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Abstract: Past few years have witnessed a growing recognition of intelligent techniques for the construction of 

efficient and reliable intrusion detection systems. Due to increasing incidents of cyber attacks, building 

effective intrusion detection systems (IDS) are essential for protecting information systems security, and yet 

it remains an elusive goal and a great challenge. In this paper, we report a performance analysis between 

Multivariate Adaptive Regression Splines (MARS), neural networks and support vector machines. The 

MARS procedure builds flexible regression models by fitting separate splines to distinct intervals of the 

predictor variables. A brief comparison of different neural network learning algorithms is also given. 
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1 INTRODUCTION 

Intrusion detection is a problem of great significance 
to protecting information systems security, 
especially in view of the worldwide increasing 
incidents of cyber attacks. Since the ability of an 
IDS to classify a large variety of intrusions in real 
time with accurate results is important, we will 
consider performance measures in three critical 
aspects: training and testing times; scalability; and 
classification accuracy.

Since most of the intrusions can be located by 
examining patterns of user activities and audit 
records (Denning, 1987), many IDSs have been built 
by utilizing the recognized attack and misuse 
patterns. IDSs are classified, based on their 
functionality, as misuse detectors and anomaly 
detectors. Misuse detection systems use well-known 
attack patterns as the basis for detection (Denning, 
1987; Kumar, 1994). Anomaly detection systems 

use user profiles as the basis for detection; any 
deviation from the normal user behaviour is 
considered an intrusion (Denning, 1987; Kumar, 
1994; Ghosh, 1999; Cannady, 1998).

One of the main problems with IDSs is the 
overhead, which can become unacceptably high. To 
analyse system logs, the operating system must keep 
information regarding all the actions performed, 
which invariably results in huge amounts of data, 
requiring disk space and CPU resource.

Next, the logs must be processed to convert into a 
manageable format and then compared with the set 
of recognized misuse and attack patterns to identify 
possible security violations. Further, the stored 
patterns need be continually updated, which would 
normally involve human expertise. An intelligent, 
adaptable and cost-effective tool that is capable of 
(mostly) real-time intrusion detection is the goal of 
the researchers in IDSs. Various artificial 
intelligence techniques have been utilized to 
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     automate the intrusion detection process to 
reduce human intervention; several such techniques 
include neural networks (Ghosh, 1999; Cannady, 
1998; Ryan 1998; Debar, 1992a-b), and machine 
learning (Mukkamala, 2002a). Several data mining 
techniques have been introduced to identify key 
features or parameters that define intrusions (Luo, 
2000; Cramer, 1995; Stolfo, 2000; Mukkamala, 
2002b).

In this paper, we explore Multivariate Adaptive 
Regression Splines (MARS) (Steinberg, 1999), 
Support Vector Machines (SVM) and Artificial 
Neural Networks (ANN), to perform intrusion 
detection based on recognized attack patterns. The 
data we used in our experiments originated from 
MIT’s Lincoln Lab. It was developed for intrusion 
detection system evaluations by DARPA and is 
considered a benchmark for IDS evaluations 
(Lincoln Laboratory, 1998-2000).

We perform experiments to classify the network 
traffic patterns according to a 5-class taxonomy. The 
five classes of patterns in the DARPA data are 
(normal, probe, denial of service, user to super-user, 
and remote to local).

In the rest of the paper, a brief introduction to the 
data we use is given in section 2. Section 3 briefly 
introduces to MARS. In section 4 a brief 
introduction to the connectionist paradigms (ANNs 
and SVMs) is given. In section 5 the experimental 
results of using MARS, ANNs and SVMs are given. 
The summary and conclusions of our work are given 
in section 6. 

2 INTRUSION DETECTION DATA 

In the 1998 DARPA intrusion detection evaluation 
program, an environment was set up to acquire raw 
TCP/IP dump data for a network by simulating a 
typical U.S. Air Force LAN.  The LAN was 
operated like a real environment, but being blasted 
with multiple attacks (Kris, 1998; Seth, 1998). For 
each TCP/IP connection, 41 various quantitative and 
qualitative features were extracted (Stolfo, 2000; 

database a subset of 494021 data were used, of 
which 20% represent normal patterns. Attack types 
fall into four main categories: 

- Probing: surveillance and other probing 
- DoS: denial of service 
- U2Su: unauthorized access to local super user 
(root)  privileges 
- R2L:unauthorizedaccess from a remote machine. 

