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Abstract. This paper describes some developing issues for ACS based software 
tools to support decision making process and solve the problem of generating a 
sequence of jobs that minimizes the total weighted tardiness for a set of jobs to 
be processed in a single machine. An Ant Colony System (ACS) based algo-
rithm performance is validated with benchmark problems available in the OR 
library. The obtained results were compared with the optimal (best available re-
sults in some cases) and permit to conclude about ACS efficiency and effec-
tiveness. The ACS performance and respective statistical significance was eval-
uated. 
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1 Introduction 

An important aspect of manufacturing organizations is the improvement of re-
source utilization. A classical approach of resource utilization optimization is through 
Scheduling Theory developments. As defined in Baker [1], scheduling is concerned 
with the problem of allocating scarce resources to activities over time. Scheduling 
problems are in general nontrivial and exhaustive enumeration of the scheduling solu-
tions set is not usually efficient. 

Scheduling problems are generally complex, large scale, constrained, and multi-
objective in nature, and classical operational research techniques are often inadequate 
to effectively solving them [2]. With the advent of computation intelligence, there is a 
renewed interest in solving scheduling problems through Swarm Intelligence (SI) 
based techniques.    

SI is an innovative computational and behavioral paradigm for solving distributed 
problems based on self-organization. SI main principles are similar to those underly-
ing the behavior of natural systems consisting of many individuals, such as ant colo-
nies and flocks of birds [3][4]. SI is continuously incorporating new ideas, algorithms, 
and principles from the engineering and basic science communities [3][4]. 



SI represents a family of approximate optimization techniques that gained a lot of 
popularity in the past two decades in Metaheuristics research area which is identified 
as a field of optimization in Computer Science and Operations Research that are relat-
ed to algorithms and Theory of Computational Theory. They are among the most 
promising and successful optimization techniques. 

In this paper a set of general guidelines for developing a software tool for solving 
an optimization problem and support computational study and decision making is 
described. An Ant Colony System (ACS) based algorithm is proposed to solve the 
Single Machine Weighted Tardiness Scheduling Problem (WT) and its efficiency and 
effectiveness is analyzed.   

The remaining sections are organized as follows. In Section 2 the Weighted Tardi-
ness problem and some approaches presented in the literature for its resolution are 
presented. Theoretical foundations, the biological motivation and fundamental aspects 
of SI paradigm with focalization on the design and implementation of an ACS algo-
rithm and some recent applications of ACS to WT resolution are summarized in sec-
tion 3. Section 4 a set of general guidelines for developing a software tool for solving 
an optimization problem is systematized. In Section 5 the ACS proposed approach 
developing for WT is described. Section 6 presents computational study and discusses 
obtained results. Finally, the paper presents some conclusions and puts forward some 
ideas for future work. 

2 Problem Definition 

One important scheduling problem consists in sequencing a set of jobs for pro-
cessing on a single processor or machine. The study of Single Machine Scheduling 
Problem (SMSP) is identified to be very important for several technological and eco-
nomic reasons, probably the most relevant of which is that good solutions to this 
problem provide a relevant support to manage and model the behavior of complex 
systems. In these systems it is important to understand the working of their compo-
nents, and quite often the SMSP appears as an elementary component in a larger 
scheduling problem [1][2]. Sometimes the basic SMSP is solved independently, and 
then results are incorporated into the larger and more complex problem. For example, 
in a multistage multiple machine problems there are often a critical machine, the bot-
tleneck, whose processing capacity is lower than the necessary. The analysis and 
treatment of the bottleneck as a SMSP may determine the properties of the entire 
schedule. 

Let us consider the problem of scheduling n jobs for processing without interrup-
tion, on a single machine that can handle only one job at a time. For each job j 
(j=1,..,n), let pj be its processing time, dj its due date and wj the penalty incurred for 
each unit of time late. The processing of the first job begins at time t =1. The tardiness 
of a job is given by Tj=Max {tj + pj – dj, 0} where tj is the start time of job j. The 
objective is to find a sequence that minimizes the sum of Weighted Tardiness (WT) 
defined on equation 1: 



 , with  (1) 

The single machine problem, here considered is characterized by the following 
main conditions: 

• a set of n independent jobs (j=1,..,n) is available for processing at time zero and the 
job descriptors are known in advance; 

• a machine is continuously available and is never kept idle while working is wait-
ing;  

• the set-up times for the jobs are independent of job sequence and can be included 
in processing times;  

• jobs are processed to completion without preemption. 

Under these conditions there is a one-to-one correspondence between a sequence 
of these n jobs and a permutation of the job indices. In this work we consider a solu-
tion such a sequence of jobs where i is the ith job position in the sequence. The total 
number of different solutions to the SMSP under these conditions is n!. 

The SMSP for minimizing total weighted tardiness 1||WT is NP-complete [2][5]. 
Optimal algorithms for this problem would therefore require a computation time that 
grows exponentially with the problem size, presenting exponential complexity. 
Hence, only small sized instances of this problem can be solved in an efficient way. 
Several branch-and-bound procedures and dynamic programming techniques have 
been proposed in literature [5][6]. As indicated in [6] the simple dispatching heuristics 
(EDD, SWPT, COVERT or AU) do not consistently produce good quality solutions.  
In recent years, much attention has been dedicated to Metaheuristic that are consid-
ered to be efficient tools for solving hard combinatorial optimization problems.  

