
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Developing Issues for Ant Colony System based
Approach for Scheduling Problems

Ana Madureira1, Ivo Pereira1 and Ajith Abraham2,3

1GECAD - Knowledge Engineering and Decision Support Group, Institute of Engineering –
Polytechnic of Porto, Porto, Portugal, {amd,iaspe}@isep.ipp.pt

2Machine Intelligence Research Labs (MIR Labs). Scientific Network for Innovation and Re-
search Excellence, Auburn, USA

3IT4Innovations - Center of Excellence, VSB-Technical University of Ostrava, Czech Republic
ajith.abraham@ieee.org

Abstract. This paper describes some developing issues for ACS based software
tools to support decision making process and solve the problem of generating a
sequence of jobs that minimizes the total weighted tardiness for a set of jobs to
be processed in a single machine. An Ant Colony System (ACS) based algo-
rithm performance is validated with benchmark problems available in the OR
library. The obtained results were compared with the optimal (best available re-
sults in some cases) and permit to conclude about ACS efficiency and effec-
tiveness. The ACS performance and respective statistical significance was eval-
uated.

Keywords: Scheduling, Optimization, Weighted Tardiness, Swarm Intelli-
gence, Ant Colony System

1 Introduction

An important aspect of manufacturing organizations is the improvement of re-
source utilization. A classical approach of resource utilization optimization is through
Scheduling Theory developments. As defined in Baker [1], scheduling is concerned
with the problem of allocating scarce resources to activities over time. Scheduling
problems are in general nontrivial and exhaustive enumeration of the scheduling solu-
tions set is not usually efficient.

Scheduling problems are generally complex, large scale, constrained, and multi-
objective in nature, and classical operational research techniques are often inadequate
to effectively solving them [2]. With the advent of computation intelligence, there is a
renewed interest in solving scheduling problems through Swarm Intelligence (SI)
based techniques.

SI is an innovative computational and behavioral paradigm for solving distributed
problems based on self-organization. SI main principles are similar to those underly-
ing the behavior of natural systems consisting of many individuals, such as ant colo-
nies and flocks of birds [3][4]. SI is continuously incorporating new ideas, algorithms,
and principles from the engineering and basic science communities [3][4].

SI represents a family of approximate optimization techniques that gained a lot of
popularity in the past two decades in Metaheuristics research area which is identified
as a field of optimization in Computer Science and Operations Research that are relat-
ed to algorithms and Theory of Computational Theory. They are among the most
promising and successful optimization techniques.

In this paper a set of general guidelines for developing a software tool for solving
an optimization problem and support computational study and decision making is
described. An Ant Colony System (ACS) based algorithm is proposed to solve the
Single Machine Weighted Tardiness Scheduling Problem (WT) and its efficiency and
effectiveness is analyzed.

The remaining sections are organized as follows. In Section 2 the Weighted Tardi-
ness problem and some approaches presented in the literature for its resolution are
presented. Theoretical foundations, the biological motivation and fundamental aspects
of SI paradigm with focalization on the design and implementation of an ACS algo-
rithm and some recent applications of ACS to WT resolution are summarized in sec-
tion 3. Section 4 a set of general guidelines for developing a software tool for solving
an optimization problem is systematized. In Section 5 the ACS proposed approach
developing for WT is described. Section 6 presents computational study and discusses
obtained results. Finally, the paper presents some conclusions and puts forward some
ideas for future work.

2 Problem Definition

One important scheduling problem consists in sequencing a set of jobs for pro-
cessing on a single processor or machine. The study of Single Machine Scheduling
Problem (SMSP) is identified to be very important for several technological and eco-
nomic reasons, probably the most relevant of which is that good solutions to this
problem provide a relevant support to manage and model the behavior of complex
systems. In these systems it is important to understand the working of their compo-
nents, and quite often the SMSP appears as an elementary component in a larger
scheduling problem [1][2]. Sometimes the basic SMSP is solved independently, and
then results are incorporated into the larger and more complex problem. For example,
in a multistage multiple machine problems there are often a critical machine, the bot-
tleneck, whose processing capacity is lower than the necessary. The analysis and
treatment of the bottleneck as a SMSP may determine the properties of the entire
schedule.

Let us consider the problem of scheduling n jobs for processing without interrup-
tion, on a single machine that can handle only one job at a time. For each job j
(j=1,..,n), let pj be its processing time, dj its due date and wj the penalty incurred for
each unit of time late. The processing of the first job begins at time t =1. The tardiness
of a job is given by Tj=Max {tj + pj – dj, 0} where tj is the start time of job j. The
objective is to find a sequence that minimizes the sum of Weighted Tardiness (WT)
defined on equation 1:

 , with (1)

The single machine problem, here considered is characterized by the following
main conditions:

• a set of n independent jobs (j=1,..,n) is available for processing at time zero and the
job descriptors are known in advance;

• a machine is continuously available and is never kept idle while working is wait-
ing;

• the set-up times for the jobs are independent of job sequence and can be included
in processing times;

• jobs are processed to completion without preemption.

Under these conditions there is a one-to-one correspondence between a sequence
of these n jobs and a permutation of the job indices. In this work we consider a solu-
tion such a sequence of jobs where i is the ith job position in the sequence. The total
number of different solutions to the SMSP under these conditions is n!.

The SMSP for minimizing total weighted tardiness 1||WT is NP-complete [2][5].
Optimal algorithms for this problem would therefore require a computation time that
grows exponentially with the problem size, presenting exponential complexity.
Hence, only small sized instances of this problem can be solved in an efficient way.
Several branch-and-bound procedures and dynamic programming techniques have
been proposed in literature [5][6]. As indicated in [6] the simple dispatching heuristics
(EDD, SWPT, COVERT or AU) do not consistently produce good quality solutions.
In recent years, much attention has been dedicated to Metaheuristic that are consid-
ered to be efficient tools for solving hard combinatorial optimization problems.

