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Abstract

In this paper a neuro-fuzzy modelling is proposed to support knowledge management in social regulation. The neuro-fuzzy learning

process is based on tacit knowledge in order to highlight what specific steps local government should undertake to reach the outcome with an

increase in compliance. An example is given to demonstrate the validity of the approach. Empirical results show the dependability of the

proposed techniques.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Knowledge could be understood for social regulation

purposes as explicit and tacit [1]. Explicit knowledge relates

to the community culture indicating how things work in the

community based on social policies and procedures. Tacit

knowledge is ethics and norms of the community. The

former could be codified, stored and transferable in order to

support decision making, while the latter being based on

personal knowledge, experience and judgments is difficult

to codify and store. However, since the tacit knowledge is

expressed mainly through linguistic information, it can be

stored and, therefore, support the knowledge management

in social regulation through the application of neuro-fuzzy

systems [2].

The neuro-fuzzy approach is based on the integration of

artificial neural networks (ANNs) and fuzzy inference

systems (FISs) [3]. Applied in social regulation the neuro-

fuzzy model creates if–then fuzzy rules, which are easy to

comprehend because of its linguistic terms. The paper

provides the neuro-fuzzy learning process based on tacit

knowledge in order to highlight what specific steps local

government should undertake to reach the outcome with an

increase in compliance. The paper is divided as follows: part

two defines what has been done so far in order to reduce the

rate of regular smoking among young people. Part three

relates to neuro-fuzzy models application to easily supervise

the learning process of adjusting governmental parameters

to reach the expected outcomes. Part four illustrates the

application of Tagaki-Sugeno Kang and Mamdani neuro-

fuzzy models based on data provided by local governments.

The paper ends with concluding remarks.

2. Social regulation of access to cigarettes by minors

at present

Tobacco smoking is associated with addiction to the

nicotine content of cigarette smoke. Recruitment of

minors as smokers is dependent on access to cigarettes.

The societal objective of social regulation of the

regulation of access by minors to cigarettes, expressed

as public policy, is reduced incidence of smoking related

ill-health and premature death. Tutt et al. [4] report on a

six-year project commenced in 1993 in New South Wales.

The relevant legislative provisions which did not change

significantly during the period reported, made it an

offence for a person or their employee to sell tobacco to

a person under 18 years of age. The initial intervention
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relied entirely on publicity and education of both suppliers

and minors and others who were potential consumers of

tobacco products.

A different, comparative project was conducted in six

local government areas (LGAs) of Melbourne in 1998 and

1999. Different regimes of education, enforcement and

media reporting of successful prosecutions were applied and

the effects on access by minors assessed [5,6].

3. Neuro-fuzzy support of social regulation

A FIS can utilize human expertise by storing its

essential components in rule base and database, and

perform fuzzy reasoning to infer the overall output value.

ANN learning mechanism does not rely on human

expertise. Due to the homogenous structure of ANN, it is

hard to extract structured knowledge from either the

weights or the configuration of the ANN. The weights of

the ANN represent the coefficients of the hyper-plane that

partition the input space into two LGAs with different

output values. If we can visualize this hyper-plane structure

from the training data then the subsequent learning

procedures in an ANN can be reduced. However, in

reality, the a priori knowledge is usually obtained from

human experts and it is most appropriate to express the

knowledge as a set of fuzzy if– then rules and it is not

possible to encode into an ANN. Since the drawbacks

pertaining to these two approaches seem complementary,

we have built an integrated system combining the concepts

of FIS and ANN modelling. We used adaptive network

based fuzzy inference system (ANFIS) that implements a

Takagi Sugeno Kang (TSK) FIS [6] and an evolving fuzzy

neural network (EFuNN) implementing a Mamdani FIS

[3]. For a first order TSK model as shown in Fig. 1,

a common rule set with two fuzzy if– then rules is

represented

Rule 1 : If x is A1 and y is B1; then f1 ¼ p1x þ q1y þ r1

Rule 2 : If x is A2 and y is B2; then f2 ¼ p2x þ q2y þ r2

where x and y are linguistic variables and A1; A2; B1; B2 are

corresponding fuzzy sets and p1; q1; r1 and p2; q2; r2 are

linear parameters.

TSK fuzzy controller usually needs a smaller number of

rules, because their output is already a linear function of the

inputs rather than a constant fuzzy set [3].

For a Mamdani inference system (Fig. 2) the rule

consequence is defined by fuzzy sets and has the following

structure.

if x is A1 and y is B1 then z1 ¼ C1

ANFIS makes use of a mixture of backpropagation to learn

the premise parameters and least mean square estimation to

determine the consequent parameters. A step in the learning

procedure has two parts: in the first part, the input patterns

are propagated, and the optimal conclusion parameters are

estimated by an iterative least mean square procedure, while

the antecedent parameters (membership functions) are

assumed to be fixed for the current cycle through the

training set. In the second part, the patterns are propagated

again, and in this epoch, backpropagation is used to modify

the antecedent parameters, while the conclusion parameters

remain fixed. This procedure is then iterated [7].

