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Abstract
Fuzzy cognitive maps (FCMs) represent a graphical modeling technique based on the decision-making and reasoning rules and
algorithms similar to those used by humans. The graph-like structure and the executionmodel of FCMs respectively allow static and
dynamic analyses to be carried out. The learning algorithms of FCMs that are based on expert opinion are weak in dynamic analysis,
and fully automatic algorithms are weak in static analysis. In this paper, for providing the facility for simultaneous static and
dynamic analyses, a new training algorithm called the quantum FCM (QFCM) is presented. In our proposed algorithm, the quantum
inspired evolutionary algorithm (QEA) and the particle swarm optimization algorithm are employed for generating static and
dynamic analyses properties respectively. In the QFCM, instead of coding the presence and absence of links between concepts
with 1 and 0, respectively, the probability of their existence or inexistence is modeled with a Q-bit (the smallest information unit in
the QEA) and, depending on the outcome of dynamic analysis, the quantum state of this Q-bit is updated. Using a probabilistic
representation instead of 0 and 1, in addition to creating diversity in the solution space, can lead to escapes frommany local optima;
which is an issue of concern in the optimization of FCM structure. Experiments on synthetic, real-life, and gene regulatory network
reconstruction problems demonstrated that not only does QFCM find potentially good structures, providing static analysis, but also
it brings about low data error, showing good dynamic property. Furthermore, QFCM successfully outshinedmost of the state-of-the-
art FCM’s learning algorithms, without any need to human knowledge, illustrating its power in this regard.
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1 Introduction

A fuzzy cognitive map (FCM) is a fuzzy directed graph
consisting of nodes (concepts) and the interconnections be-
tween nodes (edges) [1]. Each node indicates a system state
or variable. A connection between nodes is a causal relation-
ship and shows the degree of influence of one node on another

[2]. FCM has several advantages, which is not present in neu-
ral networks as well as expert systems: transparency, adapt-
ability, and flexibility [3]; hence they have been used in an
assortment of applications such as time series prediction [4],
control and robotics [5, 6], to name but a few. Based on the
survey which was conducted by Stach et al [7], the FCM
training algorithms are divided into three types: manual, semi-
automatic, and fully-automatic. This division is based on the
type of knowledge which is adopted in the process of learning.

In the manual algorithms, the opinions of specialists in the
field for which an FCM is designed are used to get the link
weights. For this purpose, the association between two nodes
is described by an IF-THEN statement [8]. Since the expert-
based models rely on limited human knowledge, they don’t
have a strong dynamic analysis capability; and also the de-
signing of FCMs with a large number of nodes becomes a
difficult task for specialists [9, 10].

In fully-automatic algorithms, an evolutionary algorithm
such as particle swarm optimization (PSO) [11] or genetic
algorithm [12] is generally used along with an objective
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function in order to find the weight matrix of FCM. No spe-
cialist is involved in the process of FCM design by fully-
automatic algorithms [13]. The FCMs designed by fully-
automatic algorithms are much denser than those designed
with the help of specialists. Since the sparseness of an FCM
is directly related to its transparency and static analysis ability,
the FCMs that are trained by fully-automatic algorithms are
weak in static analysis [14].

Semiautomatic methods make an effort to use the strong
points of expert-based techniques as well as fully-automatic
approaches. Most of these semiautomatic techniques first try
to establish an initial FCM structure based on the knowledge
of specialists and then to improve the numerical values of
weights by using automatic methods. Semiautomatic algo-
rithms are not as good as expert-based algorithms in static
analysis, and not as efficient as fully-automatic algorithms in
dynamic analysis [14].

To overcome these flaws and also to provide the ability of
simultaneous static and dynamic analysis, two algorithms of
SRCGA [15] and MOEA-FCM [16] have been proposed
recently.

In [15], the authors intended to train FCMs by using
the ‘crossover’ and ‘mutation’ operators along with the
objective function, which considers the error of dynamic
analysis. Their main novelty is to introduce a parameter
called ‘density estimate,’ whose value indicates the den-
sity achieved by the FCM (the density of FCM is equal to
the ratio of non-zero links to the total number of links).
The major drawback of this method is that estimating the
density of FCMs is difficult in real-life problems.
Although the authors of the SRCGA paper have proposed
a default density estimate of 37% for cases in which an
FCM density cannot be estimated, they have got this 37%
figure by averaging the densities of FCMs recently devel-
oped by specialists; and therefore by using several other
models of these FCMs, a number other than 37% may be
obtained.

In [16], the authors have modeled the FCM training prob-
lem as a multi-objective optimization problem with two ob-
jective functions of error and density, and have tried to simul-
taneously minimize these two objectives by the well-known
NSGA-II algorithm [17]. Since the obtained Pareto front con-
tains various densities and since, for comparison with the re-
sults of previous works, ultimately one density should be se-
lected, the authors in [16], pursuant to the authors in [15], have
chosen a density of 37% in their accuracy report.

Despite the MOEA-FCM [16] results, its flaw lies in
the fact that a user cannot determine which of the obtain-
ed densities in the Pareto front provides a better static
analysis. To shed more light on the matter, let’s look at

Fig. 1. This figure is the result of our simulation for an
FCM with 10 nodes and 40% density by means of
MOEA-FCM algorithm. As this figure shows, the top
section of the Pareto front is denser and contains less
error; so it resembles the fully-automatic FCM training
methods. The bottom section of the front has a higher
error and is more like the FCMs developed by specialists.
However, the midsection of the Pareto front, which can
hopefully provide simultaneous static and dynamic analy-
ses (The 37% density is also in this region.), includes a
vast number of different densities; thus making it difficult
to choose the density that can achieve the best, or the
closest best, dynamic and static analyses simultaneously.

To deal with the abovementioned problems, a new al-
gorithm called the quantum fuzzy cognitive map (QFCM)
is presented in this paper for FCM training. The proposed
QFCM uses quantum evolutionary algorithm (QEA) [18],
and thus probabilistic representation, for encoding the
FCM structure in terms of Q-bits (static analysis) along
with PSO algorithm [19] for obtaining the ability of dy-
namic analysis. Unlike the both MOEA-FCM [16] and
SRCGA [15], QFCM is able to fully automatically con-
verge to the best structure and weights, or at least the
closest best, removing the difficulty of choosing a best
density inside a pool of different densities ranging from
1% to 100%. To verify the efficacy of the QFCM, we
have applied it on 3 different datasets – that is – synthetic,
real-life, and DREAM3 as well as DREAM4, two popular
benchmark datasets for gene regulatory network (GRN)
reconstruction task which are provided by dialogue for
reverse engineering assessments and methods (DREAM)
challenge [20–22]. In most of the cases, it outperformed

Fig. 1 The Pareto front obtained from the simulation of MOEA-FCM
algorithm
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other newly devised algorithms, showing the promising
results of this algorithm.