Ant Colony Optimization (ACO) is probably the most successful example of artifi-
cial/engineering Metaheuristic based optimization techniques with numerous applica-
tions to real-world problems[4], and for minimization of total weighted tardiness.
Merkle and Middendorf [7] describe a contribution for solving permutation problems
to SMSP for Total Weighted minimization. Liao and Juan [8] propose an ACO to
minimize the tardiness in a SMSP with utilization of setup times. In Yagmahan and
Yenisey [9] a multi-objective scheduling problem approach based on ACO for sched-
uling to reduce the total scheduling cost is proposed. Anghinolfi and Paolucci [10]
describe a new ACO approach to face the single machine total weighted tardiness
scheduling with sequence dependent setup times problem. In Srinivasa Raghavan and
Venkataramana [11] a parallel processor scheduling for minimizing total weighted
tardiness using ant colony optimization is proposed. Additionally, some relevant
works could be identified, see for example [1][12][13].

3 Ant Colony Optimization

Ant Colony Optimization (ACO) has been formalized as a Metaheuristic by Dorigo
and collaborators [3][14] that are inspired and mimic natural metaphors to solve

complex optimization problems . A Metaheuristic can be defined as a set of algorith-
mic concepts that can be used to define heuristic methods applicable to a wide range
of different optimization problems [4].

A subset family of Metaheuristics, SI is considered an innovative and creative ap-
proach to problem solving that takes inspiration from the collective intelligence of
swarm of biological populations, and was discovered through simplified social behav-
iors model simulation of insects and other animals [4][15]. ACO algorithm is among
the most promising SI inspired optimization class of optimization techniques.

Table 1. Analogy between Natural and Artificial Ants

Natural Ant Colony Artificial Ant Colony

Ant Agent

Ant Colony Set of Ants/Iterations

Pheromone Diversity Mechanism

Path Solution

Evaporation Pheromone update

The ACO algorithm takes inspiration from the foraging behavior of some ant spe-

cies (Table I). These ants deposit pheromone on the ground in order to mark some
favorable path that should be followed by other members of the colony. ACO exploits
a similar mechanism for solving optimization problems. The ACO algorithm is a
probabilistic technique for solving computational problems which can be reduced to
finding good paths through graphs. For this reason description of ACO algorithms are
normally accompanied through Traveling Salesman Problem (TSP) notation and illus-
trative examples [16-18]. This algorithm, initially proposed by Marco Dorigo in his
PhD thesis [14], is a member of ACO family and it constitutes some Meta-Heuristic
optimizations.

The first proposed ACO algorithm is known as Ant System [16] that was aiming to
search for an optimal path in a graph. It was based on the foraging behavior of ants
seeking a path between their colony and a source of food. The original idea has since
diversified to solve a wider class of numerical problems, and as a result, several algo-
rithms have emerged, drawing on several aspects of the behavior of ants [4].

Table 2. Non-exhaustive ACO algorithms list [4]

Algorithm Authors Year

Ant System(AS) Dorigo et al. 1991

Elitist AS Dorigo et al. 1992

Ant-Q Gambardella & Dorigo 1995

Ant Colony System Dorigo & Gambardella 1996

MAX-MIN AS Stutzle&Hoos 1996

Hyper-Cube AS Blum et al. 2001

The designation ACO is a generic term that includes algorithms based on the be-

havior of ants. Since the early 90s, when the first ACO algorithm - Ant System - was
proposed in [16], different algorithms (Table II) and successful applications have
been described and a substantial theoretical results have becoming available that
provides useful guidelines to researchers and practitioners in further applications of
ACO based algorithms [17-19].

The general ACO algorithm is described in Table III. After initialization, the ACO
iterates over three main steps: at each iteration, a number of solutions are constructed
by the ants; these solutions could be then improved, optionally, through a local
search, and finally the pheromone is updated through two possible events: evapora-
tion and by increasing the pheromone levels associated with a chosen set of good
solutions.

Table 3. Ant Colony Optimization Algorithm

Set ACO parameters.

Initialize pheromone trails

While termination criteria not met do

Construct AntSolutions

Apply Localsearch (optional)

Update Pheromones

EndWhile

A more detailed description of the three phases can be stated as follows[4]:

• ConstructAntSolutions: A set of m artificial ants constructs solutions from ele-
ments of a finite set of available solution components C = {cij }, i = 1, . . . , n, j =
1, . . . , |Di|. A solution construction starts from an empty partial solution sp = ∅. At
each construction step, the partial solution sp is extended by adding a feasible solu-
tion component from the set N(sp) ⊆ C, which is defined as the set of components
that can be added to the current partial solution sp without violating any of the con-
straints in Ω. The process of constructing solutions can be regarded as a walk on
the construction graph GC = (V, E) as stated in [4]. The selection of a solution
component from N(sp) is guided by a stochastic mechanism, which is biased by the
pheromone associated with each of the elements of N(sp). The rule for the stochas-
tic choice of solution components vary across the different proposed ACO algo-
rithms but, in all of them, it is inspired by the Goss model (experimental setup for
the double bridge experiment) of the behavior of real ants assuming that at a given

moment in time m1 ants have used the first bridge and m2 the second one, the
probability p1 for an ant to choose the first bridge is given by [4] :

hh

h

kmkm
kmp

)()(
)(
21

1
1 +++

+
= (2)

where parameters k and h are to be fitted to the experimental data. Monte Carlo
simulations showed a very good fit for k ≈ 20 and h ≈ 2.

• ApplyLocalSearch: Once solutions have been constructed, and before updating the
pheromone, it is common to improve the solutions obtained by the ants through a
local search. This phase, which is highly problem-specific, is optional although it is
usually included in state-of-the-art ACO algorithms.

• UpdatePheromones: The aim of the global pheromone update is to increase the
pheromone values associated with good or promising solutions, and to decrease
those that are associated with bad ones. Usually, this is achieved by decreasing all
the pheromone values through pheromone evaporation, and by increasing the pher-
omone levels associated with a chosen set of good solutions.

Several ACO algorithms have been proposed in the literature, which differ in some
decisions characterizing the construction of solutions and update pheromone proce-
dures [4]. Among the most successful variants we have chosen the ACS algorithm to
apply to the SMSP to WT resolution.