2.1 Probing 

Probing is a class of attacks where an attacker scans 
a network to gather information or find known 
vulnerabilities. An attacker with a map of machines 
and services that are available on a network can use 
the information to look for exploits. There are 
different types of probes: some of them abuse the 
computer’s legitimate features; some of them use 
social engineering techniques. This class of attacks 
is the most commonly heard and requires very little 
technical expertise.

2.2 Denial of Service Attacks 

Denial of Service (DoS) is a class of attacks where 
an attacker makes some computing or memory 
resource too busy or too full to handle legitimate 
requests, thus denying legitimate users access to a 
machine. There are different ways to launch DoS 
attacks: by abusing the computers legitimate 
features; by targeting the implementations bugs; or 
by exploiting the system’s misconfigurations. DoS 
attacks are classified based on the services that an 
attacker renders unavailable to legitimate users.

2.3 User to Root Attacks 

User to root exploits are a class of attacks where an 
attacker starts out with access to a normal user 
account on the system and is able to exploit 
vulnerability to gain root access to the system. Most 
common exploits in this class of attacks are regular 
buffer overflows, which are caused by regular 
programming mistakes and environment 
assumptions.

2.4 Remote to User Attacks 

A remote to user (R2L) attack is a class of attacks 
where an attacker sends packets to a machine over a 
network, then exploits machine’s vulnerability to 
illegally gain local access as a user. There are 
different types of R2U attacks; the most common 
attack in this class is done using social engineering. 

3 MULTIVARIATE ADAPTIVE 

REGRESSION SPLINES (MARS) 

Splines can be considered as an innovative 
mathematical process for complicated curve 
drawings and function approximation. To develop a 
spline the X-axis is broken into a convenient number 

University of California at Irvine, 1999). Of this 
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of regions. The boundary between regions is also 
known as a knot. With a sufficiently large number of 
knots virtually any shape can be well approximated. 
While it is easy to draw a spline in 2-dimensions by 
keying on knot locations (approximating using 
linear, quadratic or cubic polynomial etc.), 
manipulating the mathematics in higher dimensions 
is best accomplished using basis functions. The 
MARS model is a regression model using basis 
functions as predictors in place of the original data. 
The basis function transform makes it possible to 
selectively blank out certain regions of a variable by 
making them zero, and allows MARS to focus on 
specific sub-regions of the data. It excels at finding 
optimal variable transformations and interactions, 
and the complex data structure that often hides in 
high-dimensional data (Friedman, 1991).

Given the number of records in most data sets, it is 
infeasible to approximate the function y=f(x) by 
summarizing y in each distinct region of x. For some 
variables, two regions may not be enough to track 
the specifics of the function. If the relationship of y
to some x's is different in 3 or 4 regions, for 
example, the number of regions requiring 
examination is even larger than 34 billion with only 
35 variables (Steinberg, 1999). Given that the 
number of regions cannot be specified a priori, 
specifying too few regions in advance can have 
serious implications for the final model. A solution 
is needed that accomplishes the following two 
criteria:

- judicious selection of which regions to look at 
and their boundaries 

- judicious determination of how many intervals 
are needed for each variable. 

Given these two criteria, a successful method will 
essentially need to be adaptive to the characteristics 
of the data. Such a solution will probably ignore 
quite a few variables (affecting variable selection) 
and will take into account only a few variables at a 
time (also reducing the number of regions). Even if 
the method selects 30 variables for the model, it will 
not look at all 30 simultaneously. Such 
simplification is accomplished by a decision tree at a 
single-node, only ancestor splits are being 
considered; thus, at a depth of six levels in the tree, 
only six variables are being used to define the node. 

3.1 MARS Smoothing, Splines, Knots 

Selection and Basis Functions 

To estimate the most common form, the cubic 

spline, a uniform grid is placed on the predictors and 

a reasonable number of knots are selected. A cubic 

regression is then fit within each region. This 

approach, popular with physicists and engineers who 

want continuous second derivatives, requires many 

coefficients (four per region), in order to be 

estimated. Normally, two constraints, which 

dramatically reduce the number of free parameters, 

can be placed on cubic splines: curve segments must 

join, and continuous first and second derivatives at 

knots (higher degree of smoothness). 