Ant Colony Optimization (ACO) is probably the most successful example of artifi-
cial/engineering Metaheuristic based optimization techniques with numerous applica-
tions to real-world problems[4], and for minimization of total weighted tardiness. 
Merkle and Middendorf [7] describe a contribution for solving permutation problems 
to SMSP for Total Weighted minimization. Liao and Juan [8] propose an ACO to 
minimize the tardiness in a SMSP with utilization of setup times. In Yagmahan and 
Yenisey [9] a multi-objective scheduling problem approach based on ACO for sched-
uling to reduce the total scheduling cost is proposed. Anghinolfi and Paolucci [10] 
describe a new ACO approach to face the single machine total weighted tardiness 
scheduling with sequence dependent setup times problem. In Srinivasa Raghavan and 
Venkataramana [11] a parallel processor scheduling for minimizing total weighted 
tardiness using ant colony optimization is proposed.  Additionally, some relevant 
works could be identified, see for example [1][12][13]. 

3 Ant Colony Optimization 

Ant Colony Optimization (ACO) has been formalized as a Metaheuristic by Dorigo 
and collaborators [3][14] that are inspired and  mimic natural metaphors to solve 



complex optimization problems . A Metaheuristic can be defined as a set of algorith-
mic concepts that can be used to define heuristic methods applicable to a wide range 
of different optimization problems [4].  

A subset family of Metaheuristics, SI is considered an innovative and creative ap-
proach to problem solving that takes inspiration from the collective intelligence of 
swarm of biological populations, and was discovered through simplified social behav-
iors model simulation of insects and other animals [4][15]. ACO algorithm is among 
the most promising SI inspired optimization class of optimization techniques. 

Table 1. Analogy between Natural and Artificial Ants 

Natural Ant Colony Artificial Ant Colony 

Ant Agent 

Ant Colony Set of Ants/Iterations 

Pheromone Diversity Mechanism 

Path Solution 

Evaporation Pheromone update 

 
The ACO algorithm takes inspiration from the foraging behavior of some ant spe-

cies (Table I). These ants deposit pheromone on the ground in order to mark some 
favorable path that should be followed by other members of the colony. ACO exploits 
a similar mechanism for solving optimization problems. The ACO algorithm is a 
probabilistic technique for solving computational problems which can be reduced to 
finding good paths through graphs. For this reason description of ACO algorithms are 
normally accompanied through Traveling Salesman Problem (TSP) notation and illus-
trative examples [16-18]. This algorithm, initially proposed by Marco Dorigo in his 
PhD thesis [14], is a member of ACO family and it constitutes some Meta-Heuristic 
optimizations. 

The first proposed ACO algorithm is known as Ant System [16] that was aiming to 
search for an optimal path in a graph. It was based on the foraging behavior of ants 
seeking a path between their colony and a source of food. The original idea has since 
diversified to solve a wider class of numerical problems, and as a result, several algo-
rithms have emerged, drawing on several aspects of the behavior of ants [4]. 

Table 2. Non-exhaustive ACO algorithms list [4] 

Algorithm Authors Year 

Ant System(AS) Dorigo et al. 1991 

Elitist AS Dorigo et al. 1992 

Ant-Q Gambardella & Dorigo 1995 

Ant Colony System Dorigo & Gambardella 1996 

MAX-MIN AS Stutzle&Hoos 1996 



Hyper-Cube AS Blum et al. 2001 

 
The designation ACO is a generic term that includes algorithms based on the be-

havior of ants. Since the early 90s, when the first ACO algorithm - Ant System - was 
proposed in [16], different algorithms (Table II) and successful applications have 
been described and  a substantial theoretical results have becoming available that 
provides useful guidelines to researchers and practitioners in further applications of 
ACO based algorithms [17-19]. 

The general ACO algorithm is described in Table III. After initialization, the ACO 
iterates over three main steps: at each iteration, a number of solutions are constructed 
by the ants; these solutions could be then improved, optionally, through a local 
search, and finally the pheromone is updated through two possible events: evapora-
tion and by increasing the pheromone levels associated with a chosen set of good 
solutions. 

Table 3. Ant Colony Optimization Algorithm 

Set ACO parameters.  

Initialize pheromone trails   

While termination criteria not met do 

Construct AntSolutions 

Apply Localsearch (optional) 

Update Pheromones 

EndWhile 

 
A more detailed description of the three phases can be stated as follows[4]: 

• ConstructAntSolutions: A set of m artificial ants constructs solutions from ele-
ments of a finite set of available solution components C = {cij }, i = 1, . . . , n, j = 
1, . . . , |Di|. A solution construction starts from an empty partial solution sp = ∅. At 
each construction step, the partial solution sp is extended by adding a feasible solu-
tion component from the set N(sp) ⊆ C, which is defined as the set of components 
that can be added to the current partial solution sp without violating any of the con-
straints in Ω. The process of constructing solutions can be regarded as a walk on 
the construction graph GC = (V, E) as stated in [4]. The selection of a solution 
component from N(sp) is guided by a stochastic mechanism, which is biased by the 
pheromone associated with each of the elements of N(sp). The rule for the stochas-
tic choice of solution components vary across the different proposed ACO algo-
rithms but, in all of them, it is inspired by the Goss model (experimental setup for 
the double bridge experiment) of the behavior of real ants assuming that at a given 



moment in time m1 ants have used the first bridge and m2 the second one, the 
probability p1 for an ant to choose the first bridge is given by [4] : 
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where parameters k and h are to be fitted to the experimental data. Monte Carlo 
simulations showed a very good fit for k ≈ 20 and h ≈ 2. 