The most interesting contribution of ACS [4][13] is the introduction of a local
pheromone update and the pheromone update performed at the end of the construction
process (named offline pheromone update).

ACS algorithm can be stated as follows [13]: m ants are initially positioned on n
cities chosen according to some initialization rule (randomly, for example). Each ant
builds a tour (feasible solution) by repeatedly applying a stochastic greedy rule (the
state transition rule). While constructing its tour/path, an ant also modifies the amount
of pheromone on the visited edges (cities) by applying the local updating rule. Once
all ants have terminated their tour/path, the amount of pheromone on edges/cities is
modified again, by global updating rule applying. Ants are guided, in building their
solutions, by both heuristic information (they prefer to choose short edges), and by
pheromone information (an edge with a high amount of pheromone is a very desirable
choice). The pheromone updating rules are designed to give more pheromone to edg-
es/cities which should be visited by ants.

The local pheromone update is performed by all ants after each construction step.
Each ant applies it only to the last edge traversed:

 (3)

where ϕ ∈ [0,1] is the pheromone decay coefficient, and τ0 is the initial value	 of	
the	 pheromone.

The main goal of the local pheromone update is to introduce diversity in the search
process performed by subsequent ants during an iteration by decreasing the phero-

mone concentration on the traversed edges, ants encourage subsequent ants to choose
other edges and, hence, probably to produce different solutions. This mechanism
makes it less likely that several ants produce identical solutions during one iteration.

The offline pheromone update, is applied at the end of each iteration by only one
ant, which can be either the iteration-best(Lib) or the best-so-far(Lbs). However, the
update formula is slightly different:

⎪⎩

⎪
⎨
⎧ Δ+−

=
otherwise

tour, the best belongs toj)(i,if

ij

ijij
ij τ

τρτρ
τ

**)1((4)

where τij = 1/Lbest , where Lbest can be either Lib or Lbs.
Another important difference between ACS and AS is in the decision rule used by

the ants during the construction process.

⎪
⎪

⎩

⎪
⎪

⎨

⎧
∈

= ∑
∈

otherwise

SNcif

c
p

pij

SN
ijij

ijij

k
ij pij

0

)(
*

*

)(

βα

βα

ητ

ητ
 (5)

In ACS, the so-called pseudorandom proportional rule is used by the ants during
the construction process: the probability for an ant to move from city i to city j de-
pends on a random variable q uniformly distributed over [0,1], and a parameter q0; if
q≤q0, { }βητ ililcijj N(Sp)argmax ∈= otherwise Equation 5 is used.

Additional information about ACO based algorithms details of implementation
could be found in [4][13].

4 Developing Issues for Optimization Approaches

The first aspect to be considered when identifying a decision making problem - op-
timization problem - and the need for specifying a tool for its resolution refers to
problem modeling.

The mathematical model is built from the formulation of the problem and can be
inspired by theoretical models related in the literature. This will reduce the problem to
well-studied optimization models that are in general simplifications of real world
problems.

Once the problem is modeled, the following stages are considered relevant for op-
timization approaches development (Figure 1), following a set of general guidelines
systematized by Talbi[20], for solving a given optimization problem.

Requirements	 of	 the	 application	 (e.g.	 search	
time,	 quality	 of	 solutions,	 robustness)

Problem	 Modeling

When	 use	
MetaHeuristics?	

MH	 Design

1	 -‐Commom	 concepts	 for	 MetaHeurístics:
	 	 	 	 	 -‐	 Representation
	 	 	 	 	 -‐	 Guiding	 objective	 function
	 	 	 	 	 -‐	 Constraint	 handling

2	 -‐	 MetaHeurístics	 selection
	 	 	 	 -‐	 Single	 solution	 based	 MetaHeurístics
	 	 	 	 -‐	 Population	 based	 MetaHeurístics

MH	 Implementation
	 	 	 	 	 -‐	 From	 scratch	 or	 non	 reuse
	 	 	 	 	 -‐	 Code	 reuse
	 	 	 	 	 -‐	 Design	 and	 code	 reuse	 (e.g.,	 Software	 framework	 ParadisOE)	 	 	 	 	

Parameter	 tuning
	 -‐	 Off-‐Line	 (e.g.,	 design	 of	 experiments,	 meta-‐

optimizatiom)
	 -‐	 On-‐Line	 (dynamic,	 adaptative,	 self-‐addaptative)

Complexity	 and	 difficulty	 of	 the	 problem	
(e.g.	 NP-‐completeness,	 size,	 structure)

State-‐of-‐the-‐art	
optimization	 algorithms

Performance	 evaluation
	 	 	 	 	 -‐	 Experiment	 design
	 	 	 	 	 -‐	 Measurements
	 	 	 	 	 -‐	 Reporting

Fig. 1. Developing issues for optimization problem solving [20]

Initially should be addressed, based on the state of the art of optimization methods
(exact or approximation), the question of which optimization technique is best suited
to solve the problem considering the complexity and difficulty of the optimization
problem (NP class, size and structure of the instances) and the requirements of the
optimization problem (search time, quality of solutions and robustness).

The use of exact methods is suitable when the identified instances of the problem
are solved in the time required. Meta-heuristics are a feasible alternative to obtain
satisfactory solutions in circumstances where the complexity of the problem or avail-
able search time did not allow the use of exact methods.

From the moment the necessity of specifying a meta-heuristic is identified, some
questions, common to all Meta-Heuristics, related to the encoding/representation of
the solutions, the definition of objective function and constraints handling must be
stated.

The development of software tools for the MH is a relevant task considering the
variety of optimization problems identified and continuous evolution of models asso-
ciated with optimization problems. The problem may be modified or require further
refinements: some objectives and constraints can be inserted, deleted or changed.