EfuNN implements a Mamdani type FIS and all nodes

are created during learning. The nodes representing

membership functions (MF) can be modified during

learning. Each input variable is represented here by a

group of spatially arranged neurons to represent a fuzzy

quantization of this variable. New neurons can evolve in this

Fig. 1. TSK type fuzzy inference system.

Fig. 2. Mamdani fuzzy inference system.
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layer if, for a given input vector, the corresponding variable

value does not belong to any of the existing MF to a degree

greater than a membership threshold. A new fuzzy input

neuron, or an input neuron, can be created during the

adaptation phase of an EFuNN. In case of ‘one-of-n’

EFuNNs, the maximum activation of a rule node is

propagated to the next level. Saturated linear functions are

used as activation functions of the fuzzy output neurons. In

case of ‘many-of-n’ mode, all the activation values of rule

nodes that are above an activation threshold of are

propagated further in the connectionist structure [8].

4. Neuro-fuzzy model evaluation and experimentation

results

Simulations are done with the data provided from the

Government for the six LGAs of Melbourne. Each data set

was represented by three input variables and two output

variables. The input variables considered were compliance

rate by retailers, enforcement according to protocol and

community education. The corresponding output variables

were compliance rate by retailers and compliance rate by

retailers projected as estimated rate of smoking uptake by

minors. Seventy percent (random) of each data for training

and 30 per cent (random) for testing were used. That is,

the neuro-fuzzy models ANFIS and EFuNN were first

trained on 70 per cent data. Then it is tested on 30 per

cent data.

4.1. ANFIS training

Two Gaussian MF attached to each input variables were

applied. Six rules were learning based on the training data

for each of the six LGAs. The training was terminated after

1000 epochs. Training performance is reported in Table 1.

4.2. EFuNN training

Three Gaussian MF for each input variable were used as

well as the following evolving parameters: sensitivity

threshold Sthr ¼ 0.99, error threshold Errthr ¼ 0.001 and

learning rates for first and second layer ¼ 0.01. EFuNN uses

a one pass training approach. The network parameters were

determined using a trial and error approach. Online learning

in EFuNN resulted in creating 20 rule nodes. Training

results are summarized in Table 1.

4.3. Test results

The test results for all six LGAs using ANFIS and

EFuNN are depicted in Table 1. As evident from the results,

ANFIS performed better than EFuNN in terms of perform-

ance error. However, EFuNN has outperformed ANFIS in

terms of computational time.

5. Conclusions

In this paper the neuro-fuzzy support of knowledge

management in social regulation was investigated. That is,

the explicit knowledge based on social policies and

procedures to reduce smoking among youngsters, but also

the tacit knowledge expressed through the applied MF.

Empirical results show the dependability of the proposed

techniques.

Neuro-fuzzy systems make use of linguistic knowl-

edge of FIS and the learning capability of neural

networks. Thus we are able to precisely model the

uncertainty and imprecision within the data as well as to

incorporate the learning ability of neural networks.

Compared to neural networks, an important advantage

of neuro-fuzzy systems is its reasoning ability (if–then

rules) of any particular state.

ANFIS performed better than EFuNN in terms of

performance error with a compromise on time. EFuNN

performed approximately 12 times faster than ANFIS.

Hence where performance speed is the criterion EFuNN

sounds to be the ideal candidate. As EFuNN uses a one pass

training approach it is also suitable for online learning of

new data sets. In policy analysis, these computational time

differences are of no practical significance.

An important disadvantage of ANFIS and EFuNN is the

determination of the network parameters like number and

type of MF for each input variable, MF for each output

variable and the optimal learning parameters.

Table 1

LGA ANFIS training EFuNN training

Time Trg RMSE Test RMSE Time Trg RMSE O/P 1 and 2 Test RMSE O/P 1 and 2

O/P 1 O/P 2 O/P 1 O/P 2

1 58 1.2 £ 1024 5.0 £ 1025 0.034 2 £ 1024 4 7.3 £ 1023 0.2201

2 54 0.0011 1.9 £ 1024 0.058 0.032 3 9.2 £ 1023 0.421

3 54 0.0011 1.9 £ 1024 0.058 0.032 3 9.2 £ 1023 0.421

4 52 3.3 £ 1024 1.6 £ 1024 0.044 0.031 3 5.2 £ 1023 0.429

5 50 3.1 £ 1024 1.5 £ 1024 0.027 0.010 4 0.0317 0.653

6 56 8.0 £ 1024 5.1 £ 1023 3 £ 1025 0.040 4 0.045 0.566
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As a future research, the selection of optimal parameters

will be formulated as an evolutionary search to make the

neuro-fuzzy systems fully adaptable and optimal according

to policy makers’ requirements, by providing analysis of the

relative effects of available social regulation measures on

smoking rates.
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