• ApplyLocalSearch: Once solutions have been constructed, and before updating the 
pheromone, it is common to improve the solutions obtained by the ants through a 
local search. This phase, which is highly problem-specific, is optional although it is 
usually included in state-of-the-art ACO algorithms. 

• UpdatePheromones: The aim of the global pheromone update is to increase the 
pheromone values associated with good or promising solutions, and to decrease 
those that are associated with bad ones. Usually, this is achieved by decreasing all 
the pheromone values through pheromone evaporation, and by increasing the pher-
omone levels associated with a chosen set of good solutions. 

Several ACO algorithms have been proposed in the literature, which differ in some 
decisions characterizing the construction of solutions and update pheromone proce-
dures [4]. Among the most successful variants we have chosen the ACS algorithm to 
apply to the SMSP to WT resolution.    

The most interesting contribution of ACS [4][13] is the introduction of a local 
pheromone update and the pheromone update performed at the end of the construction 
process (named offline pheromone update). 

ACS algorithm can be stated as follows [13]: m ants are initially positioned on n 
cities chosen according to some initialization rule (randomly, for example). Each ant 
builds a tour (feasible solution) by repeatedly applying a stochastic greedy rule (the 
state transition rule). While constructing its tour/path, an ant also modifies the amount 
of pheromone on the visited edges (cities) by applying the local updating rule. Once 
all ants have terminated their tour/path, the amount of pheromone on edges/cities is 
modified again, by global updating rule applying. Ants are guided, in building their 
solutions, by both heuristic information (they prefer to choose short edges), and by 
pheromone information (an edge with a high amount of pheromone is a very desirable 
choice). The pheromone updating rules are designed to give more pheromone to edg-
es/cities which should be visited by ants.  

The local pheromone update is performed by all ants after each construction step. 
Each ant applies it only to the last edge traversed: 

  (3) 

where ϕ ∈ [0,1]  is the pheromone decay coefficient, and τ0 is the initial value	  of	  
the	  pheromone.  

The main goal of the local pheromone update is to introduce diversity in the search 
process performed by subsequent ants during an iteration by decreasing the phero-



mone concentration on the traversed edges, ants encourage subsequent ants to choose 
other edges and, hence, probably to produce different solutions. This mechanism 
makes it less likely that several ants produce identical solutions during one iteration. 

The offline pheromone update, is applied at the end of each iteration by only one 
ant, which can be either the iteration-best(Lib) or the best-so-far(Lbs). However, the 
update formula is slightly different: 
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where τij = 1/Lbest , where Lbest can be either Lib or Lbs. 
Another important difference between ACS and AS is in the decision rule used by 

the ants during the construction process. 
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In ACS, the so-called pseudorandom proportional rule is used by the ants during 
the construction process: the probability for an ant to move from city i to city j de-
pends on a random variable q uniformly distributed over [0,1], and a parameter q0; if 
q≤q0, { }βητ ililcijj  N(Sp)argmax ∈=   otherwise Equation 5 is used. 

Additional information about ACO based algorithms details of implementation 
could be found in [4][13]. 

4 Developing Issues for Optimization Approaches 

The first aspect to be considered when identifying a decision making problem - op-
timization problem - and the need for specifying a tool for its resolution refers to 
problem modeling.  

The mathematical model is built from the formulation of the problem and can be 
inspired by theoretical models related in the literature. This will reduce the problem to 
well-studied optimization models that are in general simplifications of real world 
problems.  

Once the problem is modeled, the following stages are considered relevant for op-
timization approaches development (Figure 1), following a set of general guidelines 
systematized by Talbi[20], for solving a given optimization problem. 



Requirements	  of	  the	  application	  (e.g.	  search	  
time,	  quality	  of	  solutions,	  robustness)

Problem	  Modeling

When	  use	  
MetaHeuristics?	  

MH	  Design

1	  -‐Commom	  concepts	  for	  MetaHeurístics:
	  	  	  	  	  -‐	  Representation
	  	  	  	  	  -‐	  Guiding	  objective	  function
	  	  	  	  	  -‐	  Constraint	  handling

2	  -‐	  MetaHeurístics	  selection
	  	  	  	  -‐	  Single	  solution	  based	  MetaHeurístics
	  	  	  	  -‐	  Population	  based	  MetaHeurístics

MH	  Implementation
	  	  	  	  	  -‐	  From	  scratch	  or	  non	  reuse
	  	  	  	  	  -‐	  Code	  reuse
	  	  	  	  	  -‐	  Design	  and	  code	  reuse	  (e.g.,	  Software	  framework	  ParadisOE)	  	  	  	  	  

Parameter	  tuning
	  -‐	  Off-‐Line	  (e.g.,	  design	  of	  experiments,	  meta-‐

optimizatiom)
	  -‐	  On-‐Line	  (dynamic,	  adaptative,	  self-‐addaptative)

Complexity	  and	  difficulty	  of	  the	  problem	  
(e.g.	  NP-‐completeness,	  size,	  structure)

State-‐of-‐the-‐art	  
optimization	  algorithms

Performance	  evaluation
	  	  	  	  	  -‐	  Experiment	  design
	  	  	  	  	  -‐	  Measurements
	  	  	  	  	  -‐	  Reporting  

Fig. 1. Developing issues for optimization problem solving [20] 

Initially should be addressed, based on the state of the art of optimization methods 
(exact or approximation), the question of which optimization technique is best suited 
to solve the problem considering the complexity and difficulty of the optimization 
problem (NP class, size and structure of the instances) and the requirements of the 
optimization problem (search time, quality of solutions and robustness). 