The rest of this paper has been organized as follows: the
QEA, PSO algorithm, and fuzzy cognitive maps are intro-
duced and described in Section 2. The QFCM algorithm is
thoroughly explained in Section 3. The empirical results are
presented in Section 4. And finally, the conclusion of this
paper is presented in Section 5.

2 Background

2.1 Fuzzy cognitive maps

In vector C ¼ C1:::CNn½ #, which is used to define the nodes
(concepts), Cidenotes the ith node. The causal relationships
between the ith and jth nodes are defined by weight matrix
w = {wij, 1 ≤ i ≤Nn 1 ≤ j ≤Nn}, where wij ∈ [−1, +1], and it in-
dicates the weight of the link from the ith node to the jth nodes.
If wij > 0, then an increase (decrease) in the ith node will create
an increase (decrease) of intensity ∣wij∣ in the jth node. And if
wij < 0, then an increase (decrease) in Ci will produce a de-
crease (increase) in Cj. Also, wij = 0 means that there is no
causal relationship between concepts Ci and Cj [23].

The value of each node in the (t + 1)thiteration is influenced
by the weight matrix and the state values of other nodes con-
nected to it in the tthiteration. The value of the ithnode in the
(t + 1)thiteration is obtained from:

Ci t þ 1ð Þ ¼ φ ∑
j¼1

Nn

wijC j tð Þ

 !

ð1Þ

in which,Ci(t) is the value of the i
th node in the tth iteration and

φ is a transfer function, whose task is to confine the node
values to the interval [0, 1]. In order for an FCM to make an
inference, vector C is repeatedly passed through the weight
matrix w. Different transfer functions can be used in Eq. 1.
According to [24], the sigmoid transfer function is superior to
other transfer functions; thus, a sigmoid function in the form
of Eq. 2 has been used in this paper.

φ xð Þ ¼ 1
1þ e−λx

ð2Þ

where, λ is a parameter that determines the slope of trans-
fer function about the point zero; and a small λ is usually
used for severely nonlinear systems [25]. In the majority
of former works, [15, 16, 26], λ has been considered as 5;
and so for the sake of comparison with previous works,
the value of λ was also considered as 5 in this paper. By

using continuous transfer functions, the FCM simulation
can achieve a fixed state vector value known as the ‘fixed
point attractor’, or it can fluctuate between several fixed
state vector values, which is known as the ‘limit cycle’.
Reaching a chaotic attractor is also possible, in which
case, the FCM produces different state vector values in
successive iterations. Figure 2 shows an FCM with 4
nodes along with the corresponding weight matrix, and
Fig. 3 illustrates the simulation of the fixed point attractor
for this FCM.

2.2 The particle swarm optimization (PSO) algorithm

Inspired by the social behavior of birds and fish, Kennedy
and Eberhart introduced the optimization algorithm of
PSO [19] in 1995 which has gained a lot of popularity
among researchers [27–29]. As an optimization algorithm,
PSO provides a population-based search mechanism in
which every single individual (i.e. particle) changes its
position with time. In the PSO algorithm, the particles

Fig. 2 A sample FCM and its associated weight matrix
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Fig. 3 Simulating the fixed point attractor for the FCM of Fig. 2 by using
a random
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fly in a multidimensional search space. During flight,
each particle varies its position with regard to the best
position it has already experienced and the best global
position of the whole particles.

The position and the velocity of the ith particle in the search
space are determined by vectors xi = (xi1 ... xid)

tand vi = (vi1 ...
vid)

t, respectively; where drepresents the number of dimen-
sions of the search space. The best experienced position of
the ith particle is saved and indicated by pbesti = (pbesti1 ...
pbestid)

t, and the best global position of the whole particles
is specified by gbest = (gbest1 ... gbestd)

t. The modified veloc-
ity and position of each particle can be expressed as:

vi t þ 1ð Þ ¼ ωvi tð Þ þ c1r1 pbesti−xi tð Þð Þ

þ c2r2 gbest−xi tð Þð Þ ð3Þ

xi t þ 1ð Þ ¼ xi tð Þ þ vi t þ 1ð Þ ð4Þ

where, ω is the inertia, r1 and r2 are two random numbers of
uniform distribution in the interval [0, 1], and c1 and c2 are
acceleration constants. Since it is difficult to tune
parametersω, c1 and c2 in real problems, Sierra et al. [30] have
suggested:

vi t þ 1ð Þ ¼ Wvi tð Þ þ C1r1 pbesti−xi tð Þð Þ

þ C2r2 gbest−xi tð Þð Þ ð5Þ

in which, ω, c1 and c2 are 3 random numbers of uniform
distribution in intervals [0.1, 0.5], [1.5, 2] and [1.5, 2],
respectively.

2.3 The quantum inspired evolutionary algorithm

The various aspects of quantum computations and physics
have been a source of inspiration for the design and develop-
ment of numerous mathematical tools and algorithms such as
power system stability [31], modeling the Prisoner’s dilemma
[32], neural networks [33] and particle swarm optimization
[34]. One of the most successful experiences of using the
quantum idea in evolutionary computations is the presentation
of the QEA [18] by Han and Kim. This algorithm is based on
the use of Q-bit. The governing state of a Q-bit can be indi-
cated by:

Fig. 4 The general schematic of
QEA algorithm

Fig. 5 The function of the quantum rotation gate
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jψ〉 ¼ αj0〉þ βj1〉 ð6Þ

where, |α|2 and |β|2 indicate the probability of a Q-bit as being
‘0’ and ‘1’, respectively. Since the sample space only contains
0 s and 1 s, then |α|2 + |β|2 = 1. Every candidate solution in the
problem space is obtained by putting together m Q-bits.

Qi ¼
αi1
βi1

j:::jαim
βim

! "
ð7Þ

in which,Qi denotes the i
thcandidate solution and it can simul-

taneously indicate 2m states. For example, the probability ofQi

being in state ‘0’ is |αi1|
2 × |αi2|

2 × ... × |αim|
2. Using the super-

position of states and probabilistic representation along with
quantum gates for the manipulation of Q-bits, provides an
enormous solution diversity for QEA; because with only m
Q-bits, 2m states in the solution space can be manipulated
simultaneously; and this makes the QEA very powerful in
searching the problem space.

The initial version of QEAwas presented in 2002 [18], and
the general schematic of this algorithm can be observed in
Fig. 4.

In the initialization phase, n candidate solutions such as Eq.
7, with jαijj ¼ jβijj ¼ 1ffiffi

2
p , form the initial quantum population.

