

A Relational Approach to Model Transformation with
QVT Relations Supporting Model Synchronization

Kun Ma
(School of Computer Science and Technology, Shandong University, Jinan, China

nic-makun@ujn.edu.cn)

Bo Yang, Zhenxiang Chen
(Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of

Jinan, Jinan, China
{yangbo, czx }@ujn.edu.cn)

Ajith Abraham

(Machine Intelligence Research Labs, Scientific Network for Innovation and Research
Excellence, Auburn, USA
ajith.abraham@ieee.org)

Abstract: With the help of model transformation, it is possible to generate target models from
source models. A possible way to face iterative development process with frequent
modifications is to use not only a single transformation but also frequent model synchronization.
In this paper, we propose a relational approach to model transformation using
Query/View/Transformations (QVT) Relations language that also provides model
synchronization mechanism based on the version of the models. The proposed framework uses
a Platform-Independent Business Model (PIM-BM) and a Platform-Specific Business
Component Model (PSM-BC) via the extension of the UML metamodel and MOF at different
levels of abstraction, which sufficiently describe both the structural and behavioral properties of
generic Web applications. Also we present the typical model mapping rules between PIM-BMs
and PSM-BCs using QVT Relations. Finally the model synchronization based on the version of
models is provided for the above model transformation approach.

Keywords: Model Transformation, Modeling, Model Synchronization, Model Driven Software
Development, Model-Driven Architecture
Categories: D.2.1, D.2.2, D.2.11, I.6.5

1 Introduction

Model-Driven Software Development (MDSD) is gaining increasing acceptance,
mainly because it can raise the level of abstraction and automation in software
construction as described in [Sánchez, Moreira, Fuentes, and Magno 10]. Model
transformation is a focused area in the context of MDSD, object code or Platform
Specific Model (PSM) can be converted through a series of abstract Platform
Independent Model (PIM) as described in [Miller, Mukerji 2003]. In this paper, we
focus on the key problem of MDSD: how to define PIM and PSM, and how to
transform PIM into PSM. That is the precondition of code generation from PSM to
target codes in the context of MDSD.

Journal of Universal Computer Science, vol. 17, no. 13 (2011), 1863-1883
submitted: 2/3/11, accepted: 29/8/10, appeared: 1/9/11 © J.UCS

In addition, the development of a software system is an iterative process with
frequent modifications to the involved models as described in [Subramanyam,
Weisstein and Krishnan 10]. As a consequence, not only a single transformation but
also frequent model synchronization steps are required.

The remainder of the paper is organized as follows. Section 2 discusses the
related work. In Section 3 and 4, the structure and metamodel of platform-
independent business model (hereinafter PIM-BM) and platform-specific business
component model (hereinafter PSM-BC) are introduced respectively. Section 5
discuses the relational model transformation approach using
Query/View/Transformations (QVT) Relations language supporting model
synchronization based on the version of the models. The paper closes with some final
conclusions and an outlook on future work in Section 6.

2 Related Work

2.1 Modeling language

It was argued that Unified Modeling Language (UML) is a de facto standard for
modeling vocabularies as described in [Bissell 03]. In the context of MDSD, there are
at least three main ways to define a modeling language as described in [Frankel (03)].
UML can represent both the static structure and behavior of the Management
Information System (MIS) [see Kim, Choi, Kang, Lee 10].

First, UML is extended via Profiles. The architects of UML made a fundamental
decision not to try to make UML all things to all people. Instead they equipped it with
built-in extension mechanisms. A set of extensions essentially constitutes a dialect of
UML, which is officially called a profile. A UML profile is a definition of a set of
stereotypes and tagged values that extend elements of the metamodel of UML as
described in [Object Management Group 10]. The main advantage of the profile
approach is that a modeler who wishes to use extensions defined by a profile can do
so with generic UML tools. The main disadvantage of the profile approach is that it
restricts the architect of the extension from using the full semantic power of object-
oriented class modeling that MOF offers. An example of a secure mobile grid system
through a UML extension is given in [Rosado, Fernández-Medina, López, Piattini 10].

Second, UML is extended via Meta-Object Facility (MOF) [see Object
Management Group 06]. UML can be modeled via MOF since the metamodel of
UML is defined via MOF. UML extensions that use the full power of MOF are
sometimes called heavy-weight extensions. As we have seen, MOF offers
metamodelers most of the familiar UML class-modeling constructs. Creators of
heavyweight extensions are free to use rich set of modeling mechanisms of MOF.
MOF tools can use the greater semantic depth to intelligently manage the new kind of
metadata. But taking advantage of the greater semantic expression usually makes it
impossible to use the extensions when modeling with generic UML tools.

Third, a new Modeling Language is created based on the syntax and semantics of
MOF. You can use other languages, as long as you supply a MOF metamodel for each
of the languages. When creating a MOF metamodel to define the abstract syntax of
such modeling constructs, it often does not make sense to try to extend the UML
metamodel.

1864 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

Combined with the extension of UML Profiles and MOF, a novel PIM-BM and
PSM-BC at different levels of abstraction are proposed in [Section 3] and [Section 4]
respectively.

2.2 Model transformation

The Model-Driven Architecture (MDA), initiated by Object Management Group
(OMG), starts with the well-known and long established idea of separating the
specification of the operation of a system from the details of the way that system uses
the capabilities of its platform [see Miller and Mukerji 03]. Specifying a system as a
set of platform independent models and transforming them into various platform
specific implementation models is one of the fundamental themes of MDA. Therefore,
model transformations are touted to play a key role in MDA. A transformation may be
considered from two different points of view as described in [Wahler 04]. From the
viewpoint of function, a transformation is a function that maps a set of models from
one or more domains onto another set of models in the same or different domains;
from the viewpoint of operation, a transformation is a terminating algorithm that
applies structural and/or semantic changes to a model or a set of models.