The use of exact methods is suitable when the identified instances of the problem 
are solved in the time required. Meta-heuristics are a feasible alternative to obtain 
satisfactory solutions in circumstances where the complexity of the problem or avail-
able search time did not allow the use of exact methods. 

From the moment the necessity of specifying a meta-heuristic is identified, some 
questions, common to all Meta-Heuristics, related to the encoding/representation of 
the solutions, the definition of objective function and constraints handling must be 
stated. 

The development of software tools for the MH is a relevant task considering the 
variety of optimization problems identified and continuous evolution of models asso-
ciated with optimization problems. The problem may be modified or require further 
refinements: some objectives and constraints can be inserted, deleted or changed. 

It is clear the interest and the need in developing systems or automatic tools for de-
cision support based MH. For managers it is important to select, implement and apply 
optimization algorithms without requiring deep knowledge on programming and op-
timization. For experts in optimization and software development is useful to evaluate 
and compare different algorithms, transform/adapt algorithms, develop new algo-
rithms, combine and parallelize algorithms. Generally, the literature identifies three 



main approaches used for the development and implementation of Metaheuristics 
[20]: From scratch or no reuse (considering the simplicity of MH implementation, but 
requires time and effort and it is error prone); Code reuse (consists on reusing free 
programs codes and libraries Open Source, adapting to the treated problem is often 
time consuming, error prone, and the coding effort using libraries remains important); 
and Design and code reuse(Software frameworks, its main objective is to overcome 
above  related problems). 

In general, the effective resolution of a problem requires the application of differ-
ent methods of tuning parameters among others. The tuning of parameters can allow 
greater flexibility and robustness but requires a careful initialization. The parameters 
can have a major influence on the efficiency and effectiveness of the search. Becomes 
not obvious, a priori, the setting of parameters to use. The values for the parameters 
depend on the problem, instances structure and the time available to solve the prob-
lem. There are no universal values for the parameters considered for Metaheuristic 
based algorithms. Being widespread view that its definition must result from  a care-
ful experimental effort, towards their tuning. 

Performance analysis corresponds to the last stage of development of MH. The 
theoretical analysis based on the worst case and average provides some insights in 
solving some optimization models. However, it is considered that the performance 
evaluation of the MH must be supported by a comprehensive set of computational 
tests, following these aspects/phases: definition of the test plan (test objectives, selec-
tion of input variables and instances); definition of measurement criteria (quality of 
solutions, robustness and computational effort) and the reporting and analysis of re-
sults (graphic display of results, interpretation of results, statistical analysis). 

5 ACS proposed approach Developing for Weighted Tardiness 

The scheduling problem to deal with is included into the class of combinatorial op-
timization problems common in industrial practice. Due to its complex nature and the 
resolution of such problems to optimality, in an acceptable time for the process of 
decision making, is virtually impossible. Thus, there is an important issue that refers 
to the resolution of this class of problems obtaining satisfactory quality solutions on 
reasonable computing time, for which there is no knowledge of the existence of effi-
cient methods.  

A software tool was developed and implemented in Java, to perform the computa-
tional study aiming to analyse and evaluate the performance of ACS, on resolution of 
SMSP for minimization of total weighted tardiness. 

The solutions are encoded by the natural representation (string), each position cor-
responds to a job index and the position of the job index is the correspondent pro-
cessing order. The number of positions on the string corresponds to the number of 
jobs (problem size). 



Table 4. Ant Colony System for WT 

Begin 

Set ACS parameters.  

Initialize pheromone trails   

While termination criteria not met do 

Construct Ant Solutions   

Each ant build a solution 

Apply LocalSearch 

Return Constructed Solution 

Apply Localsearch   

Global Update Pheromone 

EndWhile  

Return Best solution 

End 

 
The initial colony generation process consists in applying some mechanism genera-

tor to a starting ant solution. The initial solution is defined by the priority rule EDD 
rule, in which an initial solution (ant) is defined by the due dates increasing ordering, 
thus giving priority to tasks with small due dates. 

As mentioned above, we implemented an ACS algorithm (Table IV) for WT reso-
lution [21]. The ACS differs from the previous proposed Ant System due to three 
main aspects [11]: the state transition rule, the global updating rule, and the local 
updating rule. When applied to the SMSP for WT minimization, each ant constructs a 
feasible sequence by selecting an unscheduled job j to be on the ith position of the 
partial sequence constructed so far. This process is influenced by specific heuristic 
information ηij, as well as the pheromone trails τij.   

5.1 Solution Construction 

During the construction process the decision of adding job j to the partial sequence 
is made through ACS state transition rule, which is given by equation 6: 

  (6) 



where ω is the set of unscheduled jobs, α controls the relative importance of the 
pheromone trails, β determines the influence of the heuristic information, q is a ran-
dom number uniformly distributed over [0,1], q0 is a parameter (q0∈[0,1]) and S is a 
job selected according to the probability defined by equation 7: 

  (7) 

The state transition rule favors job selection in terms of pheromone amount versus 
heuristics information. The parameter q0 provides a way to balance between explora-
tion of new jobs and exploitation of accumulated knowledge. In other words, when 
ant m has to choose a job to append to the partial sequence, a random number q is 
generated, with q∈[0,1], and if q ≤ q0 the best job is chosen (exploitation), otherwise a 
job is chosen (exploration). 

 The heuristic used by ants to compute the heuristic information is given by equa-
tion 8: 

  (8) 

where dij is the total weighted tardiness for the partial sequence of jobs generated 
so far. The proposed solution construction procedure could be summarized on Table 
V. 