The reason for considering a value of 1ffiffi
2

p for αij and βijs (1 ≤
j ≤m 1 ≤ i ≤ n) is that at the start of the algorithm, each Q-bit
has the same probability (12 ) of being in state 0 or 1. Then,

during the observation process, a state of 0 or 1 is assigned to
each Q-bit. For this purpose, a random number r with uniform
distribution is generated in the interval [0, 1]. If r < |αij|

2, state
0 is assigned to the jthQ-bit; otherwise, state 1 is assigned to it;
and in this way, a binary sequence xjis obtained from the
candidate solution Qi.

The best experience of each candidate solution and the best
solution of the entire population are saved as bj(t) and b(t),
respectively. The variation operator in the QEA is the quantum
rotation gate. The rotation gate is defined as

R
αij
βij

! "$ %
¼ cos Δθð Þ −sin Δθð Þ

sin Δθð Þ cos Δθð Þ

! "
αij
βij

! "
ð8Þ

where, Δθ determines the amount of rotation, and its normal
value is in the interval [0.001π, 0.05π]. Figure 5 shows the
graphical schematic of a Q-bit, before and after applying the
quantum gate of rotation. Also, the sign of Δθ is determined
with respect to the type of problem examined.

In QEA, two mechanisms have been predicted for escaping
from local optima. One of these is the local migration. In local
migration, one of the bj(t)s which provides a better solution
than the rest of bj(t)s is copied in them (Fig. 4). The second
mechanism is the global migration. In this case, the best solu-
tion (b(t)) is copied in all the bj(t)s.

The second version of QEA [35] has three major differ-
ences from the first version:

Fig. 6 The functions of the
rotation gate and Hε gate
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1. Offering a new stopping condition instead of the maxi-
mum iteration termination condition which is based on the
convergence of Q-bits. Hence, contrary tomost evolution-
ary algorithms, the termination condition of QEA is trans-
parent and interpretable.

2. Offering a new quantum gate known as the Hε gate for
preventing the entrapment of Q-bits in states 0 and 1. The
problem with the rotation gate was that if, for example, a
Q-bit converged to αij = 1, in the observation process, it
was always observed as having a state of 0; and therefore,
its escape from local optima was only possible by means
of local and global migration schemes. In order to solve
this problem, the Hε quantum gate was presented accord-
ing to

Hε
αij
βij

! "$ %
¼

ffiffiffi
ε

p
ffiffiffiffiffiffiffiffi
1−ε

p
! "

αij
&& &&2≤ε

R
αij
βij

! "$ %
ε < αij

&& &&2 < 1−ε
ffiffiffiffiffiffiffiffi
1−ε

p
ffiffiffi
ε

p
! "

αij
&& &&2≥1−ε

8
>>>>>><

>>>>>>:

ð9Þ

in which, ε is a design parameter with a typical value of 0.01
[35]. According to this equation, the Q-bits converge to αij

¼
ffiffiffi
ε

p
or αij ¼

ffiffiffiffiffiffiffiffi
1−ε

p
instead of converging to αij = 0 or αij =

1 and, consequently, they can escape from local optima during
the observation process with probability ε. In fact, if we as-
sume the Hε and the rotation gates as two vases and the Q-bit
as two balls of 0 and 1 (one of which is to be taken out of a
vase during the observation process), after convergence, only
one ball will remain inside the rotation gate vase, but two balls
will be left inside the Hε gate vase; the ratio of the volume of
one ball (the probability of its selection) to that of the second
ball is equal to 1−ε

ε (Fig. 6).
3. Studying the effect of the initial values of Q-bits at the

start of the algorithm and presenting a two-phase
scheme QEA based on the optimally-tuned initial
values of Q-bits. It has been demonstrated that the ini-
tial values of Q-bits influence the convergence speed
and the quality of final solutions; hence a quantum
two-phase algorithm has been presented. In the first
phase, the search space is divided into smaller sections,
and the initial values of each Q-bit are placed in the
middle of these sections. In the second phase, the Q-
bits are initialized with the best initial values obtained
from the first phase, and then the QEA is executed with
these initial values.

By comparing the two algorithms of PSO and QEA, the
inherent similarities between these two algorithms can be ob-
served. For example, for guiding the genes (in PSO and QEA
terminologies, a gene is called ‘particle’ and ‘Q-bit’, respec-
tively) toward better solutions, both algorithms use the best
solution of the entire population and also the best individual
experience of each member of the population. In QEA, the
best solution of the entire population is used through the glob-
al migration mechanism.

3 The QFCM algorithm

In this section, the QFCM algorithm for training fuzzy cogni-
tive maps, with the ability of simultaneous static and dynamic
analyses, will be presented and explained. The QFCMmodels
the likelihood of the presence/absence of a link in the FCM in
the form of a Q-bit, the state of which is modified with regard
to the error obtained from dynamic analysis. We have used the
PSO algorithm for obtaining the numerical values of weights
under the structure determined by the QEA; therefore, net-
work structure is determined by the Q-bits, and the numerical
values of weights are obtained by means of the PSO
algorithm.

After training an FCM by the QFCM algorithm, the density
of the trained FCM will converge to the real density (best
static analysis) or, at least, to a density close to the real density.
Also, by presenting a mathematical theorem, the probability of
escaping from the local optima of the densest FCM (fully-
connected FCM) by the QFCM will be discussed. Since the
denser models produce smaller errors than the sparser models,
the presented theorem displays the power and ability of the
QFCM in escaping from these dense local optima.

The pseudocode of the QFCM algorithm and the explana-
tions of its various steps have been given below.

Table 1 The values of Δθ

Qobserved Qbestobserved
f Qobservedð Þ≥
f Qbestobservedð Þ 1st and

3rd
quadrants

2nd and
4th
quadrants

0 0 True 0 0

False 0 0

0 1 True +0.005π −0.005π
False 0 0

1 0 True −0.005π +0.005π

False 0 0

1 1 True 0 0

False 0 0
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ALGORITHM I
THE QFCM ALGORITHM

1. Initialize ( )Q i (1 i nPop ).
2. For every 1...i nPop , do the following:

2.1. Initialize nSubPop numbers of particles for the thi subpopulation ( ( , )p i j ,1 i nPop and
1 j nSubPop ). Also, set the ( , )pbest i j of each particle equal to ( , )p i j . 

2.2. Set the initial velocity of each particle equal to zero ( ( , ) 0v i j ).
2.3. Observe ( )Q i in order to obtain ( )Qobserved i and ( )Qbestobserved i . 

2.4. For 1...j nSubPop , do the following:
2.4.1. Evaluate the thj particle under the ( )Qobserved i structure and put  the  cost obtained from

the objective function in cos ( , )p t i j and cos ( , )pbest t i j .
End for
2.5. Put min( cos ( , ))

1
p t i j
j nSubPop

in cos ( )Q t i , cos ( )Qbest t i and cos ( )gbest t i .