Among the various model transformation techniques, relational approaches seem
to be promising for various reasons. Relations offer a declarative way of specifying
transformations. As mentioned before, a relation that is used for transformation
purposes is specified by using a set comprehension predicate P, e.g., in R = {(s, t)|P(s,
t)}. First-order logic of predicate is usually used to describe the relation R clearly.
Several publications [see Akehurst and Kent 02] [see Czarnecki and Helsen 06] apply
the concept of relations to model transformation. However, the above approaches do
not involve the model synchronization.

2.3 QVT Specification

Name Concept
Query A query is an expression that is evaluated over a model. The

result of a query is one or more instances of types defined in the
source model, or defined by the query language.

View A view is a model which is completely derived from another
model.

Transformation A model transformation is a process of automatic generation of a
target model from a source model, according to a transformation
definition.

Table 1: Basic concepts in QVT Specification

Query/Views/Transformation (QVT) is the Object Management Group (OMG)
standard language for specifying model transformations in the context of MDA in
order to eliminate the heterogeneous of model transformation as described in [Object
Management Group 09]. The three concepts Query, View, and Transformation have
been given in the QVT Specification in Table1. In the QVT Relations language, a
transformation between models is specified as a set of relations. However, available

1865Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

implementations for the operational part of QVT do not support model
transformations for synchronization purposes [see Nolte (09)].

It is regarded as one of the most important standards since model transformations
are proposed as major operations for manipulating models. The languages Relations
and Core are declarative languages at two different levels of abstraction. The
specification document defines their concrete textual syntax and abstract syntax. The
Relations language supports complex object pattern matching, and implicitly creates
trace classes and their instances to record what occurred during a transformation
execution as described in [Kurtev 08]. Relations can assert that other relations also
hold between particular model elements matched by their patterns. Therefore,
Relations language is a better choice to present the mapping rules of relational model
transformation.

The relational model transformation approach from PIM-BM to PSM-BC is
proposed in [Section 5]. The mapping rules of model transformation are described in
the QVT Relations language.

2.4 Model Synchronization

In addition, a possible way to face iterative development process with frequent
modifications is to use not only a single transformation where a source model is
transformed into a target model by applying a set of transformation rules, but also by
using frequent model synchronization. The mapping between models established by
the transformation may be required to be preserved over time.

In fact, there are two different cases to clearly distinguish as described in [Hwan,
Kim, Czarnecki 05]. On the one hand we can have a batch-oriented full model
synchronization, which takes a source model as input and computes the resulting
target model using a classical batch-oriented model transformation. On the other hand
we can have model synchronization which synchronizes two models by propagating
modifications. Some models that can be preserved are preserved. This basic feature
updating existing target models based on changes in the source models is also referred
to as change propagation in the Query/View/Transformation (QVT) final adopted
specification [see Object Management Group 09]. A change impact analysis
determines the total set of source models that need subsequent transformation based
on the list of source models that were changed. This technique is about minimizing
the amount of source models involved in model synchronization.

In addition, a practical approach should not replace a model by a new
transformation result but rather reuse an already available model as much as possible
and preserve extensions and refinements in the model wherever possible. For example,
PSM is transformed into codes, and some additional codes would be added by
developers. When the PSM is changed, the full model transformation would only
produce the additional codes by PSM. So the additional codes are lost. A resolution
for the model inconsistency problems in [Rumbaugh 04] is the mixture of models and
source codes. [Efftinge, Friese, Köhnlein 08] also states some crucial basic
recommendations to separate the generated and manual code from each other.
However, the generic isolation is difficult to define. Combined with above resolutions,
this paper proposes an effective way to resolve this problem is to embed manual
codes in models rather than rewrite codes after model transformation.

1866 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

There are some resolutions for model synchronization. [Hearnden, Lawley,
Raymond 06a] extended a declarative rule-based live transformation engine in order
to incrementally synchronize a target model with source model changes. In live
update, changes to the source models or the transformation itself can then be directly
mapped to their effects on transformation execution. This solution comes at the cost
of a permanently maintained transformation execution context. For large
transformations further optimizations of the extra needed space for the execution
context have to be considered. [Giese and Wagner 09] presented an incremental
model synchronization, which employs the visual, formal, and bidirectional
transformation technique of triple graph. They focused on the efficient execution of
the transformation rules and present their approach to achieve an incremental model
transformation for synchronization purposes. But it is not very clear that it is suitable
for larger numbers of changes in the case of multiple changes. [Madari, Lengyel 09]
presented an approach that uses trace data structures and model transformations to
facilitate incremental model synchronization. The idea of defining mappings between
the elements comes from the theory of Triple Graph Grammars (TGG). The limitation
of the approach is that the developers cannot modify the source and the target models
simultaneously.

3 PIM-BM

PIM-BM is proposed as a platform-independent integrated business model focused on
the business entity. Compared with the UML, PIM-BM has rich semantics, which is
easy for the modelers to understand. PIM-BM, based on the extension of UML
Profiles and MOF, removes UML elements that are not closely related to the
modeling of information system.

3.1 Metamodel of PIM-BM

The metamodel of PIM-BM is shown in Figure 1. Systems are modeled as
hierarchical collections of the metaclass Entity, Attribute, PK, FK, EntityAction,
EntityOperation and so on.