It is clear the interest and the need in developing systems or automatic tools for de-
cision support based MH. For managers it is important to select, implement and apply
optimization algorithms without requiring deep knowledge on programming and op-
timization. For experts in optimization and software development is useful to evaluate
and compare different algorithms, transform/adapt algorithms, develop new algo-
rithms, combine and parallelize algorithms. Generally, the literature identifies three

main approaches used for the development and implementation of Metaheuristics
[20]: From scratch or no reuse (considering the simplicity of MH implementation, but
requires time and effort and it is error prone); Code reuse (consists on reusing free
programs codes and libraries Open Source, adapting to the treated problem is often
time consuming, error prone, and the coding effort using libraries remains important);
and Design and code reuse(Software frameworks, its main objective is to overcome
above related problems).

In general, the effective resolution of a problem requires the application of differ-
ent methods of tuning parameters among others. The tuning of parameters can allow
greater flexibility and robustness but requires a careful initialization. The parameters
can have a major influence on the efficiency and effectiveness of the search. Becomes
not obvious, a priori, the setting of parameters to use. The values for the parameters
depend on the problem, instances structure and the time available to solve the prob-
lem. There are no universal values for the parameters considered for Metaheuristic
based algorithms. Being widespread view that its definition must result from a care-
ful experimental effort, towards their tuning.

Performance analysis corresponds to the last stage of development of MH. The
theoretical analysis based on the worst case and average provides some insights in
solving some optimization models. However, it is considered that the performance
evaluation of the MH must be supported by a comprehensive set of computational
tests, following these aspects/phases: definition of the test plan (test objectives, selec-
tion of input variables and instances); definition of measurement criteria (quality of
solutions, robustness and computational effort) and the reporting and analysis of re-
sults (graphic display of results, interpretation of results, statistical analysis).

5 ACS proposed approach Developing for Weighted Tardiness

The scheduling problem to deal with is included into the class of combinatorial op-
timization problems common in industrial practice. Due to its complex nature and the
resolution of such problems to optimality, in an acceptable time for the process of
decision making, is virtually impossible. Thus, there is an important issue that refers
to the resolution of this class of problems obtaining satisfactory quality solutions on
reasonable computing time, for which there is no knowledge of the existence of effi-
cient methods.

A software tool was developed and implemented in Java, to perform the computa-
tional study aiming to analyse and evaluate the performance of ACS, on resolution of
SMSP for minimization of total weighted tardiness.

The solutions are encoded by the natural representation (string), each position cor-
responds to a job index and the position of the job index is the correspondent pro-
cessing order. The number of positions on the string corresponds to the number of
jobs (problem size).

Table 4. Ant Colony System for WT

Begin

Set ACS parameters.

Initialize pheromone trails

While termination criteria not met do

Construct Ant Solutions

Each ant build a solution

Apply LocalSearch

Return Constructed Solution

Apply Localsearch

Global Update Pheromone

EndWhile

Return Best solution

End

The initial colony generation process consists in applying some mechanism genera-

tor to a starting ant solution. The initial solution is defined by the priority rule EDD
rule, in which an initial solution (ant) is defined by the due dates increasing ordering,
thus giving priority to tasks with small due dates.

As mentioned above, we implemented an ACS algorithm (Table IV) for WT reso-
lution [21]. The ACS differs from the previous proposed Ant System due to three
main aspects [11]: the state transition rule, the global updating rule, and the local
updating rule. When applied to the SMSP for WT minimization, each ant constructs a
feasible sequence by selecting an unscheduled job j to be on the ith position of the
partial sequence constructed so far. This process is influenced by specific heuristic
information ηij, as well as the pheromone trails τij.

5.1 Solution Construction

During the construction process the decision of adding job j to the partial sequence
is made through ACS state transition rule, which is given by equation 6:

 (6)

where ω is the set of unscheduled jobs, α controls the relative importance of the
pheromone trails, β determines the influence of the heuristic information, q is a ran-
dom number uniformly distributed over [0,1], q0 is a parameter (q0∈[0,1]) and S is a
job selected according to the probability defined by equation 7:

 (7)

The state transition rule favors job selection in terms of pheromone amount versus
heuristics information. The parameter q0 provides a way to balance between explora-
tion of new jobs and exploitation of accumulated knowledge. In other words, when
ant m has to choose a job to append to the partial sequence, a random number q is
generated, with q∈[0,1], and if q ≤ q0 the best job is chosen (exploitation), otherwise a
job is chosen (exploration).

 The heuristic used by ants to compute the heuristic information is given by equa-
tion 8:

 (8)

where dij is the total weighted tardiness for the partial sequence of jobs generated
so far. The proposed solution construction procedure could be summarized on Table
V.

Table 5. Solution Construction Algorithm

Begin

While number of jobs not met do

Select a new job

Add new job to the sequence

Perform Local Pheromone Update

EndWhile

Apply LocalSearch

Return Constructed Solution

End

The ants construct the solution as follows: each ant starts from a randomly selected

job. Then, at each construction step the ant selects a new job through a transition rule
(equation 6). Each ant keeps a “memory” of its path, and the subsequent job is chosen

among the unscheduled jobs. At each construction step, an ant probabilistically
chooses the next job to add to the sequence. The probabilistic rule is biased by pher-
omone values and heuristic information. Once a job is added to the sequence, the
local pheromone is updated. This process is repeatedly applied until all jobs are
scheduled. Before returning the generated solution, it still undergoes a local search
algorithm. The goal is to improve the current solution by iteratively moving to a
neighbor solution selected from a neighborhood of solutions according to a defined
rule, which in this case, is the minimization of the total weighted tardiness. This pro-
cess is quite costly in terms of computational time, but improves significantly the
generated solution. However, we will address this process in more detail in the subse-
quent sections.

5.2 Pheromone Update Rule

The ACS pheromone update rule consists of both local and global update rule. The
local pheromone update is performed by each ant after adding a new job to the partial
sequence, and is given by equation 9:

 (9)

where ρ ∈ [0,1] is the pheromone decay coefficient, and τ0 is the initial trail inten-
sity (equation 10):

 (10)

where WT is the total weighted tardiness for a sequence generated by the EDD rule
and n is the number of jobs. The main goal of the local update rule is to make the
decision of appending job j on position i less desirable for the others ants so that the
exploration of different sequences is favored [12].