Table 5. Solution Construction Algorithm 

Begin 

While number of jobs not met do 

Select a new job 

Add new job to the sequence 

Perform Local Pheromone Update 

EndWhile  

Apply LocalSearch 

Return Constructed Solution 

End 

 
The ants construct the solution as follows: each ant starts from a randomly selected 

job. Then, at each construction step the ant selects a new job through a transition rule 
(equation 6). Each ant keeps a “memory” of its path, and the subsequent job is chosen 



among the unscheduled jobs. At each construction step, an ant probabilistically 
chooses the next job to add to the sequence. The probabilistic rule is biased by pher-
omone values and heuristic information. Once a job is added to the sequence, the 
local pheromone is updated. This process is repeatedly applied until all jobs are 
scheduled. Before returning the generated solution, it still undergoes a local search 
algorithm.  The goal is to improve the current solution by iteratively moving to a 
neighbor solution selected from a neighborhood of solutions according to a defined 
rule, which in this case, is the minimization of the total weighted tardiness. This pro-
cess is quite costly in terms of computational time, but improves significantly the 
generated solution. However, we will address this process in more detail in the subse-
quent sections.    

5.2 Pheromone Update Rule 

The ACS pheromone update rule consists of both local and global update rule. The 
local pheromone update is performed by each ant after adding a new job to the partial 
sequence, and is given by equation 9: 

  (9) 

where ρ ∈ [0,1]  is the pheromone decay coefficient, and τ0 is the initial trail inten-
sity (equation 10): 

  (10) 

where WT is the total weighted tardiness for a sequence generated by the EDD rule 
and n is the number of jobs. The main goal of the local update rule is to make the 
decision of appending job j on position i less desirable for the others ants so that the 
exploration of different sequences is favored [12].   

The global pheromone update is applied at the end of each iteration by only one 
ant, which can be either the iteration-best or best-so-far [4].  We followed the best-so-
far strategy, where the ant with the best solution so far contributes to the pheromone 
trail update, according to the equation 11: 

  (11) 

where ∆τij=1/WT* for all edges (i, j) belonging to the best solution found so far 
(WT* is the total weighted tardiness of the best solution). 

5.3 Local Search 

Local Search performs a blind search, since they only accept sequential solutions 
which improve the value of the objective function. Essentially, consists of moving 
from one solution to another, in the neighborhood, according to some defined rules or 
local changes. The sequence of solutions trajectory depends heavily on the initial 



solutions and on the neighborhood generation mechanisms adopted which defines the 
neighboring structure [22]. In this work, we considered adjacent pairwise interchange 
as a neighborhood structure to solve the problem at hand [21]. The main weakness of 
basic Local Search algorithms is their inability to escape from local optima. 

The local search strategy described above is applied to all sequences constructed 
by the artificial ants. This strategy produces better results but is more costly in terms 
of computational time.   

5.4 Illustrative example 

A chemical industry produces different types of products, but can only make one at a 
time. The production manager has to decide on the issue of sequencing of 5 tasks on a 
single machine (Table VI). For each task j (j = 1, ..., 5), pj is the processing time, dj 
the delivery date and wj the penalty associated with task j per unit of time delay. The 
number of admissible solutions for this instance of problem is 5! = 120. The size of 
the problem is reduced to facilitate their understanding. It becomes clear that in this 
situation would be feasible the enumeration of all admissible solutions and select the 
best. However, this is no longer feasible for instances with larger dimension.   

Table 6. Illustrative example 

Job j pj dj wj 

1 2 5 1 

2 4 7 6 

3 1 11 2 

4 3 9 3 

5 3 8 2 

Table 7. ACS Step by step 

Ant i Solutioni f 

1 [2 4 5 3 1]  12.0 

2 [1 3 2 4 5]  13.0 

3 [4 2 1 3 5]  14.0 

4 [1 2 4 3 5]  10.0 

5 [1 2 3 4 5]  13.0 

6 [4 3 2 5 1]  20.0 

7 [1 2 4 3 5]  10.0 

8 [3 1 2 4 5]  13.0 

9 [2 5 4 3 1]  11.0 

10 [1 3 2 4 5]  13.0 

11 [3 1 4 2 5]  28.0 

12 [3 1 2 4 5]  13.0 

13 [2 5 4 3 1]  11.0 

14 [3 4 2 5 1]  20.0 

15 [2 3 4 5 1]  14.0 

16 [4 5 2 3 1]  26.0 

17 [2 5 4 3 1]  11.0 

18 [2 5 3 4 1]  14.0 



19 [1 2 4 3 5]  10.0 

20 [3 1 2 4 5]  13.0 

21 [3 2 5 4 1]  14.0 

22 [1 2 4 3 5]  10.0 

23 [1 2 4 3 5]  10.0 

24 [3 1 2 4 5]  13.0 

25 [1 2 4 3 5]  10.0 

 
Consider the ACS with 25 ants, a pheromone evaporation rate of 80%, α values 

(scale the heuristic value) and β (importance of pheromone) equal to 1. 
Initially the pheromone is zero. 

From proposed ACS execution, we obtained the solutions presented in Table VII, 
where it is possible to verify the quality evolution of the paths chosen by the ants. The 
paths are constructed incrementally and randomly according to the values of phero-
mone and heuristic information, with an increased probability of choosing a solution 
with better heuristic value and greater pheromone. It is possible to confirm that, in the 
end of the process, ants choose better paths, with a propensity to choose the best so 
far. 