3.1.1 Business Entity

Business entity is the core of business model. From the viewpoint of the applications,
business entity is an integrated model with unique identifier and certain life cycle.
From the viewpoint of the users, business entity is the integrated model representing
static business data submitted and transferred by users and dynamic business
operation. The static structure of business entity usually appears as a master-slave
relationship. The master is called the core entity, while the slave is called the detail
entity.

Entity is the derived class of metaclass Class shown in Figure 1. Entity is derived
into MasterEntity and DetailEntity. Each Entity has a set of properties, a primary key
PK, 0 or more foreign key FK. The property table of Entity indicates the table name
used to store the business data, and the property where represents the value range of
the stored business data. Attribute is the derived metaclass from Property shown in

1867Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

Figure 1. The property fieldname of Attribute indicates the stakeholder's column of
the table.

Figure 1: Metamodel of PIM-BM

First, a denotation Meta(m, mm)=true is given to present that model m is the
instance of metamodel mm. In other words, metamodel mm is the abstract of model m.

Business entity is defined as 2-tuple, which is denoted as BusinessEntity:= (entity,
attributes), where Meta(entity, Entity)=true, attributes={attribute| Meta(attribute,
Attribute)=true}.

3.1.2 Business Action

Business entity defines the static structure of the business model, while the behavior
model is defined with the metamodel EntityAction and EntityOperation.

The metamodel of the action of business entity is shown in Figure 1.
EntityOperation defines the concrete operation of entity, which is the sub metaclass of
Operation. There are two basic derived operation metamodels: CRUDOperation and
OtherOperation. CRUDOperation is a database-related business model, and its
business is to execute a Structured Query Language (SQL) statement and call the
Stored Procedure (SPROC) of database; OtherOperation represents the other business
process.

Business action denoted as EntityAction :={operation|Meta(operation
EntityOperation,)}. The difference of the EntityAction and EntityOperation is that the
business modeled by EntityOperation is considered as instantaneous, uninterrupted

1868 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

and atomic operation, while the business modeled by EntityAction need to take up
some time. EntityAction is related to several EntityOperations.

4 PSM-BC

The feature of a generic enterprise Web application is abstracted as a MIS which
supports user-interaction in the Web based interfaces. A generic Web interaction can
be decomposed into request, process and answer. The user sends a request to the Web
server, usually via a Web page already visualized in a Web browser. Requests can be
sent to the server either as forms, links or buttons; the Web server receives the request
and performs various actions; the browser renders the results of the request.

Figure 2: Metamodel of PSM-BC

1869Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

In the UML specification, a component is a physical, replaceable part of a system
that packages implementation and provides the realization of a set of interfaces.
Business component is the soft implementation of business object, including the static
and dynamic semantics. In the context of MDSD, the fine-grain components of the
final system are generated from the instances of metamodel of PSM-BC in different
layers. It indicate that the software conform to some features in the years of
development experience. The features can also be extracted from the library of
components. After the analysis of features, a web application is often made up of
several forms. And each from is composed of the business data of a main table and
some affiliated tables.

This paper proposes a novel platform-specified business component model
named PSM-BC to describe the system business in the best possible way.

4.1 Metamodel of PSM-BC

PSM-BC defines business process, business object and business presentation object of
the applications. A Web application is modeled from three points of view in order to
reduce the complexity of models: business process model, business object model and
business presentation model. Models in different layers are relatively independent
with specific responsibilities and loosely coupled structure. A separation of design
concerns into distinct model layers has several advantages such as ease of
maintenance, oriented to the viewpoint, the ability to select specialized tools and
techniques for specific concerns. The PSM-BCs conform to the metamodel shown in
Figure 2. Systems are modeled as hierarchical collections of MObject, MAttribute,
MFrame, MCard, MElement and so on.

4.1.1 Business Process Model

Business process model describes the basic business logic of system including Create,
Read, Update and Delete (CRUD) business, compound CRUD business and some
special business. The derived model of business process is related to database-related
manipulation, Uniform Resource Locator (URL), JavaScript, code blocks and so on.

Database-related manipulation is a direct operation of database, such as SQL and
SPROC of the specific database; JavaScript defines some scripts based on Web
browser; URL means a navigation of a Web page, such as HTML page and JSP; we
propose a novel derived business process model named SpringBean to implement
embedding codes in models. It will be discussed in late [Section 4.2].

Business process logic is denoted as BP={bp|Meta(bp, BusinessProcessLogic)
=true}.

4.1.2 Business Object Model

Business object model describes the organization of the business concepts managed
by the Web application, which includes MObject, MAttribute, MAButton, Reference,
and so on. In order to refine the details of business objects, it is divided into business
object model MObject and the attribute model of business object MAttribute. In the
context of Web modeling, MObject defines the name, description of a business object,
table mappings (i.e. corresponding to the table of the relational database), and query
condition (i.e. values range of business data represented by the instance of MObject).

1870 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

MAttribute describes the property of the business object, including the name,
description, column (i.e. corresponding to the key of the table of the relational
database), and so on.

The most important property of MAttribute is the reference. Reference is made
up of reference type and reference value. Reference type can be further broken into
primitive data types and special reference types. Primitive data type is the data type
identified by the system, such as string, integer, Universally Unique Identifiers (uuid)
and stringdate. While special reference type includes button (user-defined button) and
enum (enumerated data type). These two references require reference value that is
additional information for the reference type. The reference value is a series of
concrete enumerated values or a list of data for the data type enum; the reference
value is the name of the business process model for the data type button. The derived
model MAButton is the bridge between business process model and business object
model.