2.6. Put arg min( cos ( , ))
1

p t i j
j nSubPop

in ( )gbest i . 

End for
3. Put arg min( cos ( ))

1
Q t i

i nPop
in b and put min( cos ( ))

1
Q t i
i nPop

in cosb t .

4. For 1...iter MaxIter , do the following:
4.1. For 1...i nPop , do the following:

4.1.1. Observe ( )Q i and put it in ( )Qobserved i .
4.1.2. For 1...j nSubPop , do the following:

4.1.2.1. Update ( , )v i j .
4.1.2.2. Update ( , )p i j . 

4.1.2.3. If the  mutation  conditions  are  satisfied  for  the thj particle, then perform the mutation.

4.1.2.4. Repair the thj particle.

4.1.2.5. Evaluate   the thj particle under the ( )Qobserved i structure and put the cost obtained from 
the objective function in cos ( , )p t i j .

4.1.2.6. Update ( , )pbest i j and cos ( , )pbest t i j .
End for
4.1.3. Update ( )gbest i and cos ( )gbest t i .
4.1.4. Put min( cos ( , ))

1
p t i j
j nSubPop

in cos ( )Q t i .

4.1.5. Update ( )Q i .
4.1.6. Update ( )Qbestobserved i and cos ( )Qbest t i .

End for
4.2. Update b and cosb t . 
4.3. If the conditions permit, then perform global or local migration.

End for
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Steps 1, 2 and 3 of QEA are the initialization steps, and
Step 4 constitutes the main loop of the algorithm. In Step 1,
nPop quantum candidate solution is generated (e.g. Eq. 7),
with jαijj ¼ jβijj ¼ 1ffiffi

2
p (1≤ i≤nPop; 1≤ j≤N2

n ). For every

quantum candidate solution, nSubPop particles are generated,
as the ith subpopulation (e.g. Eq. 10); and each of these parti-
cles is also considered as the best personal experience.

wij ¼ wi j1 :::wi jN2
n

h i
wi jk∈ −1;−0:05½ Þ∪ þ0:05;þ1ð # ð10Þ

If jwi jk j < 0:05, that weight cannot represent a causal re-
lationship between two nodes in the FCM [12]. The velocity
of each particle in Step 2.2 is initialized as zero. In Step 2.3,
via the observation process, each quantum candidate solution
is converted to a binary sequence of N2

n elements, and this
binary sequence is saved as Qobserved and as the best per-
sonal experience of that solution (Qbestobserved). In this bi-
nary sequence, the existence or the lack of a link is indicated
by 1 or 0, respectively. Up to this point in the algorithm, the
presence and the absence of links and also their initial values
have been determined and, therefore, each of the particles can
be evaluated. The learned FCM weights are obtained by mul-
tiplying each Qobserved by its corresponding wij.

After obtaining the cost of each particle, these costs are
saved in p cos tand pbest cos t. In Step 2.5, the lowest cost of
the ith subpopulation is saved as the cost of the ith quantum
candidate solution, cost of the best personal experience of the
ith quantum candidate solution, and also the cost of the best
experience of the entire particles of the ith subpopulation. In
Step 2.6, the particle with the lowest cost among the entire
particles of the ith subpopulation is saved as the gbest. When
the initialization loop ends, the candidate quantum solution
with the lowest cost is saved as b.

In the main loop of the algorithm, the position and velocity of
each particle are updated by Eq. 4 and Eq. 5 respectively. Then in
Step 4.1.2.3, mutation is performed on the position of particles.
For this purpose, uniform mutation is performed on half of each

subpopulation (indices nSubPop
2 #

'
to nSubPop) with a probability

of μ, and nomutation is carried out on the other half. Mutation is
followed by repair. In the repair step, the following four cases
could be considered for the position of each particle:

1. p(i, j) ∈ [−0.05, +0.05]; in this case we have p(i, j) = 0.
2. p(i, j) ∈ [−1, −0.05) ∪ (+0.05, 1]; in this case no repair is

carried out on p(i, j).
3. p(i, j) ∈ (+1, +∞); in this case, the position of a particle is

set to +1 and its velocity is multiplied by −1.

4. p(i, j) ∈ (−∞, −1); in this case, the position of a particle is
set to −1 and its velocity is also multiplied by −1.

Following the repair step, the particles are evaluated un-
der the structure Qbestobserved(i), and the costs of particles
are saved in p cos t(i, j). If p cos t(iter) < pbest(iter − 1), then
pbest is set equal to p cos t. In Step 4.1.3, gbest(i) is updated
to min pcost i; jð Þð Þ1≤ j≤nSubPop, and this value is also saved as

the cost of the ith quantum candidate solution. Step 4.1.5
includes the updating of quantum candidate solutions
(Q(i)s). In this step, each Q-bit within a Q(i) is updated with
regard to its observed bits in Qobserved and Qbestobserved,
and by using the Hε quantum gate (Eq. 9). The sign of Δθ
in the Hε gate should be set so as to lead us to better solu-
tions. In this paper, we have adjusted the values and sign of
Δθ according to Table 1, which are also proposed in the
[18] as standard values of Δθ. In cases in which no infer-
ence can be made regarding the sign of Δθ (for example,
when both Qobserved and Qbestobserved are zero), the val-
ue of Δθ is set to zero.

After updating Q(i), if Q cos t(iter) <Qbest cos t(iter − 1),
the value of Qbest cos tis updated to Q cos t. The best ob-
served solution in Step 4.2 (b) is updated to the observed value
of quantum solution with the lowest cost. Global and local
migrations are performed in the last step of the algorithm.
Global migration and local migration are performed every
GMperiod and LMperiod iterations, respectively. Parameters
of GMperiod and LMperiod are selected with regard to prob-
lem complexity.

As it was previously mentioned, the cost of denser FCM
models is lower, and therefore, potentially robust structures
may get thrown away during training. In this respect, Theorem
1 expresses the fact that even in one of the worst case scenarios
(the densest FCM), the QFCM algorithm, contrary to conven-
tional algorithms such asGA, is able to escape from local optima.

Theorem 1 For an FCM that has been trained by the QFCM
algorithm and converged to a fully-connected structure, the
probability of escaping from a local optimum, during the ob-

servation through the Hε gate, is 1− 1−εð ÞN
2
n .