The global pheromone update is applied at the end of each iteration by only one
ant, which can be either the iteration-best or best-so-far [4]. We followed the best-so-
far strategy, where the ant with the best solution so far contributes to the pheromone
trail update, according to the equation 11:

 (11)

where ∆τij=1/WT* for all edges (i, j) belonging to the best solution found so far
(WT* is the total weighted tardiness of the best solution).

5.3 Local Search

Local Search performs a blind search, since they only accept sequential solutions
which improve the value of the objective function. Essentially, consists of moving
from one solution to another, in the neighborhood, according to some defined rules or
local changes. The sequence of solutions trajectory depends heavily on the initial

solutions and on the neighborhood generation mechanisms adopted which defines the
neighboring structure [22]. In this work, we considered adjacent pairwise interchange
as a neighborhood structure to solve the problem at hand [21]. The main weakness of
basic Local Search algorithms is their inability to escape from local optima.

The local search strategy described above is applied to all sequences constructed
by the artificial ants. This strategy produces better results but is more costly in terms
of computational time.

5.4 Illustrative example

A chemical industry produces different types of products, but can only make one at a
time. The production manager has to decide on the issue of sequencing of 5 tasks on a
single machine (Table VI). For each task j (j = 1, ..., 5), pj is the processing time, dj
the delivery date and wj the penalty associated with task j per unit of time delay. The
number of admissible solutions for this instance of problem is 5! = 120. The size of
the problem is reduced to facilitate their understanding. It becomes clear that in this
situation would be feasible the enumeration of all admissible solutions and select the
best. However, this is no longer feasible for instances with larger dimension.

Table 6. Illustrative example

Job j pj dj wj

1 2 5 1

2 4 7 6

3 1 11 2

4 3 9 3

5 3 8 2

Table 7. ACS Step by step

Ant i Solutioni f

1 [2 4 5 3 1] 12.0

2 [1 3 2 4 5] 13.0

3 [4 2 1 3 5] 14.0

4 [1 2 4 3 5] 10.0

5 [1 2 3 4 5] 13.0

6 [4 3 2 5 1] 20.0

7 [1 2 4 3 5] 10.0

8 [3 1 2 4 5] 13.0

9 [2 5 4 3 1] 11.0

10 [1 3 2 4 5] 13.0

11 [3 1 4 2 5] 28.0

12 [3 1 2 4 5] 13.0

13 [2 5 4 3 1] 11.0

14 [3 4 2 5 1] 20.0

15 [2 3 4 5 1] 14.0

16 [4 5 2 3 1] 26.0

17 [2 5 4 3 1] 11.0

18 [2 5 3 4 1] 14.0

19 [1 2 4 3 5] 10.0

20 [3 1 2 4 5] 13.0

21 [3 2 5 4 1] 14.0

22 [1 2 4 3 5] 10.0

23 [1 2 4 3 5] 10.0

24 [3 1 2 4 5] 13.0

25 [1 2 4 3 5] 10.0

Consider the ACS with 25 ants, a pheromone evaporation rate of 80%, α values

(scale the heuristic value) and β (importance of pheromone) equal to 1.
Initially the pheromone is zero.

From proposed ACS execution, we obtained the solutions presented in Table VII,
where it is possible to verify the quality evolution of the paths chosen by the ants. The
paths are constructed incrementally and randomly according to the values of phero-
mone and heuristic information, with an increased probability of choosing a solution
with better heuristic value and greater pheromone. It is possible to confirm that, in the
end of the process, ants choose better paths, with a propensity to choose the best so
far.

Table 8. Final Pheromone Matix

Job 1 2 3 4 5
1 0,089 0,083 0,016 0,013 0,013
2 0,011 0,011 0,011 0,1 0,013
3 0,013 0,013 0,011 0,013 0,073
4 0,013 0,013 0,083 0,011 0,013
5 0,013 0,011 0,013 0,013 0,011

Fig. 2. ACS scheduling plan

At the end of the twenty five iterations, the path with more pheromone is [1 2 4 3
5], with a heuristic f = 10, which represents the best solution found by ACS (Table
VIII). This path was chosen by 6 ants. The scheduling plan is illustrated in Figure 2.

6 Computational Study

A software tool was developed to perform the computational study aiming to ana-
lyse and evaluate the performance of ACS, on resolution of SMSP for minimization
of total weighted tardiness. The computational tests were carried out on a PC with
Intel Xeon W3565 at 3.20 GHz, with the ACS coded in Java. The ACS performance
was tested on 75 benchmark instances of WT problem for different sizes n=40, n=50,

n=100, available at OR-Library [23]. We select for testing the first 25 instances for
each size and not their instances where better results were obtained.

In this section a computational study is carried out in order to analyse SI based al-
gorithms – ACS - on the resolution of benchmark problems considering quality of
solutions and computational times.

Performance analysis of EC is a necessary task to perform and must be done on a
fair basis. A theoretical approach is generally not sufficient to evaluate an MH based
algorithm. To evaluate the performance experimentally and/or comparing in a sys-
tematized way, the following three steps must, generally, be considered [20]:

• Experimental design: the goals of the experiments, the selected instances, and
optimization criteria have to be defined.

• Measurement: the measures to compute are selected. After executing the different
experiments, statistical analysis is applied to the obtained results. The analysis of
performance must be done based on state-of-the-art optimization algorithms dedi-
cated to the problem.

• Reporting: the results must be systematized in a comprehensive way, and an anal-
ysis is carried out following the defined goals. Another important issue is related
with insurance of the reproducibility of the computational experiments.

ACS based algorithm is evaluated on the resolution of WT instances and its effi-
ciency and effectiveness will be analysed. Statistical analysis is performed in order to
estimate the significance and confidence of the obtained results.

We pretend to evaluate the adequacy of Swarm Intelligence based algorithms to
the WT resolution. ACS effectiveness and efficiency is evaluated on 75 benchmark
instances of WT problem for different sizes (25 instances with 40, 50 and 100 jobs,
respectively).

We consider that academic benchmark problems are an effective evaluation
framework since they have been used by multiple authors and diverse application
areas over the years, allowing an efficient comparing framework with previous work
related on literature. Additionally, they permit an insight of global behavior and per-
formance on a class of scheduling problems which are our main objective.