Table 8. Final Pheromone Matix 

Job 1 2 3 4 5 
1 0,089 0,083 0,016 0,013 0,013 
2 0,011 0,011 0,011 0,1 0,013 
3 0,013 0,013 0,011 0,013 0,073 
4 0,013 0,013 0,083 0,011 0,013 
5 0,013 0,011 0,013 0,013 0,011 

 

 
Fig. 2. ACS scheduling plan 

At the end of the twenty five iterations, the path with more pheromone is [1 2 4 3 
5], with a heuristic f = 10, which represents the best solution found by ACS (Table 
VIII). This path was chosen by 6 ants. The scheduling plan is illustrated in Figure 2. 

6 Computational Study 

A software tool was developed to perform the computational study aiming to ana-
lyse and evaluate the performance of ACS, on resolution of SMSP for minimization 
of total weighted tardiness. The computational tests were carried out on a PC with 
Intel Xeon W3565 at 3.20 GHz, with the ACS coded in Java. The ACS performance 
was tested on 75 benchmark instances of WT problem for different sizes n=40, n=50, 



n=100, available at OR-Library [23]. We select for testing the first 25 instances for 
each size and not their instances where better results were obtained. 

In this section a computational study is carried out in order to analyse SI based al-
gorithms – ACS - on the resolution of benchmark problems considering quality of 
solutions and computational times.  

Performance analysis of EC is a necessary task to perform and must be done on a 
fair basis. A theoretical approach is generally not sufficient to evaluate an MH based 
algorithm.  To evaluate the performance experimentally and/or comparing in a sys-
tematized way, the following three steps must, generally, be considered [20]: 

• Experimental design: the goals of the experiments, the selected instances, and 
optimization criteria have to be defined. 

• Measurement: the measures to compute are selected. After executing the different 
experiments, statistical analysis is applied to the obtained results. The analysis of 
performance must be done based on state-of-the-art optimization algorithms dedi-
cated to the problem. 

• Reporting: the results must be systematized in a comprehensive way, and an anal-
ysis is carried out following the defined goals. Another important issue is related 
with insurance of the reproducibility of the computational experiments. 

ACS based algorithm is evaluated on the resolution of WT instances and its effi-
ciency and effectiveness will be analysed. Statistical analysis is performed in order to 
estimate the significance and confidence of the obtained results.  

We pretend to evaluate the adequacy of Swarm Intelligence based algorithms to 
the WT resolution. ACS effectiveness and efficiency is evaluated on 75 benchmark 
instances of WT problem for different sizes (25 instances with 40, 50 and 100 jobs, 
respectively).  

We consider that academic benchmark problems are an effective evaluation 
framework since they have been used by multiple authors and diverse application 
areas over the years, allowing an efficient comparing framework with previous work 
related on literature. Additionally, they permit an insight of global behavior and per-
formance on a class of scheduling problems which are our main objective. 

6.1 Parameter Tuning 

The ACS algorithm has a certain number of parameters that need to be set appro-
priately [18]. As such, we performed a preliminary study to identify which set of val-
ues would yield better results for minimizing total weighted tardiness, for each size in 
consideration.  The study focused on testing different values for α and β, which are 
used to regulate the relative influence of the pheromone and heuristic information; m, 
the number of ants; ρ, the pheromone evaporation rate; and q0, the probability of 
choosing the next job as defined on equation 6. In Table IX we present the different 
tested values, as well as the standard deviation σ for obtained results. 

The tests were performed by using four different sets of values, following some 
conclusions referred in [10]. For each set we computed n=1 simulations for each in-
stance under analysis, as shown in Table IX. The conclusions from the obtained re-
sults could be summarized:      

• α: This parameter is usually set to 1, and most of the times is not even considered; 



• β: The value of β equal to 5 produced better results during most of the runtimes; 
• m: The value of ants defined for each instance resulted in a good anytime perfor-

mance;  
• ρ: Higher values of ρ produced better results; 
• q0: Good values of q0 tend to be close to 1. As such, we used 0.98, which proved to 

be a good choice.  

Table 9. Parameter tuning 

No. jobs α β m ρ q0 Σ 

40 

1 1 30 0.80 0.90 0.1546 ± 0.1616 

1 2 30 0.10 0.98 0.1746 ± 0.1588 

1 5 30 0.30 0.98 0.1273 ± 0.0932 

1 5 30 0.60 0.98 0.0909 ± 0.0839 

50 

1 1 50 0.80 0.90 0.1939 ± 0.2582 

1 2 50 0.10 0.98 0.1942 ± 0.1948 

1 5 50 0.30 0.98 0.1688 ± 0.1523 

1 5 50 0.60 0.98 0.1226 ± 0.1073 

100 

1 1 80 0.80 0.90 0.5253 ± 0.5659 

1 2 80 0.10 0.98 0.4176 ± 0.3776 

1 5 80 0.30 0.98 0.4285 ± 0.3868 

1 5 80 0.60 0.98 0.3969 ± 0.3753 

The standard deviation presented in Table IX shows the variation in the results 
relatively to the average deviation from the optimum value. In fact, a low deviation 
indicates that the results tend to be very close to the average value.  

After analyzing the results we concluded that the last set of values (highlighted in 
bold), could yield better results in the computational tests, as such the implemented 
ACS algorithm was parameterized with this values. The obtained results are presented 
and discussed in the next section. 

6.2 Discussion of Results 

Initially, we developed n=5 simulations for each instance under analysis. In order 
to analyze the obtained results, performance measures were computed: the best, the 
average, and worst value and the deviation error from the best obtained value to the 
optimal (best known available in OR-Library [23]). The relative percentage of devia-
tion error is determined by %error= (Best-Optimal)/Best formula. 