Business object is defined as 2-tuple, denoted as BO :=(mobject, mattributes),
where Meta(mobject, MObject)=true, mattributes={mattribute| Meta(mattribute,
MAttributes)=true}.

4.1.3 Business Presentation Model

Business presentation models contain the details of the graphic appearance of Web
applications. It is composed of the instances of MFrame, MCard, MElement and
MVButton and so on.

MCard is for the sake of the maintenance of a business object. The instance of
MCard is related to several MElements. MElement defines the smallest element of
business presentation models, which may be the presentation of the business data. The
important property of MElement is isVisibleUpdate, isVisibleView and
isQueryCondition. When the property isVisibleUpdate is true, the MElement is a
storage element. The business data represented by MElement can be modified in the
maintenance user interface (UI); when the property isVisibleView is true, the
MElement is a presentation element. The business data represented by MElement can
be only displayed in the UI; when the isQueryCondition is true, it is as a query
condition in the query area. Those are called storage MElement, presentation
MElement and query MElement respectively. User-defined button MVButton is also a
kind of MElement, and its specific business is defined in the property referenceValue
of related MAButton. MFrame is the entrance to present business data for users.

Business presentation object is defined as 2-tuple, denoted as VO :=(mcard,
melements), where Meta(mcard, MCard)=true, melements={melement|
Meta(melement, MElement)=true}. The Web UI object is denoted as UI :=(mframe,
vos), where Meta(mframe, MFrame)=true, vos={vo| Meta(vo, VO)=true}.

4.2 Extension mechanism of PSM-BC

In this Section, we provide the details of other extension mechanisms such as
expression, model interceptor and embedding source codes in models, which might be
useful in the implementation of the PSM-BC.

1871Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

Syntax Semantics
$C{constantName} A constant
$S{parameterName} A session variable of HttpSession
$R{parameterName} The value of specific parameter of HttpServletRequest
$OGNL{expression} Access the member of a class or invoke the static method

of class
$SpEL{expression} SpEL is a powerful expression language that supports

querying and manipulating an object graph at run time
$SpringBean
{variableName}

SpringBean variable returns the execute method defined
in the specific Spring configuration file

Table 2: Expressions

Expression is a dynamic value, which is substituted at run time. Common types of
expressions are constants, the requested variables, session variables, SpringBean
variables, Object Graph Navigation Language (OGNL) expressions and Spring
Expression Language (SpEL). The details are shown in Table 2.

In the basic case, interceptors are inserted between a caller and a callee for
method execution, which is defined in the configuration file of Spring Framework.
For instance, the interceptor of MCard can define some extra work with Spring Bean
before or after the maintenance of business data represented by this model.

Some business process is easy to describe by the source codes since not all the
business behavior can be represented in models. Therefore, we propose a novel
derived business process metamodel named SpringBean, which uses dependency
injection [Tanter, Toledoa, Pothier and Noyé 08] and method interception [Mak,
Rubio, Long (10)] techniques. Aspect-Oriented Programming (AOP) [Fuentes,
Jimenez, Pothier and Pinto 06] currently supports method execution join points in the
forms of the execution of methods on Spring Beans, which is implemented in pure
Java. When the business process models use dependency injection, it becomes much
cleaner and easier to follow. Some codes of the complicated business process can be
embedded in models. Embedding source codes in models rather than rewriting the
generate codes also can solve the problems of inconsistencies with the mixture of
models and codes. This is a new way of the separation of manual codes and models.
Finally, the embedded source codes are merged with the generated codes after model
synchronization.

4.3 Schedule Model of PSM-BC

In the context of MDSD, schedule model may be a solution to the job that needs to
occur at given moments in time. Some samples of scheduling are: system
maintenance, reminder services and system monitor. Therefore, the PSM-BC is
designed to support schedule models.

1872 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

Figure 3: Metamodel of Schedule Model

We provide a new schedule metamodel to execute or trigger tens, hundreds, or
thousands of jobs. Jobs whose tasks are defined by MJob metamodel in the server that
may execute virtually anything represented in the BusinessProcessLogic model. Its
metamodel is shown in Figure 3. A schedule model is denoted as Schedule=(job,
triggers), where Meta(job, MJob)=true, and triggers={trigger|Meta(trigger,
MTrigger) =true}.

MJob defines a concrete task. Jobs are scheduled to run when a given trigger
occurs. The property businesslogic of MJob is the business process model. Some
complicated jobs can be defined with SpringBean model with a code block in the
business process model.

MTrigger lies in the business presentation layer for triggering the jobs, which is
derived into MCronTrigger and MSimpleTrigger. In the metamodel MTrigger, the
property startTime is the start time of the job, while the property endTime is the end
time of the job.

A MSimpleTrigger that is used to fire a job at a given moment in time, and
optionally repeated at a specified interval. With this description, you may not find it
surprising to find that the properties of a MSimpleTrigger include: start time, end
time, start delay, and repeat interval. The property repeatInterval must be zero or a
positive long value, representing a number of milliseconds.

If you need a job-firing schedule that recurs based on calendar-like notions rather
than on the exactly specified intervals, MCronTrigger is often more useful than
MSimpleTrigger. A MCronTrigger uses cron expressions1 to create firing schedules.
The property cronExp is a cron expression; the property priority indicates the
importance of the job. Cron expressions are strings that are actually made up of seven
sub-expressions that describe individual details of the schedule. The fields are shown
in Table 3. Wild-cards (the "*" character) can be used to say every possible value

1 Cron is a time-based job scheduler in Unix-like computer operating systems. Cron enables users to

schedule jobs according the cron expression.