Proof According to [36], after infinite iterations, each Q-bit

will converge to
ffiffiffi
ε

p
ffiffiffiffiffiffiffiffi
1−ε

p
! "

or
ffiffiffiffiffiffiffiffi
1−ε

p
ffiffiffi
ε

p
! "

. However, since the

FCM has converged to the densest structure, all the Q-bits

have converged to
ffiffiffi
ε

p
ffiffiffiffiffiffiffiffi
1−ε

p
! "

:

Table 2 The values of free
QFCM parameters Parameter nPop nSubPop ε μ MaxIter GMperiod LMperiod

Value 100 80 0.01 0.01 3000 20 10
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convergedFCM structure ¼
ffiffiffi
ε

p
ffiffiffiffiffiffiffiffi
1−ε

p j ::: j
ffiffiffi
ε

p
ffiffiffiffiffiffiffiffi
1−ε

p
! "

Because the sum of the probabilities of all the members of
sample space is equal to 1, we have:

∑
2N

2
n

i¼1
Pi ¼ 1→ ∑

2N
2
n−1

i¼1
Pi þ P

2N
2
n
¼ 1→ ∑

2N
2
n−1

i¼1
Pi ¼ 1−P

2N
2
n
→

∑
2N

2
n−1

i¼1
Pi ¼ 1− 1−εð ÞN

2
n

Therefore, the probability of escaping from local optima in

this case is 1− 1−εð ÞN
2
n . It should be mentioned that the prob-

ability of escaping toward the structures that have a shorter
Hamming distance from sequence (111…1) is greater than the
probability of escaping toward other structures. For example,
in an FCM with 2 nodes, the probability of escaping from
local optima toward the (1110), (1101), (1011) and (0111)
structures is higher than the probability of escaping toward
other structures, and equal to (1 − ε)3ε.

Table 3 The empirical results (averages and standard deviations) for synthetic data

Algorithm Number of nodes Density Data error Out of sample error Matrix error SSmean Converged density

QFCM 5 20% 0.00(0.00) 0.00(0.00) 0.00(0.00) 1 20%
5 40% 0.00(0.00) 0.00(0.00) 0.00(0.00) 1 40%
10 20% 0.003(0.002) 0.027(0.032) 0.101(0.143) 0.70 22%
10 40% 0.001(0.002) 0.048(0.054) 0.149(0.192) 0.72 41%
20 20% 0.006(0.005) 0.081(0.103) 0.132(0.194) 0.63 25%
20 40% 0.007(0.006) 0.059(0.073) 0.203(0.229) 0.68 44%
40 20% 0.012(0.02) 0.115(0.140) 0.138(0.239) 0.55 23%
40 40% 0.011(0.023) 0.126(0.151) 0.239(0.237) 0.53 44%

dMAGA [37] 5 20% 0.00(0.00) – 0.015(0.008) 0.87 –
5 40% 0.002(0.001) – 0.146(0.098) 0.75 –
10 20% 0.004(0.002) – 0.133(0.100) 0.81 –
10 40% 0.002(0.001) – 0.192(0.157) 0.53 –
20 20% 0.010(0.005) – 0.143(0.148) 0.53 –
20 40% 0.025(0.005) – 0.174(0.163) 0.43 –
40 20% 0.056(0.009) – 0.152(0.132) 0.38 –
40 40% 0.109(0.015) – 0.190(0.128) 0.39 –

MOEA-FCM [16] 5 20% 0.002(0.001) 0.013(0.010) 0.002(0.003) 0.96 –
5 40% 0.002(0.002) 0.024(0.015) 0.004(0.002) 0.94 –
10 20% 0.004(0.002) 0.031(0.038) 0.103(0.152) 0.72 –
10 40% 0.004(0.003) 0.047(0.053) 0.152(0.193) 0.68 –
20 20% 0.007(0.005) 0.085(0.102) 0.139(0.186) 0.62 –
20 40% 0.008(0.010) 0.058(0.073) 0.201(0.225) 0.68 –
40 20% 0.014(0.018) 0.113(0.138) 0.139(0.238) 0.55 –
40 40% 0.015(0.025) 0.130(0.154) 0.238(0.240) 0.52 –

SRCGA [15] 5 20% 0.004(0.004) 0.010(0.012) 0.002(0.002) 0.89 –
5 40% 0.004(0.005) 0.008(0.011) 0.003(0.003) 0.89 –
10 20% 0.005(0.005) 0.123(0.141) 0.105(0.198) 0.71 –
10 40% 0.005(0.005) 0.124(0.151) 0.168(0.200) 0.76 –
20 20% 0.007(0.006) 0.142(0.143) 0.122(0.219) 0.62 –
20 40% 0.006(0.008) 0.146(0.148) 0.203(0.295) 0.68 –
40 20% 0.017(0.020) 0.166(0.183) 0.135(0.235) 0.50 –
40 40% 0.019(0.022) 0.164(0.196) 0.245(0.288) 0.58 –

RCGA [12] 5 20% 0.005(0.006) 0.017(0.017) 0.321(0.381) 0.20 –
5 40% 0.005(0.005) 0.012(0.018) 0.361(0.372) 0.16 –
10 20% 0.006(0.007) 0.135(0.137) 0.398(0.322) 0.19 –
10 40% 0.006(0.007) 0.131(0.140) 0.385(0.316) 0.20 –
20 20% 0.008(0.009) 0.151(0.149) 0.426(0.346) 0.16 –
20 40% 0.008(0.008) 0.152(0.149) 0.413(0.376) 0.14 –
40 20% 0.019(0.022) 0.171(0.187) 0.453(0.385) 0.15 –
40 40% 0.020(0.022) 0.167(0.189) 0.436(0.368) 0.15 –

DD-NHL [38] 5 20% 0.197(0.186) 0.199(0.209) 0.317(0.345) 0.11 –
5 40% 0.189(0.197) 0.197(0.203) 0.381(0.333) 0.12 –
10 20% 0.191(0.188) 0.201(0.181) 0.412(0.356) 0.13 –
10 40% 0.211(0.184) 0.192(0.189) 0.423(0.348) 0.10 –
20 20% 0.203(0.245) 0.201(0.222) 0.464(0.316) 0.14 –
20 40% 0.203(0.168) 0.203(0.224) 0.436(0.348) 0.13 –
40 20% 0.194(0.168) 0.198(0.199) 0.468(0.388) 0.12 –
40 40% 0.187(0.160) 0.206(0.209) 0.465(0.384) 0.12 –
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4 Experimental results

In this section, synthetic, real-life, and DREAM3 as well as
DREAM4 benchmark datasets [20–22] are used to assess the
performance of the QFCM algorithm and to compare it with
that of other newly devised algorithms. These experiments
evaluate the ability of QFCM algorithm in providing dynamic
and static analyses. Using these tasks to compare the efficacy
of algorithms is so common in the literature [16].