6.1 Parameter Tuning

The ACS algorithm has a certain number of parameters that need to be set appro-
priately [18]. As such, we performed a preliminary study to identify which set of val-
ues would yield better results for minimizing total weighted tardiness, for each size in
consideration. The study focused on testing different values for α and β, which are
used to regulate the relative influence of the pheromone and heuristic information; m,
the number of ants; ρ, the pheromone evaporation rate; and q0, the probability of
choosing the next job as defined on equation 6. In Table IX we present the different
tested values, as well as the standard deviation σ for obtained results.

The tests were performed by using four different sets of values, following some
conclusions referred in [10]. For each set we computed n=1 simulations for each in-
stance under analysis, as shown in Table IX. The conclusions from the obtained re-
sults could be summarized:

• α: This parameter is usually set to 1, and most of the times is not even considered;

• β: The value of β equal to 5 produced better results during most of the runtimes;
• m: The value of ants defined for each instance resulted in a good anytime perfor-

mance;
• ρ: Higher values of ρ produced better results;
• q0: Good values of q0 tend to be close to 1. As such, we used 0.98, which proved to

be a good choice.

Table 9. Parameter tuning

No. jobs α β m ρ q0 Σ

40

1 1 30 0.80 0.90 0.1546 ± 0.1616

1 2 30 0.10 0.98 0.1746 ± 0.1588

1 5 30 0.30 0.98 0.1273 ± 0.0932

1 5 30 0.60 0.98 0.0909 ± 0.0839

50

1 1 50 0.80 0.90 0.1939 ± 0.2582

1 2 50 0.10 0.98 0.1942 ± 0.1948

1 5 50 0.30 0.98 0.1688 ± 0.1523

1 5 50 0.60 0.98 0.1226 ± 0.1073

100

1 1 80 0.80 0.90 0.5253 ± 0.5659

1 2 80 0.10 0.98 0.4176 ± 0.3776

1 5 80 0.30 0.98 0.4285 ± 0.3868

1 5 80 0.60 0.98 0.3969 ± 0.3753

The standard deviation presented in Table IX shows the variation in the results
relatively to the average deviation from the optimum value. In fact, a low deviation
indicates that the results tend to be very close to the average value.

After analyzing the results we concluded that the last set of values (highlighted in
bold), could yield better results in the computational tests, as such the implemented
ACS algorithm was parameterized with this values. The obtained results are presented
and discussed in the next section.

6.2 Discussion of Results

Initially, we developed n=5 simulations for each instance under analysis. In order
to analyze the obtained results, performance measures were computed: the best, the
average, and worst value and the deviation error from the best obtained value to the
optimal (best known available in OR-Library [23]). The relative percentage of devia-
tion error is determined by %error= (Best-Optimal)/Best formula.

Table 10. Results for 5 runs

No. jobs Average time (s) σ No. of optimal

40 15 0.0366 ± 0.0391 8

50 50 0.0552 ± 0.0489 4

100 1086 0.1872 ± 0.1714 0

The obtained solutions values by the proposed ACS algorithm are presented in
Figure 3 for n=40, Figure 4 for n=50 and Figure 5 for n=100, also in Table X is pre-
sented the average computational time, the standard deviation, and the number of
optimum values.

The following figures presents the results obtained from the performed tests. Each
figure shows the average deviation, as well as the deviation of each intances from the
optimum value. Through the figures is also possible to identify the instances were the
optimum value was reached, i.e., the ones were the deviation value is zero. Some of
this instances appear to have reached the optimum value, when in fact there is a slight
deviation that is not noticeable in the figures. For that reason we present in Table X
the total number of optima for n=40, n=50, and n=100.

Fig. 3. Results obtained with 5 runs for n=40

In general most of the instances were solved in relatively short computational
time. For n=40 the average time was 15 seconds, as for n=50 the average time was 50
seconds. Only the instances of n=100 took more time to be solved (~18 minutes).

As an extension to our study, we tested ACS again, and see if the solution already
obtain could improve. Therefore, the number of simulations was increased to n=20
and the exactly same set of parameters were used. The results obtained are presented
in Table XI supported by Figure 6 for n=40, Figure 7 for n=50 and Figure 8 for
n=100.

Fig. 4. Results obtained with 5 runs for n=50

Fig. 5. Results obtained with 5 runs for n=100

Table 11. Results for 20 runs

No. jobs Average time (s) σ No. of optimal

40 14 0.0172±0.0209 11

50 49 0.0374±0.0328 5

100 1072 0.1524±0.1523 0

The average computational time remained the same, and the results improved sig-

nificantly. As shown in Table XI, and presented in Figure 6, Figure 7, and Figure 8
the number of optima increased. Moreover, in most of the instances the deviation
from the optimum value decreased. These results support the assumption that the
outcome of running the ACS more times would be to find the best known solutions on
all instances.

Fig. 6. Results obtained with 20 runs for n=40

Fig. 7. Results obtained with 20 runs for n=50

Fig. 8. Results obtained with 20 runs for n=100

6.3 Significance analysis

The boxplot from Figure 9 allows the analysis of confidence interval, making its
synthesis and compared mean values by ACS and optimal solutions in terms of mini-
mization for Weighted Tardiness (WT) with 40 jobs. From the boxplot analysis we
can conclude that ACS has been effective on the resolution of WT considering that its
obtained mean values were similar to the optimal solutions (in some instances the best
known). It is not clear, from the graph analysis, if exist significant difference of the
performance of ACS related with optimal solutions.

Additionally, some statistical sampling were retrieved to summarize important fea-
tures from the observed instances From the analysis of statistical sampling summary
based on WT minimization (Table XII), it is possible to conclude that does not exist
statistic evidence of the difference significance between optimal solutions and ACS
performance on WT resolution for 40 jobs. This conclusion can be supported either
by central tendencies and dispersion measures. This evidence can be observed even
on median and dispersion indicators. Regarding variability, through standard devia-
tion and interquartile range analysis it possible to conclude that ACS presents similar
variability.