1873Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

within a field. For example, "*" in the minute field means "every minute"; the "?"
character is used to specify "no specific value", which is allowed for the day-of-
month and day-of-week fields; the "/" character can be used to specify increments to
values. For example, "0 15 00 * * ? 2011" means firing at 00:15am every day during
the year 2011.

Field Name Mandatory Allowed Values Allowed Special Characters
Seconds YES 0-59 , - * /
Minutes YES 0-59 , - * /
Hours YES 0-23 , - * /
Day of month YES 1-31 , - * ? / L W
Month YES 1-12 , - * /
Day of week YES 1-7 , - * ? / L #
Year NO 1970-2099 , - * /

Table 3: The format of cron expression

5 Model Transformation Approach using QVT Relations

5.1 Formal definition of model transformation

Model transformation is the process of converting one model to another model of the
same system [Miller and Mukerji 03]. QVT Specification has given some model
transformation languages instead of the definition of model transformation. There is
no accepted formalizing definition of model transformation [Didonet, Fabro, Bézivin,
Jouault, Valduriez 05]. Thus, we develop our own full definitions.

Model transformation is the process of converting source models to target models
of the same system. Its semantics of model transformation is defined by a group of
mapping rules. We use m(s)/f to denote a model m of the system s in the formalism f.
A model mapping is a transformation m1(s)/f1 → m2(s)/f2, shortened m1/f1 → m2/f2.
Given S as the source model and T as the target model, model transformation is
defined as 3-tuple, denoted as MT :=(F, S, T), where F is a set of mapping rules,
denoted as F=∑ r . The semantics of model transformation may be also expressed
as a model. A transformation is considered as a special model MT(S → T)/F, where S
and T are the source models and target models respectively. We use MediniQVT
[ikv++ technologies 11] as transformation engine of QVT-Relations. mediniQVT is
implemented on the EMF framework, and uses the EMF generated Java classes to
manipulate models. It is a complete QVT implementation, supporting the expressive
power defined by QVT language, and satisfying the properties we require as
assumptions.

5.2 Model transformation from PIM-BM to PSM-BC

In order to eliminate the heterogeneous of the model transformation, a relational
model transformation approach conformed to the OMG QVT Specification is

1874 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

proposed. We present the QVT relations language and discuss how it addresses the
mapping rules.

BusinessEntity

MObject MAttribute

MCard MElement

PIM-BM
PSM-BC

Transformation Engine
read

write

write

Metamodel of PIM-BM Metamodel of PSM-xBMMapping Rule

Conform to
Conform to

execute

corresponding

refer refer

m(s)/BusinessEnt ity m(s)/BO∪ VO

BusinessProcesswrite
m(s)/BPm(s)/EntityAct ion

EntityAction

Figure 4: The process of model transformation

The process of model transformation is shown in Figure 4. BusinessEntity shown
in Figure 1 is transformed into MObject, MAttribute, MCard and MElement shown in
Figure 2, and EntityAction shown in Figure 1 is transformed into
BusinessProcessLogic shown in Figure 2.

5.2.1 Transformation from Business Entity to Business Object Model

Business Entity is transformed into business object model, which is denoted as m1(s)/
BusinessEntity → m2(s)/BO shown in Figure 5, where BusinessEntity ⊂ PIM-BM，
BO ⊂ PSM-BC.

This transformation EntityToMObject specifies a mapping between (any) two
models that are instances of metamodels Entity and MObject, and the transformation
AttributeToMAttribute specifies a mapping between (any) two models that are
instances of metamodels Attribute and MAttribute. The query sizeof returns the length
of the data type, and the query typemapping is a mapping rule of data type.

1875Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

top relation EntityToMObject {//R1
 n:String; t:String; w:String;
 enforce domain source entity:PIM-BM::Entity{
 name=n, table=t, where=w };
 enforce domain target mobject:PSM-BC::MObject{
 name=' O_'.concat(n), tableName=t, queryCondition=w};
}
top relation AttributeToMAttribute {//R2
 n:String; de:String; dt:String; f:String;
 enforce domain source attribute:PIM-BM::Attribute{
 name=n, default=de, dataType=dt, fieldname=f, entity=e:PIM-
BM::Entity{} };
 enforce domain target mattribute:PSM-BC::MAttribute{
 name='A_'.concat(n), column=f, isTableColumn=true,
 defaultvalue=de, length=sizeof(dt), referenceType=typemapping(dt),
 mobject=m:PSM-BC::MObject{} }
 when{
 EntityToMObject(e,m); }
query typemapping(typename : String) : String {
 if typename = 'Integer' then 'Integer'
 else if typename = 'String' then 'String'
 else if typename = 'Boolean' then 'Boolean'
 else if typename = 'Real' then 'Double'
 else if typename = 'EnumerationLiteral' then 'Enum'

else if typename = 'CollectionType' then 'Table'
 if typename = 'Button' then 'Button' endif

endif endif endif endif endif endif}
query sizeof (typename : String) : Integer{
 if typename = 'Integer' then 11
 else if typename = 'String' then 50
 else if typename = 'Boolean' then 1
 else if typename = 'Real' then 11
 endif endif endif endif}
}

Figure 5: The mapping rule from BusinessEntity to BO using QVT Relations

5.2.2 Transformation from Business Entity to Business Presentation Model

Business entity is transformed into business presentation model, which is denoted as
m1(s)/BusinessEntity → m2(s)/VO shown in Figure 6, where BusinessEntity ⊂ PIM-
BM，VO ⊂ PSM-BC.