In all the performed tests, the free parameters of the QFCM
algorithm were tuned according to Table 2 in order to demon-
strate the robustness of the QFCM model against the settings
of free parameters.

4.1 QFCM performance on the synthetic dataset

To obtain the synthetic data, first, a reference FCM with a
random weight matrix and a specific density is created.
Weights of the reference FCM should be greater or less than
+0.05 and − 0.05 respectively. This FCM is simulated with an
initial random state vector, and then the response of the net-
work is calculated by Eq. 3. This response sequence forms the
synthetic data.

The objective function of optimization, which is also used
in [15, 16], can be expressed as Eq. 11.

f wð Þ ¼ −1
1þ ηData Error

ð11Þ

where, Data _ Error is defined according to Eq. 12, and η is a
constant whose value has been considered as 10,000, in order

to have a fair comparison with other works. The reason for
using the auxiliary function f is to have a nonlinear function
for rewarding the better solutions [15].

Data Error ¼ 1
k−1ð ÞNnNs

∑
q¼1

Ns

∑
n¼1

Nn

∑
k−1

t¼1
Cq

n tð Þ−C
q

n tð Þ
&&&

&&&
2

ð12Þ

where, k is the number of data points, Nn is the number of
nodes, Ns is the number of existing data sequences, Cq

n tð Þ is
the real value of data in the qth sequence for the nth node and tth

state value, and Cq
n tð Þ is the value obtained from one-iteration

simulation of the learned FCM using the initial state of Cq
n

t−1ð Þ for the qth sequence, nth node, and tth state value.
In addition to the Data_Error, the following evaluation

criteria are employed for measuring the efficacy of algorithms:

Out-of-sample error This criterion shows the ability of gener-
alization of an algorithm. In order to calculate this measure, 10
random initial state vectors, which have not been used in the
training phase, are produced and used to simulate the learned
FCM. After simulation, the out-of-sample error criterion can
be obtained according to:

out of sample error ¼ 1
k−1ð ÞNnNs

' ∑
q¼1

Ns

∑
n¼1

Nn

∑
k−1

t¼1
j!Cq

n tð Þ−b!C
q

n tð Þj ð13Þ

where, !Cq
n tð Þ indicates the simulated value for the nth node, the

tth state value in the reference FCMwhich has started from the

Table 4 Results of applying paired T-test at significance level of 5%. Positive (+) sign shows that QFCM is better and significantly different than
specified method

Criteria Number of nodes Density dMAGA [37] MOEA-FCM [16] SRCGA [15] RCGA [12] DD-NHL [38]

Data_Error 5 20% + + + + +

40% + + + + +

10 20% + + + + +

40% + + + + +

20 20% + + + + +

40% + + * + +

40 20% + + + + +

40% + + + + +

out of sample error 5 20% N/A + + + +

40% N/A + + + +

10 20% N/A + + + +

40% N/A – + + +

20 20% N/A + + + +

40% N/A * + + +

40 20% N/A * + + +

40% N/A + + + +
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qth initial state vector; and b!C
q

n tð Þ shows the simulated value for
the nth node, the tth state value in the learned FCM which has
started from the qth initial state vector.

Matrix error This error measures the difference between the
weight matrix of the reference FCM and that of the learned
FCM.

Matrix Error ¼ 1
N2

n
∑
j¼1

Nn

∑
i¼1

Nn

jwij−ŵijj ð14Þ

in which,wij denotes the weight of the link from the ith node to
the jth node in the reference FCM, and ŵij indicates the weight
of the link from the ith node to the jth node in the learned FCM.

SSmean If the problem of FCM training is regarded as a clas-
sification problem (the class of zero weights versus the class
of non-zero weights), the notions of ‘true positive’, ‘false pos-
itive’, ‘true negative’ and ‘false negative’ can be defined for
this problem:

TP: The number of weights that are zero in the reference
FCM and also in the learned FCM.
FP: The number of weights that are non-zero in the ref-
erence FCM, but zero in the learned FCM.
TN: The number of weights that are non-zero in the ref-
erence FCM and also in the learned FCM.
FN: The number of weights that are zero in the reference
FCM, but non-zero in the learned FCM.
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Fig. 7 The variations of density
with the number of iterations in
FCMs with (a) 5 nodes and 20%
density, (b) 5 nodes and 40%
density, (c) 10 nodes and 20%
density, (d) 10 nodes and 40%
density, (e) 20 nodes and 20%
density, (f) 20 nodes and 40%
density, (g) 40 nodes and 20%
density and (h) 40 nodes and 40%
density
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So, SSmean can be expressed as

SSmean ¼ 2' sensitivity' specificity
sensitivityþ specificity

ð15Þ

where ‘sensitivity’ and ‘specificity’ can be computed as

sensitivity ¼ TP
TP þ FN

ð16Þ

specificity ¼ TN
TN þ FP

ð17Þ

The ‘sensitivity’ and the ‘specificity’ represent the preci-
sion of the training algorithm in determining the weights with
zero and non-zero values, respectively. Also, SSmean is a
number in the interval [0, 1]; with larger values indicating
better results.

The synthetic data for FCMs with various sizes and densi-
ties are generated and by using these data, we attempted to
train the FCMs by applying the QFCM algorithm. This was
repeated 5 times, and the average and standard deviation of
each evaluation measure were reported in Table 3. Also, for
comparison, the results of 7 recent and well-known FCM
learning algorithms, called dMAGA [37], MOEA-FCM
[16], SRCGA [15], RCGA [12], and DD-NHL [38] have been
reported in Table 3 (the learning algorithms have been ar-
ranged from top to bottom, based on their year of
presentation).

As it is observed in Table 3, in all the scenarios, the QFCM
algorithm has been able to converge to the real density or to a
density close to the real density; while the MOEA-FCM [16]

or SRCGA [15] do not show such a capability and their au-
thors, regardless of the real density of the network, have used
37% as the reported density. dMAGA [37], like QFCM, is
able to converge to a real density, but since the authors didn’t
report their achieved densities, we didn’t report them likewise.

In terms of Data_Error, showing the ability of algorithms in
providing dynamic analysis, QFCM has shown lower error as
compared to all other methods. The only exception is the 20-
node FCMwith 40% density, in which SRCGA [15] has shown
better results. This can be explained by the usage of continuous
genetic algorithm in the SRCGA [15], since it has shown shining
results in the complex system designs [17]. Regarding the out of
sample error, which illustrate the generalization ability of the
algorithms, the QFCM outdo the other algorithms in 5 out of 8
cases. MOEA-FCM [16] has shown slightly better results in the
remaining 3 cases. Nevertheless, in the 40-node FCM with 40%
density, which has the hugest search space among all other
FCMs and thus prone to lower generalization ability, the
QFCM achieved better result. As for Matrix error, the QFCM
has shown better results in the 5-node as well as 10-node FCMs
(4 cases). dMAGA [37] achieved better results in FCMs with
20% density (2 cases) while and SRCGA [15] obtained more
desirable results in FCMs with 40% density (2 cases).
Concerning SSmean criterion, which directly states the superior-
ity of algorithms in providing dynamic analysis, the QFCM al-
gorithm has been able to achieve higher SSmean values than all
the other methods inmost of the cases. There are only three cases
in which the QFCM has achieved a lower SSmean relative to the
SRCGA [15] and dMAGA [37] method: the 10-node FCMwith
20% and 40% density, and the 40-node FCM with 40% density.