Fig. 9. Boxplot for WT with 40 jobs

Considering a significance level α=5%, it is possible to conclude that, in general
the difference in performance proposed ACS and optimal solution is not statistically
significant. A paired-samples t-test indicated that, with a confidence level of 95%,
there is no statistically significant difference between performance of ACS (M =
48607.76, SD=46928.024), and optimal solutions related on literature (M=43494.40,
SD= 44745.846) t(24) = -1, p=.327. These results could suggest that ACS have been
effective on WT resolution for 40 jobs, considering that does not exist statistical evi-
dence that its performance is significantly different than optimal solutions for the
same instances for WT with 40 jobs.

Table 12. Statistical Sampling Summary based on WT40

Optimal ACS

Mean 43494,40 48607,76

Median 19312,00 26914,00

Variance 2002190770,083 2202239475,023

Std. Deviation 44745,846 46928,024

Interquartile Range 70854 71289

Skewness ,791 ,634

Kurtosis -,737 -1,073

Fig. 10. Boxplot for WT with 50 jobs

Table 13. Statistical Sampling Summary based on WIT50

Optimal ACS

Mean 67110,40 70139,44

Median 43504,00 47627,00

Variance 5296763112,167 5234325587,590

Std. Deviation 72778,864 72348,639

Interquartile Range 87856 91550

Skewness 1,266 1,179

Kurtosis ,724 ,564

From boxplot, Figure 10, analysis we can conclude that there are outliers or ex-
treme values and the analysis of location, dispersion and asymmetry of data, making
its synthesis by ACS, and optimal solutions, that ACS has been effective on the reso-
lution of WT considering that its obtained mean values were similar to the optimal
solutions (in some instances the best known). It is not clear, from the graph analysis,
the existence of significant difference of the performance of ACS related with optimal
solutions.

From the analysis of statistical sampling summary based on WT minimization
(Table XIII), it is possible to conclude that exist some statistic evidence of the differ-
ence significance between optimal solutions and ACS performance on WT resolution
for 50 jobs. This conclusion can be supported either by central tendencies and disper-
sion measures. This evidence can be observed even on median and dispersion indica-
tors. Regarding variability, through standard deviation and interquartile range analysis
it possible to conclude that ACS presents different variability.

Considering a significance level α=5%, it is possible to conclude that, in general
the difference in performance proposed ACS and optimal solution is significant.

A paired-samples t-test indicated that, with a confidence level of 95%, there is sta-
tistically significant difference between performance of ACS (M=70139.44,
SD=72348.64), and optimal solutions related on literature (M= 67110.40, SD=
72778,86) t(24) = -4,652, p<0.001. These results suggest that ACS performance has
decreased on WT resolution for 50 jobs when compared with 40 jobs considering that
exist statistical evidence that its performance is significantly different than optimal
solutions for the same instances for WT with 50 jobs.

The boxplot from Figure 11 depicts the values of obtained solutions by ACS on
the WT resolution of 25 instances in analysis with 100 jobs. From the boxplot analy-
sis it is possible to conclude about difference of the performance of ACS related with
optimal solutions.

Fig. 11. Boxplot for WT with 100 jobs

Table 14. Statistical Sampling Summary based on WT100

Optimal ACS

Mean 268357,52 302118,04

Median 178840 249518

Variance 69219509079,2 70906890332,5

Std. Deviation 263096 266283,5

Interquartile Range 462725 480355

Skewness ,809 ,594

Kurtosis -,337 -,711

From the analysis of statistical sampling summary based on WT minimization

(Table XIV), it is not possible to conclude about statistic evidence of the difference
significance between optimal solutions and ACS performance on WT resolution for
100 jobs. This conclusion can be supported either by central tendencies and dispersion
measures. This evidence can be observed even on median and dispersion indicators.
Regarding variability, through standard deviation and interquartile range analysis it
possible to conclude about differences on performance by ACS when comparing with
optimal solutions.

Considering a significance level α=5%, it is possible to conclude that, in general
the difference in performance proposed ACS and optimal solution is statistically sig-
nificant. A paired-samples t-test indicated that, with a confidence level of 95%, there
is statistically significant difference between performance of ACS (M=302118,04,
SD=266283,5), and optimal solutions related on literature (M= 268357,5, SD=
263096,01) t(24) = -5,959, p<0.001. These results suggest that exist statistical evi-
dence that its performance is significantly different than optimal solutions for the
same instances for WT with 100 jobs.

Fig. 12. Error Bar of the WT for all instances

Table 15. Statostical Sampling Summary based on WT

Optimal ACS

Mean 126320,77 139080,95

Median 53208,00 75267,00

Variance 35134539958,2 38921816643,2

Std. Deviation 187442,1 197286,1

Interquartile Range 142301 139647

Skewness 2,241 2,045

Kurtosis 4,912 3,764

Previous computational and statistical tests indicate that ACS presents effective-

ness on the resolution of WT for 40 jobs, but its performance decreases for 50 and
100 jobs, which can indicate that parameter tuning, must be improved in order to
increase ACS performance for those class of instances. Following, in order to evalu-
ate the overall performance of ACS on the resolution of 75 instances of WT schedul-
ing problem with 40, 50 and 100 jobs, additional statistical analysis will be conducted
to compare the overall performance of ACS when compared with respective optimal
solutions.

From the analysis of statistical sampling summary based on WT minimization
(Table XV), it is possible to conclude that exist statistic evidence of the difference on
the ACS performance of WT resolution. This conclusion can be supported either by
central tendencies and dispersion measures. This evidence can be observed even on
median and dispersion indicators. Regarding variability, through standard deviation
and interquartile range analysis it possible to conclude that ACS presents similar vari-
ability.

Considering a significance level α=5%, it is possible to conclude that, in general
the difference in performance proposed ACS and optimal solution is statistically sig-
nificant. A paired-samples t-test indicated that, with a confidence level of 95%, there
is statistically significant difference between performance of ACS (M= 139080.95,
SD=197286.13), and optimal solutions related on literature (M=126320.77, SD=
187442.1) t(74) = -5.000, p<0.001. These results suggest that exist statistical evi-
dence that its performance is significantly different than optimal solutions for the
same WT instances with 100 jobs.