1876 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

top relation EntityToMCard {//R3
 n:String; t:String;
 enforce domain source entity:PIM-BM::Entity{
 name=n, type=t };
 enforce domain target mcard:PSM-BC::MCard{
 name='C_'.concat(n), isMainCard=ifMainCard(t) };
 query ifMainCard(typename : String) : Boolean{
 if typename = 'core' then true else false endif }
}
top relation AttributeToMElement{//R4
 n:String; de:String; dt:String;
 enforce domain source attribute:PIM-BM::Attribute{
 name=n, default=de, dataType=dt, entity=e:PIM-BM::Entity{}};
 enforce domain target melement:PSM-BC::MElement{
 name='E_'.concat(n), defaultvalue=de, length=sizeof(dt),
 mcard=c:PSM-BC::MCard{} };
 when{
 EntityToMCard(e,c);

}
where{
 if dt=Integer then
 defaultValue=0
 format='^-?\d+$'
 else if dt=Button then
 isQueryCondition=false
 defaultValue=''
 format=''
 endif
 else if dt=Real then
 defaultValue=0
 format='^\d+\.?\d+$|^\d+$'
 endif
 else if dt=String then
 defaultValue=''
 endif
 else if dt=stringdate then
 defaultValue=''
 format='yyyyMMdd '
 endif
 endif
 ;
}

}

Figure 6: The mapping rule from BusinessEntity to VO using QVT Relations

1877Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

This transformation EntityToMCard specifies a mapping between (any) two
models that are instances of metamodels Entity and MCard, and the transformation
AttributeToMElement specifies a mapping between (any) two models that are
instances of metamodels Attribute and MElement.

5.2.3 Transformation from Business Operation to Business Process Model

Entity operation is transformed into business process model, which is denoted as
m1(s)/EntityOperation → m2(s)/BP shown in Figure 7, where EntityOperation ⊂ PIM-
BM，BP ⊂ PSM-BC.

top relation EntityOperationToBusinessProcessLogic{//R5
 n:String; params:String; ret:String; v:String; t:String;
 enforce domain source entityOperation:PIM-BM::EntityOperation{
 name=n,parameters=params,returntype=ret,value=v,type=t };
 enforce domain target bp:PSM-BC::BusinessProcessLogic{
 name='P_'.concat(n),parameters=params,returntype=ret,

value=valuemapping(entityOperation),type= typemapping(t)};
 query typemapping(typename : String) : String{
 if typename = 'crud' then 'SQL' else 'SpringBean' endif}

query valuemapping (entityOperation: EntityOperation) : Object{
 if entityOperation.type = 'crud' then entityOperation.value
 else entityOperation.execute(entityOperation.parameters) endif}
 }

Figure 7: The mapping rule from BusinessEntity to BP using QVT Relations

This transformation EntityOperationToBusinessProcessLogic specifies a
mapping between (any) two models that are instances of metamodels EntityOperation
and BusinessProcessLogic.

5.3 Model synchronization mechanism

5.3.1 Version control of models

In MDSD, models are the primary artifacts of the software development process. Like
other software artefacts, models undergo a complex evolution during their life cycles.
As a consequence, there is a growing need for techniques and tools to support model
evolution activities such as version control. Present-day MDSD tools offer limited
support for the version control of models. Traditional version control systems are
based on the copy-modify-merge approach [Collins-Sussman, Fitzpatrick, Pilato (08)],
which is not fully exploited in MDSD since current implementations lack model-
orientation.

In contrast, we use Java Content Repository (JCR) [Nuescheler 10] as the storage
of models. A content repository consists of one or more workspaces, each of which
contains a tree of items. An item is either a node or a property. The structure of
content repository is shown in Figure 8. Each node may have zero or more child

1878 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

nodes and zero or more child properties. There is a single root node per workspace,
which has no parent. All other nodes have one parent. This structure is similar to the
model. The model may be considered as a node, and the property of the model may be
considered as a property. In JCR 2.1 (JSR-333) [Nuescheler 10], it provides simple
versioning or full versioning of node in the repository. A versioning repository has, in
addition to one or more workspaces, a special version storage area. The version
storage consists of version histories. A version history is a collection of versions
connected to one another by the successor relationship. A new version is added to the
version history of a versionable node when one of its workspace instances is checked-
in. The model stored in the repository can be restored to a previous version according
to the version number, which is useful when developers have made some fatal
mistake in modeling the system. This model evolution approach conforms to JSR
specification, which is independent of the metamodel of models and has a strong
commonality and extensible ability. Some open source tools have implemented the
JCR 2.1 specification, such as Jackrabbit and ModeShape2.

B C

A

Dx y

node

property

Figure 8: The structure of Java Content Repository

Add Checkout

Save

Cancel Checkin

Figure 9: Version control of the models in JCR

The process of version control of models in JCR is shown in Figure 9. The states
of a node are divided into draft, approved and revised. The format of version number
of nodes is MajorNum.MinorNum.RevisionNum. The rule of increase of version is:

2 Apache Jackrabbit and ModeShape are both a fully conforming implementations of JSR-283

specification, which can be downloaded from http://jackrabbit.apache.org and
http://www.jboss.org/modeshape respectively.

