computed invariants are evaluated for its processing time, memory consump-

tion, and classification accuracy, which are executed for 23 times. This is because, 

although there are 64 possible orientations if an image is rotated 90 degrees incremen-

tally in x-, y-, and z-axis, there are actually only 24 distinct orientation exist. Hence, 

non-rotated version of the drug molecular structure will be used as training set; while 

the remaining 23 rotated versions will be used as the testing set. An example of the 

rotated versions of an ATS drug is illustrated in Figure 4. As a final point, the invari-

ants computed by both proposed techniques are evaluated against renowned classifier, 

Random Forest [29], and using Leave-One-Out strategy. 

6 Experimental Results and Discussion 

The proposed techniques will be evaluated numerically by computing invariant 1 to 

1185 for all 7190 molecular structures in this section. The investigations are aimed to 

evaluate the merit and the consistency of both proposed MI techniques. 

6.1 Processing Time and Memory Consumption 

The frequently used benchmarks for evaluating the merit of machine learning algo-

rithms are classification accuracy and processing time. However, this study also con-

siders an additional benchmark, which is memory consumption. This examination 

will compare the merit of the proposed techniques in order to determine the most 

suitable MI method to represent molecular structure. Figures 5 and 6 present the mean 

of processing time and memory consumption for each MIs respectively. 

 

 

Fig. 5. Mean processing time for proposed MI techniques (in seconds) 
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Fig. 6. Mean memory consumption for proposed MI techniques (in Megabytes) 

6.2 Classification of Unfamiliar ATS Drug Molecular Structure 

Comparing the classification accuracy of 3D PGMI and 3D EGMI is also one of the 

primary objectives of this paper. Table 2 presents the mean classification accuracy 

results from 23 testing set using Random Forest classifier. 

Table 2. Mean classification accuracy for proposed MI techniques 

MI Mean Accuracy 

3D PGMI 73.90% 

3D EGMI 73.20% 

 

As presented in Table 2, it is obvious that 3D PGMI yields slightly higher results 

of mean processing time, memory usage, and classification accuracy. However, to 

further corroborate the merit of 3D PGMI as opposed to 3D EGMI, thorough statisti-

cal validation using independent samples t-test must be performed using SPSS 17 

software. There was a statistically significant difference in the accuracy using 3D 

EGMI (µ = 0.7320, σ = 0.0008) and 3D PGMI (µ = 0.7390, σ = 0.0010); t(44) = 

26.5022, p = 0.000. This result suggests that the 3D PGMI is capable to differentiate 

the distinctive features of ATS drugs and n-ATS drugs at a ring substitute. Although it 

is evident that 3D EGM is inferior to 3D PGM, it still can be applied as a basis to 

indirectly compute orthogonal (OG) moments, especially continuous OG moments on 

a cube or sphere, such as Legendre and Zernike moments. On the other hand, 3D 

PGM can also be applied as a basis to indirectly compute discrete OG moments on a 

cube, most notably Discrete Chebyshev and Hahn moments. 

7 Conclusion and Future Works 

Two refined 3D Geometric Moment Invariants have been proposed to represent drug 

molecular structure, and an exhaustive comparative study on the proposed MI tech-

niques has been presented. This paper compared the merits of 3D Precise Geometric 

Moment Invariants (3D PGMI) and 3D Exact Geometric Moment Invariants (3D 

EGMI). Although the evaluations have shown that 3D PGMI produces the slightly 
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higher results as opposed to 3D EGMI, this study nonetheless functions as a stepping 

stone towards better molecular structure representation, especially for computing 

continuous and discrete orthogonal moments from 3D EGM and 3D PGM. 

Hence, future works to integrate 3D EGM and 3D PGM into OG moments, which 

is expected to provide better representation of molecular structure, is required. The 

proposed molecular representation techniques will also be evaluated using customized 

classifiers for shape representation, and compared against existing and well-known 

3D molecular descriptors. 
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