Table 5 The results of the real-life datasets (average and standard deviations)

Model Learning algorithm Data_Error Out of sample error Matrix error SSmean

Plant supervisory process system [39] QFCM 0.001(0.004) 0.005(0.013) 0.114(0.128) 0.75

MOEA-FCM 0.003(0.004) 0.008(0.120) 0.117(0.126) 0.73

SRCGA 0.005(0.005) 0.127(0.120) 0.112(0.149) 0.71

D&C SRCGA 0.006(0.005) 0.129(0.122) 0.119(0.118) 0.69

RCGA 0.005(0.005) 0.131(0.141) 0.395(0.348) 0.16

D&C RCGA 0.007(0.005) 0.136(0.123) 0.358(0.325) 0.16

DD-NHL 0.187(0.184) 0.189(0.197) 0.438(0.316) 0.13

Deforestation in Brazilian Amazon [40] QFCM 0.0051(0.003) 0.0124(0.0137) 0.184(0.142) 0.69

MOEA-FCM 0.0074(0.0040) 0.0129(0.0134) 0.2032 0.68

RCGA 0.0048(0.0033) 0.1370(0.1529) – –

D&C RCGA 0.1138(0.0972) 0.1471(0.1408) – –

DD-NHL 0.2257(0.2406) 0.2213(0.1803) – –

Educational software adoption [41] QFCM 0.0063(0.0013) 0.0109(0.0111) 0.1073 0.21

MOEA-FCM 0.0071(0.0010) 0.0113(0.0118) 0.1070 0.22

RCGA 0.0085(0.0064) 0.1539(0.1608) – –

D&C RCGA 0.1315(0.1369) 0.1825(0.1586) – –

DD-NHL 0.2125(0.2138) 0.2081(0.2096) – –
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These two cases can be justified by the fact that in [15], the
density estimate parameter has been considered equal to the den-
sity of the synthetic data produced and, therefore, there is an
information leakage from the generated synthetic data to the
training algorithm. While in the QFCM, such an information
leakage does not exist.

As it is mentioned before, lower Data_Error and higher
SSmean mean better dynamic and static analyses properties
respectively; hence, it is feasible that any given algorithm in
the Table 3 which simultaneously has higher SSmean and
lower Data_Error has the ability of better simultaneous static
and dynamic analyses. According to the Table 3, the QFCM
simultaneously has lower Data_Error and higher SSmean in 4
cases. While, none of the other algorithms have shown such
capability. This matter confirms our first claim about the
QFCM’s power in providing simultaneous static and dynamic
analyses.

We have applied paired t-test, a statistical hypothesis test,
for investigation of significant difference existence between
QFCM algorithm’s results and those of Table 3. The results of
this test have been presented in Table 4. This table reveals that
in terms of Data_Error, QFCM has achieved significantly bet-
ter results than all other methods. The only exception is the

SRCGA [15] which obtained significantly better results for the
FCMwith 20 nodes and 40% density. In terms of out of sample
error, QFCM results are significantly better at most of the cases.
Even thoughMOEA-FCM [16] achieved a lower out of sample
error for the FCM with 10 nodes and 40% density, there is not
any significant difference between it and QFCM.

Negative (−) sign shows insignificant difference. Star (*)
sign shows that specified method is better and significantly
different than QFCM.

Table 6 Results of different
algorithms on the DREAM3 and
DREAM4 benchmark datasets for
GRN reconstruction task

Dataset-number of genes-topology number QFCM dMAGA [36] RCGA [11] D&C RCGA [42]

DREAM3–10-1 0.009 0.012 0.112 0.068

DREAM3–10-2 0.009 0.011 0.100 0.079

DREAM3–10-3 0.011 0.014 0.056 0.038

DREAM3–10-4 0.013 0.014 0.107 0.036

DREAM3–10-5 0.013 0.013 0.066 0.089

DREAM3–50-1 0.039 0.044 0.138 0.111

DREAM3–50-2 0.027 0.023 0.136 0.145

DREAM3–50-3 0.35 0.030 0.109 0.117

DREAM3–50-4 0.027 0.032 0.147 0.139

DREAM3–50-5 0.021 0.029 0.158 0.136

DREAM3–100-1 0.162 0.156 0.175 0.229

DREAM3–100-2 0.097 0.103 0.207 0.241

DREAM3–100-3 0.149 0.140 0.249 0.235

DREAM3–100-4 0.129 0.138 0.195 0.237

DREAM3–100-5 0.152 0.141 0.233 0.260

DREAM4–10-1 0.001 0.006 0.079 0.090

DREAM4–10-2 0.004 0.008 0.104 0.074

DREAM4–10-3 0.009 0.013 0.124 0.079

DREAM4–10-4 0.005 0.008 0.103 0.082

DREAM4–10-5 0.016 0.020 0.066 0.099

DREAM4–100-1 0.110 0.081 0.181 0.143

DREAM4–100-2 0.098 0.101 0.171 0.157

DREAM4–100-3 0.101 0.095 0.158 0.177

DREAM4–100-4 0.095 0.086 0.161 0.150

DREAM4–100-5 0.082 0.089 0.162 0.153

Table 7 Baseline values for SSmean and matrix error measures

Number of nodes Density (%) SSmean Matrix error

5 20 0.286 0.155

40 0.49 0.33

10 20 0.36 0.20

40 0.46 0.34

20 20 0.29 0.18

40 0.45 0.35

40 20 0.29 0.18

40 0.45 0.35
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The diagrams of the changes of learned FCMs’ densities,
obtained by the QFCM algorithm, with the number of itera-
tions can also illustrate some aspects of the FCM training.
These graphs have been plotted in Fig. 7 for all the 8 existing
FCMs in Table 3 (dashed line indicates the real density and
solid line indicates the learned FCM density in every itera-
tion). This figure illustrates 2 aspects of the QFCM:

1. It is clear in all the cases convergence has occurred. As the
number of nodes increases, so is the search space, we have
seen delayed convergence. This delayed convergence is
normal in that the larger the search space is, the more
difficult it becomes for the QFCM to locate the real links
of the network.