Table 10. Results for 5 runs 

No. jobs Average time (s) σ No. of optimal 



40 15 0.0366 ± 0.0391 8 

50 50 0.0552 ± 0.0489 4 

100 1086 0.1872 ± 0.1714 0 

The obtained solutions values by the proposed ACS algorithm are presented in 
Figure 3 for n=40, Figure 4 for n=50 and Figure 5 for n=100, also in Table X is pre-
sented the average computational time, the standard deviation, and the number of 
optimum values.   

The  following figures presents the results obtained from the performed tests. Each 
figure shows the average deviation, as well as the deviation of each intances from the 
optimum value. Through the figures is also possible to identify the instances were the 
optimum value was reached, i.e., the ones were the deviation value is zero. Some of 
this instances appear to have reached the optimum value, when in fact there is a slight 
deviation that is not noticeable in the figures. For that reason we present in Table X 
the total number of optima for n=40, n=50, and n=100.  

 
Fig. 3. Results obtained with 5 runs for n=40 

In general most of the instances were solved in relatively short computational 
time. For n=40 the average time was 15 seconds, as for n=50 the average time was 50 
seconds. Only the instances of n=100 took more time to be solved (~18 minutes).     

As an extension to our study, we tested ACS again, and see if the solution already 
obtain could improve. Therefore, the number of simulations was increased to n=20 
and the exactly same set of parameters were used. The results obtained are presented 
in Table XI supported by Figure 6 for n=40, Figure 7 for n=50 and Figure 8 for 
n=100. 



 
Fig. 4. Results obtained with 5 runs for n=50 

 
Fig. 5. Results obtained with 5 runs for n=100 

Table 11. Results for 20 runs 

No. jobs Average time (s) σ No. of optimal 

40 14 0.0172±0.0209 11 

50 49 0.0374±0.0328 5 

100 1072 0.1524±0.1523 0 

 
The average computational time remained the same, and the results improved sig-

nificantly. As shown in Table XI, and presented in Figure 6, Figure 7, and Figure 8 
the number of optima increased. Moreover, in most of the instances the deviation 
from the optimum value decreased. These results support the assumption that the 
outcome of running the ACS more times would be to find the best known solutions on 
all instances. 



 
Fig. 6. Results obtained with 20 runs for n=40 

 
Fig. 7. Results obtained with 20 runs for n=50 

 
Fig. 8. Results obtained with 20 runs for n=100 



6.3 Significance analysis 

The boxplot from Figure 9 allows the analysis of confidence interval, making its 
synthesis and compared mean values by ACS and optimal solutions in terms of mini-
mization for Weighted Tardiness (WT) with 40 jobs. From the boxplot analysis we 
can conclude that ACS has been effective on the resolution of WT considering that its 
obtained mean values were similar to the optimal solutions (in some instances the best 
known). It is not clear, from the graph analysis, if exist significant difference of the 
performance of ACS related with optimal solutions.  

Additionally, some statistical sampling were retrieved to summarize important fea-
tures from the observed instances From the analysis of statistical sampling summary 
based on WT minimization (Table XII), it is possible to conclude that does not exist 
statistic evidence of the difference significance between optimal solutions and ACS 
performance on WT resolution for 40 jobs. This conclusion can be supported either 
by central tendencies and dispersion measures. This evidence can be observed even 
on median and dispersion indicators. Regarding variability, through standard devia-
tion and interquartile range analysis it possible to conclude that ACS presents similar 
variability. 

 

Fig. 9. Boxplot for WT with 40 jobs 

Considering a significance level α=5%, it is possible to conclude that, in general 
the difference in performance proposed ACS and optimal solution is not statistically 
significant. A paired-samples t-test indicated that, with a confidence level of 95%, 
there is no statistically significant difference between performance of ACS (M = 
48607.76, SD=46928.024), and optimal solutions related on literature (M=43494.40, 
SD= 44745.846)  t(24) = -1, p=.327. These results could suggest that ACS have been 
effective on WT resolution for 40 jobs, considering that does not exist statistical evi-
dence that its performance is significantly different than optimal solutions for the 
same instances for WT with 40 jobs. 



Table 12. Statistical Sampling Summary based on WT40 

 
Optimal ACS 

Mean 43494,40 48607,76 

Median 19312,00 26914,00 

Variance 2002190770,083 2202239475,023 

Std. Deviation 44745,846 46928,024 

Interquartile Range 70854 71289 

Skewness ,791 ,634 

Kurtosis -,737 -1,073 

 
 

 
Fig. 10. Boxplot for WT with 50 jobs 

Table 13. Statistical Sampling Summary based on WIT50 

 
Optimal ACS 

Mean 67110,40 70139,44 

Median 43504,00 47627,00 

Variance 5296763112,167 5234325587,590 

Std. Deviation 72778,864 72348,639 

Interquartile Range 87856 91550 

Skewness 1,266 1,179 

Kurtosis ,724 ,564 

 



From boxplot, Figure 10, analysis we can conclude that there are outliers or ex-
treme values and the analysis of location, dispersion and asymmetry of data, making 
its synthesis by ACS, and optimal solutions,  that ACS has been effective on the reso-
lution of WT considering that its obtained mean values were similar to the optimal 
solutions (in some instances the best known). It is not clear, from the graph analysis, 
the existence of significant difference of the performance of ACS related with optimal 
solutions. 