1879Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

the MinorNum increases by 1 for the draft node; the RevisionNum increases by 1 for
the revised node. When a new versionable node is created, a new version history is
created for it. On save of a node, if the state of node is draft, the draft version is saved
and the minor number increases by 1; if the state of node is revised, only a new
versionable node is created and the revision number increases by 1. To create a new
version of a versionable node, the application calls checkin. If the state of node is
draft, change the state to approved and change the revision number to 1.0.0; if the
state of node is revised, change the state of the last draft node to approved and
increase the minor number by 1, set revision number to 0.

5.3.2 Model synchronization based on the version of models

The development of system is an iterative process with frequent modifications to the
involved models according to user requirements.

Source models involved in model synchronization may face with the
modifications shown in Table 4. The modifications in the three circumstances are
identified based on the version number. All the version numbers of models involved
in model synchronization are recorded. In the subsequent model synchronization, the
version of involved models is needed to compare with the last recorded version. If the
model is not in the last recorded models, it is addition; if the new version number is
greater than the past and meantime it is not a new model, it indicates that the model is
updated after the last model synchronization; if one of the last recorded models is not
involved in the subsequent model synchronization, it indicates that the source model
has been deleted.

Name Definition
add Source model is added.
delete Source model is deleted.
update The property of source model is changed.

Table 4: Classification of modifications of involved models in model synchronization

Before model synchronization, PIM-BMs are detected whether they need
subsequent model transformation or not. A transformation creates target codes if it is
missing on the first execution. A subsequent execution with the same model as in the
previous execution has to detect that the needed code already exists. This detection
can be achieved by using version number of involved models. Only PIM-BMs with
changed version number are synchronized to regenerated codes, while the source
models with no modification keeps constantly.

Compared to these current approaches in [Section 2.4], our approach of model
synchronization only takes the repository space instead of the extra needed space for
the execution context. This detection whether the source model need subsequent
execution can be easily achieved based on the revision number of models. Therefore,
this approach is appropriate to the model transformation with large source models.
When any of the source models are modified, the necessary changes of models are
determined from the model repository. At the same time, the target elements that can

1880 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

be preserved are preserved. The implementation of this approach is based on the JCR
specification, which is simple and easily integrated with the current MDA tools.

Finally PSM-BCs are transformed into codes of applications. The implementation
of code generation is based on the textual template evolution in our previous work
[Chen, Ma, Abraham, Yang, Sun 10]. The final Web applications are made up of
models, model execution engine, and the generated codes instead of traditional Web
distribution.

6 Conclusions and Future Work

In this paper, our method provides a resolution to the model transformation from PIM
and PSM. A novel PIM-BM and PSM-BC is proposed to describe both the structural
and behavioral properties of generic Web applications at different levels of
abstraction. The metamodel and extension mechanism are discussed in detail. In
addition, a relational model transformation approach from PIM-BM to PSM-BC is
proposed. In order to eliminate the heterogeneous of the model transformation, this
approach uses Relations language to present the mapping rules for conformance to
QVT Specification.

Compared with other model transformation approaches, we provide model
synchronization mechanism based on the versions of model. All the PIM-BMs and
PSM-BCs are stored in the repository. Before model synchronization, PIM-BMs are
detected whether they need subsequent model transformation or not. A transformation
creates target codes if it is missing on the first execution. This approach of model
synchronization will only take the storage space of model repositories rather than
some extra space. Only the models with changed version number need a subsequent
model transformation. This way is named source incrementality, which is simple and
useful for working with large scale source models. In this way, model synchronization
is a special and partial model transformation. That is a good way to minimize the
amount of source that needs to be re-examined by a transformation when the source is
changed.

Our model transformation approach supported model synchronization is the
prerequisite to the code generation in the process of MDSD. We have tested all the
mapping rules from PSM-BM to PSM-BC using mediniQVT. The generated PSM-
BCs from PIM-BMs are sufficiently to describe the business. It has generated some
real enterprise Web applications. The distribution and uninterrupted running of the
generated applications proves that our approach is feasible in practice. This model-
driven development method can speed up the software development, which is
particularly appropriate for the applications with frequent changes of business.

Future work is targeted in two directions to complete and improve the current
proposal. The first target is to provide a formalization of the version control approach
and a Web UI for the management of the model repository. We plan to further support
visual UI for a full-text search engine of PSM-BCs saved in the content repository.
Second, we will provide a visual model-driven rapid development platform, which is
easier to model, execute model transformation and synchronization, and generate the
practical enterprise Web applications.

1881Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

Acknowledgements

This work was supported by the Provincial Natural Science Foundation for
Outstanding Young Scholars of Shandong under Contract Number JQ200820,
Technology development Program of Shandong Province under Contract Number
2011GGX10116, the Program for New Century Excellent Talents in University under
Contract Number NCET-10-0863 and Youthful Science and Technology Star Plan of
Jinan under Contract Number 20110112.

References

[Akehurst and Kent 02] Akehurst, D.H., Kent, S.: "A Relational Approach to Defining
Transformations in a Metamodel"; Proc. UML'02, Springer-Verlag, Germany (2002), 1-15.

[Bissell 03] Bissell, A.: "UML 2.0 - A major revision of the industries de facto software
modeling language"; Aircra Eng Aerosp Tec (Aircraft Engineering and Aerospace Technology),
75, 2 (2003), 178-181.

[Chen, Ma, Abraham, Yang, Sun 10] Chen, Z., Ma, K., Abraham, A., Yang, B., Sun, R.: "An
Executable Business Model for Generic Web Applications"; Proc. CISIM'10, IEEE Computer
Society, Kraków (2010), 573-577.