From the obtained results we can conclude that proposed ACS and its parameteri-
zation is adequate for 40 jobs instances considering that obtained results indicate that
the difference in performance of ACS and optimal solution is not statistically signifi-
cant. For instances with greater dimensions parameter tuning must be increased, con-
sidering a degradation of computational time.

7 Conclusions and Future Work

In this paper, we described some guidelines for ACS based software developing
tools to study the effectiveness and efficiency of ACS in the optimization of total

weighted tardiness for SMSP. More than developing algorithms with unquestionable
practice utility, the main purpose of this paper was to illustrate, through more simple
scheduling problems, the potential effectiveness and efficiency of using MH ap-
proaches, with special emphasis on SI based techniques for scheduling problem solv-
ing. The obtained results show that proposed ACS algorithm was effective for the
instances studied, being possible to find good solutions in short time, i.e., a few CPU
seconds. As future work, we will extend our ACS algorithm to the job-shop schedul-
ing problem, where the jobs are distributed across different machines.

Acknowledgments
This work is supported by FEDER Funds through the “Programa Operacional Fac-
tores de Competitividade - COMPETE” program and by National Funds through FCT
“Fundação para a Ciência e a Tecnologia” under the project: FCOMP-01-0124-
FEDER-PEst-OE/EEI/UI0760/2011 and PTDC/EME-GIN/109956/2009. . This work
is partially supported in the framework of the IT4 Innovations Centre of Excellence
project, reg. no. CZ.1.05/1.1.00/02.0070 by operational programme ’Research and
Development for Innovations’ funded by the Structural Funds of the European Union
and state budget of the Czech Republic, EU.

References
1. K. R. Baker, “Introduction to Scheduling,” vol. 32, Brussels, 1992.
2. K. R. Baker, D. Trietsch,“Optimization methods for the single machine probelm,” in Prin-

ciples of Sequencing and Scheduling, 1st ed. New York: Wiley, 2009, pp. 34-56.
3. M. Dorigo, “Swarm Intelligence,” New York: Springer, 2007 (4)
4. M. Dorigo, M. Birattari, and T. Stützle, “Ant Colony Optimization - Artificial Ants as a

Computational Intelligence Technique,” IEEE Computational Intelligence Magazine,
2006.

5. E. L. Lawer, “A pseudopolinomial algorithm for sequencing Jobs to Minimize Total Tar-
diness,” Annals of Discrete Mathematics, 1997, pp. 331-342.

6. R. G. Reynolds, “An Introduction to Cultural Algorithms,” in Proceedings of the 3rd An-
nual Conference on Evolutionary Programming, World Scienfific Publishing, 1994, pp.
131–139.

7. D. Merkle, and M. Middendorf, “On solving permutation scheduling problems with ant
colony optimization,” International Journal of Systems Science, vol. 36, no. 5, 2005, pp.
255-266.

8. C. Liao, and H. Juan, “An ant colony optimization for single-machine tardiness schedul-
ing with sequence-dependent setups,” Computers & Operations Research , vol. 34, 2007,
pp. 1899-1909.

9. B. Yagmahan, and M. M. Yenisey, “Ant colony optimization for multi-objective flow shop
scheduling problem,” Computers & Industrial Engineering , vol. 54, 2008, pp. 411-420.

10. D. Anghinolfi, M. Paolucci, “A new ant colony optimization approach for the single ma-
chine total weighted tardiness scheduling problem,” International Journal of Operations
Research, vol. 5, no. 1, 2008, pp. 1-17.

11. N. R. Srinivasa Raghavan, M. Venkataramana, “Parallel processor scheduling for minimiz-
ing total weighted tardiness using ant colony optimization,” The International Journal of
Advanced Manufacturing Technology, vol. 41, no. 9-10, 2009, pp. 986-996.

12. M. den Besten, T. Stützle, and M. Dorigo, “Ant colony optimization for the total weighted
tardiness problem,” in Proc. PPSN-VI, ser. LNCS, M. Schoenauer et al., Eds., vol. 1917,
Springer Verlag, 2000, pp. 611-620.

13. M. Dorigo, and L. M. Gambardella, “Ant Colony System: A cooperative learning approach
to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, vol.
1, no. 1, pp. 53-66, 1997.

14. M. Dorigo, Optimization, Learning and Natural Algorithms, PhDThesis, Politecnico di Mi-
lano, Italy, (in Italian), 1992.

15. Marco Dorigo and Thomas Stützle, Ant Colony Optimization, MIT Press, 2004.
16. M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search strategy,” Dipar-

timentodi Elettronica, Politecnico di Milano, Italy, Tech. Rep. 91-016, 1991.
17. M. Dorigo and L.M. Gambardella, “Ant colonies for the traveling salesman problem,” Bi-

oSystems, vol. 43, no. 2, pp. 73–81, 1997.
18. L.M. Gambardella and M. Dorigo, “Solving symmetric and asymmetric TSPs by ant colo-

nies,” in Proc. 1996 IEEE International Conference on Evolutionary Computation
(ICEC’96), T. Baeck et al., Eds. IEEE Press, Piscataway, NJ, pp. 622–627, 1996.

19. T. Stützle et al., Parameter Adaptation in Ant Colony Optimization, IRIDIA, Bruxelles,
Belgium, Tech. Rep. TR/IRIDIA/2010-002, Jan. 2010.

20. El-Ghazali Talbi, Metaheuristics – From Design to Implementation, Wiley, 2009.
21. A. Madureira, I. Pereira and Diamantino Falcão, Ant Colony System Based Approach to

Single Machine Scheduling Problems — Weighted Tardiness Scheduling Problem, Inter-
national Fourth World Congress on Nature and Biologically Inspired Computing
(NaBIC'12), 5-9 de November, México, 2012.

22. M. Pirlot, “General Local Search Method,” European Journal of Operational Research,
vol. 92, 1996, pp. 493-522.

23. OR-Library - http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