Figure 1 shows typical attacks and their 

distribution while Figure 2 (section 5) depicts a 

MARS spline with three knots (actual data on the 

right). A key concept underlying the spline is the 

knot. A knot marks the end of one region of data and 

the beginning of another. Thus, the knot is where the 

behavior of the function changes. Between knots, the 

model could be global (e.g., linear regression). In a 

classical spline, the knots are predetermined and 

evenly spaced, whereas in MARS, the knots are 

determined by a search procedure. Only as many 

knots as needed are included in a MARS model. If a 

straight line is a good fit, there will be no interior 

knots. In MARS, however, there is always at least 

one "pseudo" knot that corresponds to the smallest 

observed value of the predictor (Steinberg, 1999). 

Finding the one best knot in a simple regression is a 

straightforward search problem: simply examine a 

large number of potential knots and choose the one 

with the best R2. However, finding the best pair of 

knots requires far more computation, and finding the 

best set of knots when the actual number needed is 

unknown is an even more challenging task. MARS 

finds the location and number of needed knots in a 

forward/backward stepwise fashion. A model that is 

clearly over fit with too many knots is generated 

first; then, those knots that contribute least to the 

overall fit are removed. Thus, the forward knot 

selection will include many incorrect knot locations, 

but these erroneous knots will eventually (although 

this is not guaranteed), be deleted from the model in 

the backwards pruning step (Abraham, 2001; 

Steinberg, 1999). 
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Figure1: Intrusion Detection Data Distribution 

4 CONNECTIONIST PARADIGMS 

The artificial neural network (ANN) methodology 
enables us to design useful nonlinear systems 
accepting large numbers of inputs, with the design 
based solely on instances of input-output 
relationships.

The purpose of the resilient backpropagation 
training algorithm is to eliminate the harmful effects 
of the magnitudes of the partial derivatives. Only the 
sign of the derivative is used to determine the 
direction of the weight update; the magnitude of the 
derivative has no effect on the weight update. The 
size of the weight change is determined by a 
separate update value. The update value for each 
weight and bias is increased by a factor whenever 
the derivative of the performance function with 
respect to that weight has the same sign for two 
successive iterations. The update value is decreased 
by a factor whenever the derivative with respect that 
weight changes sign from the previous iteration. If 
the derivative is zero, then the update value remains 
the same. Whenever the weights are oscillating the 
weight change will be reduced. If the weight 
continues to change in the same direction for several 
iterations, then the magnitude of the weight change 
will be increased (Riedmiller, 1993). 

4.2 Scaled Conjugate Gradient 

Algorithm (SCG) 

The scaled conjugate gradient algorithm is an 
implementation of avoiding the complicated line 
search procedure of conventional conjugate gradient 
algorithm (CGA). According to the SCGA, the 
Hessian matrix is approximated by 
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where E' and E" are the first and second derivative 
information of global error function E (wk). The 
other terms pk, k and k represent the weights, 
search direction, parameter controlling the change in 
weight for second derivative approximation and 
parameter for regulating the indefiniteness of the 
Hessian. In order to get a good quadratic 
approximation of E, a mechanism to raise and lower 

k is needed when the Hessian is positive definite 
(Moller, 1993).

4.3 One-Step-Secant Algorithm (OSS) 

Quasi-Newton method involves generating a 

sequence of matrices G(k) that represents 

increasingly accurate approximations to the inverse 

Hessian (H-1). Using only the first derivative 

information of E the updated expression is as 

follows:

T(k)T
(k)T

(k)T(k)

T

T
(k)1)(k uv)uG(v

vGv

Gvv)(G

vp

pp
GG

where

4.1 Resilient Back Propagation (RP) 

214  ENTERPRISE INFORMATION SYSTEMS VI



(k)1)(k wwp (k)1)(k g ,

vGv

vG
u

(k)T

(k)

vp

p
T

and T represents transpose of a matrix. The problem 
with this approach is the requirement of computation 
and storage of the approximate Hessian matrix for 
every iteration. The One-Step-Secant (OSS) is an 
approach to bridge the gap between the conjugate 
gradient algorithm and the quasi-Newton (secant) 
approach.  The OSS approach doesn’t store the 
complete Hessian matrix; it assumes that at each 
iteration the previous Hessian was the identity 
matrix. This also has the advantage that the new 
search direction can be calculated without 
computing a matrix inverse (Bishop, 1995). 