[Collins-Sussman, Fitzpatrick, Pilato (08)] Collins-Sussman, B., Fitzpatrick, B. W., Pilato, C.
M.: " Version Control with Subversion "; O'Reilly Media, Sebastopol, Calif. (2008)

[Czarnecki and Helsen 06] Czarnecki, K., Helsen, S.: "Feature-based survey of model
transformation approaches"; IBM Systems Journal (IBM Systems Journal), 45 (2006), 621-645.

[Didonet, Fabro, Bézivin, Jouault, Valduriez 05] Didonet, M., Fabro, F., Bézivin, J., Jouault, F.,
Valduriez, P.: "Applying Generic Model Management to Data Mapping"; Proc. BDA '05, Actes
Publishing, Saint Malo (2005), 1-13.

[Efftinge, Friese, Köhnlein 08] Efftinge, S., Friese, P., Köhnlein, J., Best Practices for Model-
Driven Software Development, 2008, http://www.infoq.com/articles/model-driven-dev-best-
practices.

[Frankel (03)] Frankel, D.S.: "Model Driven Architecture: Applying MDA to Enterprise
Computing"; Wiley, Hoboken (2003).

[Fuentes, Jimenez, Pothier and Pinto 06] Fuentes, L., Jimenez, D., Pinto, M., J. Noyé:
"Development of Ambient Intelligence applications using components and aspects"; J. UCS
(Journal of Universal Computer Science), 12, 3 (2006), 236-251.

[Giese and Wagner 09] Giese, H., Wagner, R.: "From model transformation to incre-mental
bidirectional model synchronization"; SoSyM (Software and Systems Modeling), 82, 1 (2009),
21-43.

[Hearnden, Lawley, Raymond 06] Hearnden, D., Lawley, M., Raymond, K.: "Incremental
Model Transformation for the Evolution of Model-Driven Systems"; Proc. MoDELS'06,
Springer, Copenhagen (2006), 321-335.

[Hwan, Kim, Czarnecki 05] Hwan, C., Kim, P., Czarnecki, K.: "Synchronizing Cardinality-
Based Feature Models and Their Specializations"; Proc. ECMDA-FA'05, Springer,
Copenhagen (2005), 331-348.

[ikv++ technologies 11] ikv++ technologies, mediniQVT 1.7.0, 2011, http://projects.ikv.de/qvt.

1882 Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

[Kim, Choi, Kang, Lee 10] Kim, H., Choi J., Kang, I., Lee I.: "UML Behavior Models of Real-
Time Embedded Software for Model-Driven Architecture"; J. UCS (Journal of Universal
Computer Science), 16, 17 (2010), 2415-2434.

[Kurtev 08] Kurtev, I.: " State of the Art of QVT: A Model Transformation Language Standard
"; Lect Notes Comput Sci (Lecture Notes in Computer Science), 5088 (2008), 377-393.

[Madari, Lengyel 09] Madari, I., Lengyel, L.: "Synchronizing user interfaces of different
mobile platforms"; Proc. EUROCON'09, Springer, Copenhagen (2009).

[Mak, Rubio, Long (10)] Mak, G., Rubio, D., Long, J.: "Spring Recipes: A Problem-Solution
Approach"; Apress, New York (2010).

[Miller and Mukerji 03] Miller, J., Mukerji, J., MDA Guide Version 1.0.1, 2003,
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf.

[Nuescheler 10] Nuescheler, D., JSR 333: Content Repository for Java Technology API
Version 2.1, 2010, http://jcp.org/en/jsr/summary?id=333.

[Nolte (09)] Nolte, S.: "QVT - Relations Language"; Springer Xpert Press, Heidelberg (2009)
[Object Management Group 10] Object Management Group, Unified Modeling Language 2.3,
2010, http://www.omg.org/spec/UML/2.3/.

 [Object Management Group 06] Object Management Group, Meta Object Facility 2.0, 2006,
http://www.omg.org/spec/MOF/2.0.

[Object Management Group 09] Object Management Group, Meta Object Facility (MOF) 2.0
Query/View/Transformation (QVT) Version 1.1, 2009, http://www.omg.org/spec/QVT/1.1.

[Rosado, Fernández-Medina, López, Piattini 10b] Rosado, D. G., Fernández-Medina, E., López,
J., Piattini, M.: " Developing a Secure Mobile Grid System through a UML Extension"; J. UCS
(Journal of Universal Computer Science), 16, 17 (2010), 2333-2352.

[Rumbaugh 04] Rumbaugh, J.: " Raising the Level of Development: Models, Architectures,
Programs"; IBM developerWorks Live! Report, Beijing, China (2004).

[Sánchez, Moreira, Fuentes, and Magno 10] Sánchez, P., Moreira, A., Fuentes, L., Magno, J.:
"Model-driven development for early aspects"; Inform Software Tech (Information and
Software Technology), 52, 3 (2010), 249-273.

[Subramanyam, Weisstein, and Krishnan 10] Subramanyam, R., Weisstein, F.L., Krishnan,
M.S.: "User participation in software development projects"; Commun Acm (Communications
of the ACM), 53, 3 (2010), 137-141.

[Tanter, Toledoa, Pothier and Noyé 08b] Tanter, É., Toledoa, R., Pothier, G., J. Noyé: "Flexible
metaprogramming and AOP in Java"; Sci Comput Program (Science of Computer
Programming), 72, 1-2 (2008), 22-30.

[Wahler 04] Wahler, M.: "Formalizing Relational Model Transformation Approaches"; Swiss
Federal Institute of Technology Zurich Report 998, Zurich, Switzerland (2004).

1883Ma K., Yang B., Chen Z., Abraham A.: A Relational Approach ...