2. During the training phase, in none of the cases, the density
of the learned FCM has got lower than the real density
(the solid lines are always above the dashed lines). This
confirms that the denser FCMs have a smaller error than
the sparser FCMs. In fact, the QFCM algorithm, by mod-
ifying the quantum states during training, automatically
prevents the selection of points in the search space that are
sparser than the real density. Moreover, in none of the
examined scenarios, the difference from the real density,
during training, has become larger than 37.5%.

4.2 QFCM performance on the real-life datasets

Three real-life datasets—namely ‘plant supervisory process
system’ (with 9 nodes) [39], the ‘model of deforestation in
Brazilian Amazon’ (with 12 nodes) [40], and the ‘educational
software adoption model’ (with 24 nodes) [41]—which are
proposed in [15] as benchmark dataset for FCM’s learning
algorithms have been used to evaluate the QFCM’s perfor-
mance. The process of training was repeated 10 times for
everyone of the models, and the obtained averages and stan-
dard deviations were listed in Table 5. The outcomes of the
DD-NHL [38], RCGA [12], SRCGA [15] and MOEA-FCM
[16] methods along with the results of the divide and conquer
strategy [42] have also been reported in this table, the authors
of the dMAGA [37] didn’t report their results regarding the
aforementioned datasets.

As it is observed in Table 5, regarding the SSmean
value, the QFCM algorithm has been able to achieve bet-
ter results in all the models except for educational soft-
ware adoption model [41], in which MOEA-FCM [16]
has achieved slightly better result. Regarding the matrix
error, the QFCM algorithm has been able to obtain better
results for the deforestation model [40]; but for the other
two models, it has slightly larger errors relative to the
MOEA-FCM [16] and SRCGA [15] methods. As for the
out-of-sample error, the QFCM algorithm has been able to

get better results than all the other considered methods in
all scenarios; and this shows the generalization capacity
of the FCMs that have been trained by the QFCM algo-
rithm. The Data_Error of QFCM is lower than that of the
other approaches. The only exception is the deforestation
model [40], in which the RCGA [12] algorithm has been
able to display better results. In the ‘educational software
adoption’ model [41], the QFCM has achieved an SSmean
of 21%. Despite the fact that this result is near to that of
the MOEA-FCM, the number 21%, by itself, does not
indicate a favorable accuracy in static analysis. The rea-
son for a lower SSmean in this model is that in [41], a
density of only 8% has been considered for this FCM; and
due to the number of nodes in this model (24 nodes), the
correct allocation of weights is a difficult task for the
QFCM. Thus, it can be concluded that the quality of static
analysis (and not dynamic analysis) diminishes in severe-
ly sparse FCMs.

All in all, according to the Table 5, the QFCM has shown
more favorable results in 8 out of 12 evaluation scenarios.

4.3 QFCM performance in the gene regulatory
network reconstruction problems

FCMs have shown promising results in the GRN reconstruction
problems [37]. DREAM3 and DREAM4 benchmark datasets
[20–22] are widely used for the evaluation of the algorithms
attempting to reconstruct GRNs. The time series which are pro-
vided by them are recorded from real and known GRNs.

DREAM3 has given the time series of networks with 10,
50, and 100 genes, each has 5 different topologies. It recorded
under different perturbations and overall, each topology pro-
vides with a 21-point time series. DREAM4 dataset has pro-
vided the time series of 2 networks with 10 and 100 genes.
Similar to the DREAM3, DREAM4 has set 5 different topol-
ogies for each of the networks.

Here, we intended to reconstruct GRNs by applying the
QFCM on DREAM3 as well as DREAM4 datasets. Also,
we compare our results with dMAGA [37], RCGA [12], and
D&C RCGA [42] algorithms. Since, previous works reported
their achieved results in terms of the Data_Error, we did like-
wise. Table 6 shows the obtained results.

As it is plain in Table 6, QFCM achieved lower errors
in most of the cases. Specifically, it has shown more de-
sirable results in 17 out of 25 cases. Regarding 10-node
networks, QFCM outdo all other algorithms in all scenar-
ios. When the network has 50 nodes, QFCM obtained
better results except for DREAM3–50-2 and DREAM3–
50-3 datasets, in which dMAGA [37] achieved more fa-
vorable results. In 100-node networks, QFCM achieved
better results in 2 cases, that is, DREAM4–100-2 and
DREAM4–100-5.
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4.4 Comparison with baseline

To better evaluate the power of static analysis in the FCMs
trained by the QFCM algorithm, the baseline values of
SSmean and matrix error for FCMs with 5, 10, 20 and 40
nodes and 20 as well as 40% densities were obtained and
reported in Table 7. In order to obtain the baseline, FCMs with
randomweights and 20 and 40% densities (density limit) were
produced for 10 times. Then by using Eq. 14 and Eq. 15, the
matrix errors and SSmean values of these 10 FCMs were
computed. Finally, the baseline was obtained by averaging
these values. The values in Table 7 are not related to the
random method; because in obtaining these values, there is
an information leakage from train set to the learned FCMs.

As shown in Table 7, the QFCM algorithm has been able to
improve the SSmean in the 40-node FCM by 47% (20% den-
sity) and 15% (40% density) and the matrix error of the 40-
node FCM by 23% (20% density) and 32% (40% density);
and this improvement has increased with the reduction of the
number of nodes. For example, in the 20-node FCM with 20
and 40% densities, the SSmean improvements have been 54
and 33% and the improvements of the matrix error have
reached 27 and 42%, respectively.

5 Conclusion

The structural simplicity, the adaptability and the deduc-
tion power of FCM have made it a powerful and versatile
tool for researchers. Despite their widespread popularity,
the FCMs created based on the opinions of experts and the
FCMs based on evolutionary algorithms still limited in
some ways such as the inability of simultaneous static
and dynamic analyses properties. In this paper, a new train-
ing algorithm called the QFCM, which operates totally
automatically, has been presented. The proposed QFCM
uses the quantum inspired evolutionary algorithm coupled
with PSO algorithm for providing static and dynamic anal-
yses capabilities. Another achievement of this paper is that
the FCMs trained by the QFCM converge to the real den-
sity of the network or to a density close to the real density.
Using the probabilistic representation in encoding the
FCM links leads to the survival of good structures, albeit
with low dynamic analysis capability, in the course of dif-
ferent generations. This aspect has been examined closely
in the paper through a mathematical theorem. The perfor-
mance of the QFCM algorithm has been evaluated in syn-
thetic, real-life, and gene regulatory network reconstruc-
tion datasets. The empirical results indicate that in most
cases, the QFCM algorithm, without the involvement of
any expert, can make more accurate FCMs than similar
training algorithms.
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