4.4 Support Vector Machines (SVM) 

The SVM approach transforms data into a feature 
space F that usually has a huge dimension. It is 
interesting to note that SVM generalization depends 
on the geometrical characteristics of the training 
data, not on the dimensions of the input space 
(Bishop, 1995; Joachims, 1998). Training a support 
vector machine (SVM) leads to a quadratic 
optimization problem with bound constraints and 
one linear equality constraint. Vapnik (Vladimir, 
1995) shows how training a SVM for the pattern 
recognition problem leads to the following quadratic 
optimization problem (Joachims, 2000): 
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where l is the number of training examples is a 

vector of l variables and each component 

i corresponds to a training example (xi, yi). The 

solution of (1) is the vector * for which (1) is 

minimized and (2) is fulfilled.

5 EXPERIMENT SETUP 

In our experiments, we perform 5-class 
classification. The (training and testing) data set 
contains 11982 randomly generated points from the 
data set representing the five classes, with the 
number of data from each class proportional to its 
size, except that the smallest classes are completely 

included. The normal data belongs to class1, probe 
belongs to class 2, denial of service belongs to class 
3, user to super user belongs to class 4, remote to 
local belongs to class 5. A different randomly 
selected set of 6890 points of the total data set 
(11982) is used for testing MARS, SVMs and 
ANNs. Overall accuracy of the classifiers is given in 
Tables 1-4. Class specific classification of the 
classifiers is given in Table 5. 

5.1 MARS 

We used 5 basis functions and selected a setting of 

minimum observation between knots as 10. The 

MARS training mode is being set to the lowest level 

to gain higher accuracy rates. Five MARS models 

are employed to perform five class classifications 

(normal, probe, denial of service, user to root and 

remote to local). We partition the data into the two 

classes of “Normal” and “Rest” (Probe, DoS, U2Su, 

R2L) patterns, where the Rest is the collection of 

four classes of attack instances in the data set. The 

objective is to separate normal and attack patterns. 

We repeat this process for all classes. Table 1 

summarizes the test results of the experiments. 

5.2 Neural Network 

The same data set described in section 2 is being 

used for training and testing different neural network 

algorithms. The set of 5092 training data is divided 

in to five classes: normal, probe, denial of service 

attacks, user to super user and remote to local 

attacks. Where the attack is a collection of 22 

different types of instances that belong to the four 

classes described in section 2, and the other is the 

normal data. In our study we used two hidden layers 

with 20 and 30 neurons each and the networks were 

trained using training functions described in Table 2. 

The network was set to train until the desired mean 

square error of 0.001 was met. As multi-layer feed 

forward networks are capable of multi-class 

classifications, we partition the data into 5 classes 

(Normal, Probe, Denial of Service, and User to Root 

and Remote to Local).

Figure 2: MARS data estimation using splines and knots

, v g
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Table 1: MARS Test 

Performance

Class Accuracy 

Normal 96.08 %

Probe 92.32 %

DOS 94.73 %

U2Su 99.71 %

R2L 99.48 %

                    Table 2: Test Performance of Different Neural Network Training Functions 

Training Algorithm No of Epochs Accuracy (%) 

Gradient descent 3500 61.70

Gradient descent with momentum 3500 51.60

Adaptive learning rate 3500 95.38

Resilient back propagation 67 97.04

Fletcher-Reeves conjugate gradient 891 82.18

Polak-Ribiere conjugate gradient 313 80.54

Powell-Beale conjugate gradient 298 91.57

Scaled conjugate gradient 351 80.87

BFGS quasi-Newton method 359 75.67

One step secant method 638 93.60

Levenberg-Marquardt 17 76.23

Bayesian regularization 533 64.15

                   Table 3: Performance of the Best Neural Network Training Function (Resilient Back Propagation) 