From the analysis of statistical sampling summary based on WT minimization 
(Table XIII), it is possible to conclude that exist some statistic evidence of the differ-
ence significance between optimal solutions and ACS performance on WT resolution 
for 50 jobs. This conclusion can be supported either by central tendencies and disper-
sion measures. This evidence can be observed even on median and dispersion indica-
tors. Regarding variability, through standard deviation and interquartile range analysis 
it possible to conclude that ACS presents different variability.  

Considering a significance level α=5%, it is possible to conclude that, in general 
the difference in performance proposed ACS and optimal solution is significant.  

A paired-samples t-test indicated that, with a confidence level of 95%, there is sta-
tistically significant difference between performance of ACS (M=70139.44, 
SD=72348.64), and optimal solutions related on literature (M= 67110.40,  SD= 
72778,86)  t(24) = -4,652, p<0.001. These results suggest that ACS performance has 
decreased on WT resolution for 50 jobs when compared with 40 jobs considering that 
exist statistical evidence that its performance is significantly different than optimal 
solutions for the same instances for WT with 50 jobs. 

The boxplot from Figure 11 depicts the values of obtained solutions by ACS on 
the WT resolution of 25 instances in analysis with 100 jobs. From the boxplot analy-
sis it is possible to conclude about difference of the performance of ACS related with 
optimal solutions. 

 

 
Fig. 11. Boxplot for WT with 100 jobs 



Table 14. Statistical Sampling Summary based on WT100 

 
Optimal ACS 

Mean 268357,52 302118,04 

Median 178840 249518 

Variance 69219509079,2 70906890332,5 

Std. Deviation 263096 266283,5 

Interquartile Range 462725 480355 

Skewness ,809 ,594 

Kurtosis -,337 -,711 

 
From the analysis of statistical sampling summary based on WT minimization 

(Table XIV), it is not possible to conclude about statistic evidence of the difference 
significance between optimal solutions and ACS performance on WT resolution for 
100 jobs. This conclusion can be supported either by central tendencies and dispersion 
measures. This evidence can be observed even on median and dispersion indicators. 
Regarding variability, through standard deviation and interquartile range analysis it 
possible to conclude about differences on performance by ACS when comparing with 
optimal solutions.  

Considering a significance level α=5%, it is possible to conclude that, in general 
the difference in performance proposed ACS and optimal solution is statistically sig-
nificant.  A paired-samples t-test indicated that, with a confidence level of 95%, there 
is statistically significant difference between performance of ACS (M=302118,04, 
SD=266283,5), and optimal solutions related on literature (M= 268357,5,  SD= 
263096,01)  t(24) = -5,959, p<0.001. These results suggest that exist statistical evi-
dence that its performance is significantly different than optimal solutions for the 
same instances for WT with 100 jobs. 

 

 
Fig. 12. Error Bar of the WT for all instances 



Table 15. Statostical Sampling Summary based on WT 

 
Optimal ACS 

Mean 126320,77 139080,95 

Median 53208,00 75267,00 

Variance 35134539958,2 38921816643,2 

Std. Deviation 187442,1 197286,1 

Interquartile Range 142301 139647 

Skewness 2,241 2,045 

Kurtosis 4,912 3,764 

 
Previous computational and statistical tests indicate that ACS presents effective-

ness on the resolution of WT for 40 jobs, but its performance decreases for 50 and 
100 jobs, which can indicate that parameter tuning, must be improved in order to 
increase ACS performance for those class of instances. Following, in order to evalu-
ate the overall performance of ACS on the resolution of 75 instances of WT schedul-
ing problem with 40, 50 and 100 jobs, additional statistical analysis will be conducted 
to compare the overall performance of ACS when compared with respective optimal 
solutions.  

From the analysis of statistical sampling summary based on WT minimization 
(Table XV), it is possible to conclude that exist statistic evidence of the difference on 
the ACS performance of WT resolution. This conclusion can be supported either by 
central tendencies and dispersion measures. This evidence can be observed even on 
median and dispersion indicators. Regarding variability, through standard deviation 
and interquartile range analysis it possible to conclude that ACS presents similar vari-
ability.  

Considering a significance level α=5%, it is possible to conclude that, in general 
the difference in performance proposed ACS and optimal solution is statistically sig-
nificant.  A paired-samples t-test indicated that, with a confidence level of 95%, there 
is statistically significant difference between performance of ACS (M= 139080.95, 
SD=197286.13), and optimal solutions related on literature (M=126320.77,  SD= 
187442.1)  t(74) = -5.000, p<0.001. These results suggest that exist statistical evi-
dence that its performance is significantly different than optimal solutions for the 
same WT instances with 100 jobs. 

From the obtained results we can conclude that proposed ACS and its parameteri-
zation is adequate for 40 jobs instances considering that obtained results indicate that 
the difference in performance of ACS and optimal solution is not statistically signifi-
cant. For instances with greater dimensions parameter tuning must be increased, con-
sidering a degradation of computational time. 

7 Conclusions and Future Work 

In this paper, we described some guidelines for ACS based software developing 
tools to study the effectiveness and efficiency of ACS in the optimization of total 



weighted tardiness for SMSP. More than developing algorithms with unquestionable 
practice utility, the main purpose of this paper was to illustrate, through more simple 
scheduling problems, the potential effectiveness and efficiency of using MH ap-
proaches, with special emphasis on SI based techniques for scheduling problem solv-
ing. The obtained results show that proposed ACS algorithm was effective for the 
instances studied, being possible to find good solutions in short time, i.e., a few CPU 
seconds. As future work, we will extend our ACS algorithm to the job-shop schedul-
ing problem, where the jobs are distributed across different machines.   
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