Class of Attack Normal Probe DoS U2Su R2L % 

Normal 1394 5 1 0 0 99.6 

Probe 49 649 2 0 0 92.7 

DoS 3 101 4096 2 0 97.5 

U2Su 0 1 8 12 4 48.0 

R2L 0 1 6 21 535 95.0 

% 96.4 85.7 99.6 34.3 99.3  

                   Table 4: Detection Accuracy of SVMs 

Class of Attack Training Time (sec) Testing Time (sec) Accuracy (%) 

Normal 7.66 1.26 99.55 

Probe 49.13 2.10 99.70 

DoS 22.87 1.92 99.25 

U2Su 3.38 1.05 99.87 

R2L 11.54 1.02 99.78 
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                          Table 5: Performance Comparison of Testing for 5 Class Classifications 

Accuracy (%) 
Class of Attack 

SVM RP SCG OSS MARS 

Normal 98.42 99.57 99.57 99.64 96.08 

Probe 98.57 92.71 85.57 92.71 92.32 

DoS 99.11 97.47 72.01 91.76 94.73 

U2Su 64.00 48.00 0.00 16.00 99.71 

R2L 97.33 95.02 98.22 96.80 99.48 

We used the same testing data (6890), same 

network architecture and same activations functions 

to identify the best training function that plays a vital 

role for in classifying intrusions. Table 2 

summarizes the performance of the different 

learning algorithms. The top-left entry of Table 3 

shows that 1394 of the actual “normal” test set were 

detected to be normal; the last column indicates that 

99.6 % of the actual “normal” data points were 

detected correctly. In the same way, for “Probe” 649 

of the actual “attack” test set were correctly 

detected; the last column indicates that 92.7% of the 

actual “Probe” data points were detected correctly. 

The bottom row shows that 96.4% of the test set said 

to be “normal” indeed were “normal” and 85.7% of 

the test set classified, as “probe” indeed belongs to 

Probe. The overall accuracy of the classification is 

97.04 with a false positive rate of 2.76% and false 

negative rate of 0.20. 

5.3 SVM 

Since SVMs are only capable of binary 

classifications, we will need to employ five SVMs, 

for the 5-class classification problem in intrusion 

detection, respectively. We partition the data into the 

two classes of “Normal” and “Rest” (Probe, DoS, 

U2Su, R2L) patterns, where the Rest is the 

collection of four classes of attack instances in the 

data set. The objective is to separate normal and 

attack patterns. We repeat this process for all 

classes. Training is done using the radial bias kernel 

option; an important point of the kernel function is 

that it defines the feature space in which the training 

set examples will be classified. Table 4 summarizes 

the overall results of the experiments using the test 

dataset. The empirical values presented depict the 

accuracy to detect the various attacks (reduction in 

false alarm rate) and helps to estimate the volume of 

false alarms if SVMs were deployed. 

6 CONCLUSIONS

A number of observations and conclusions are 

drawn from the results reported: MARS is superior 

to SVMs in respect to classifying the most important 

classes (U2Su and R2L) in terms of the attack 

severity. SVMs outperform ANNs in the important 

respects of scalability (the former can train with a 

larger number of patterns, while would ANNs take a 

long time to train or fail to converge at all when the 

number of patterns gets large); training time and 

running time (SVMs run an order of magnitude 

faster); and prediction accuracy. Resilient back 

propagation achieved the best performance among 

the neural network learning algorithms in terms of 

accuracy (97.04 %) and faster convergence (67 

epochs). We note, however, that the difference in 

accuracy figures tend to be very small and may not 

be statistically significant, especially in view of the 

fact that the 5 classes of patterns differ in their sizes 

tremendously. More definitive conclusions can only 

be made after analysing more comprehensive sets of 

network traffic data. 

Finally, another gifted research line includes the 

potential use of MARS hybridized with self-

organized ant-like evolutionary models as proposed 

in past works (Ramos, 2003; Abraham, 2003). The 

implementation of this swarm intelligence along 

with Stigmergy (Ramos, 2002) and the study of ant 

colonies behaviour and their self-organizing 

capabilities are decisively of direct interest to 

knowledge retrieval/management and decision 

support systems sciences. In fact they can provide 

new models of distributed, adaptive and collective 

organization, enhancing MARS data estimation on 

ever changing environments (e.g. dynamic data on 

real-time), as those we now increasingly tend to face 

over new disseminated information systems 

paradigms and challenges. 
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