
51

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.06

ReDE- A Revised mutation strategy for Differential Evolution Algorithm

Meera Ramadas 1* Ajith Abraham 2 Sushil Kumar 3

1 AIIT, Amity University, Uttar Pradesh, Noida, India

2 MIR Labs, Washington, USA
3 Department of Computer science, ASET, Amity University, Uttar Pradesh, Noida, India

 *Corresponding author’s Email: meera_mgr@rediffmail.com

Abstract: In today’s scientific world, evolutionary algorithm is considered as a major area for research providing

immense opportunity to researchers. Several works are done in this area to create different variants of the evolutionary

algorithm and to further improve their performance. Differential Evolution (DE) is considered to be a dominant

technique for optimization and is being used to solve various real time problems. In this paper, a revised mutation

strategy has been implemented. This strategy uses two control parameters and two types of population. The results

computed were compared with the existing mutation strategy with the results showing better performance for the new

revised strategy.

Keywords: mutation, control parameters, recombination, generation, optimisation.

1. Introduction

Many of real time problems in the scientific world

can be considered as constrained optimisation

problems. For solving these optimisation problems,

we can use various evolutionary algorithms.

Evolutionary algorithms are those algorithms that

uses the technique prompted by biological evolution

such as reproduction, selection, mutation and

recombination. Various evolutionary algorithms have

been developed in due course of time.

In 1995, Storn and Price proposed the Differential

Evolution (DE) which is a powerful and efficient

algorithm to solve optimisation problems. Like

various other evolutionary algorithms, DE is also a

population based stochastic method. DE is among the

best of evolutionary algorithm for solving real valued

test functions. DE has various significant features like

its ease to implement, better performance, low space

complexity and fewer control parameters. The

efficiency and performance of DE greatly depends on

the trial vector generation strategy and the control

parameters used.

Various researches are being done on improving

the performance of DE by changing the control

parameters and the trial vector generation strategy. In

this paper we are introducing a new mutation strategy

for DE named as Revised Differential Evolution

(ReDE). This strategy uses two types of control

parameters: a variable parameter value and a

constant parameter value between range (0,1) and

two types of population: the population from

previous generation and new population from current

generation. This mutation strategy was implemented

for Differential Evolution algorithm. The results

obtained for best value, number of function

evaluation and CPU time were computed for different

dimensions. These results were then compared to the

results obtained using traditional mutation strategies.

Friedman’s testing was done on the values obtained

and ranks for the various mutation strategies were

computed. Graphs were also plotted for the values

obtained. After close and comparative study, it was

seen that ReDE strategy has remarkably better results

in comparison to the classical DE approaches.

2. Background literature study:

52

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.06

Madavan et al. [1] extended the Differential

evolution approach to a multi objective optimisation

problem using a Pareto based approach. The result is

a simple strategy that is self - adaptive and maintains

the diversity of pareto set. Babu et al. [2] used the

Differential evolution approach to solve a multi

objective optimisation problem with two objective

functions and a classical HimmelBlau function. In

both the approaches, the results obtained were better.

Rene et al [3] improvised the DE algorithm with the

crowding scheme. This made it possible to track and

maintain the local optima. Qin et al [4] proposed a

novel self – adaptive Differential evolution (SaDE) in

which the control parameters need not be specified.

The performance was evaluated and compared. Efren

et al [5] did a comparative study on variants of

Differential evolution on global optimisation. After

the study, the best strategy among different variants

were obtained. Hong–Kyu Kim et al. [6] gave some

modifications to the differential evolution strategy

for the constraint global optimisation problem. This

method was applied to the design of gas circuit

breaker to increase small current interruption

performance. Rahnamayan et al. [7] presented a

novel algorithm to accelerate differential evolution.

This method employs opposition based learning for

population initialization and generation jump. Qin et

al. [8] proposed a self-adaptive DE algorithm where

the control parameters and trial vector generation

strategies are gradually self-adapted by learning from

previous experience. This method eliminated time

consuming search for trial vector generation and

control parameters.

Takahama et al. [9] proposed the Ɛ constrained

differential evolution (ƐDE) combining Differential

evolution with Ɛ constrained technique. This

algorithm has faster execution and high quality

results. Wang et al. [10] did a study on improving the

performance of DE by combining the trial vectors

strategies with control parameter settings. He also

proposed a method composite DE (CoDE) using

three trial vectors and three control parameters. Qu et

al.[11] developed neighbourhood based differential

evolution in which the mutation is performed within

each Euclidean neighbourhood. The mutation

neighbourhood maintains the multiple optima found

during evolution and progress towards the respective

global/local optimum. Saber et al. [12] gave an

improved Differential evolution that uses a

combination of differential mutation operations. This

algorithm permits a covariance adaptation matrix

evolution strategy algorithm for local search. Wei-Jie

Yu et al.[13] proposed an adaptive DE(ADE) with

two level adaptive parameter control scheme and a

new mutation strategy. This technique has the

advantage of balancing between fast convergence

and population diversity.

Wenyin et al. [14] devised the adaptive ranking

mutation operator (ARMOR) for differential

evolution. This technique is expected to make DE

achieve feasible solutions faster and converge faster.

This technique is simple and can be easily combined

with most of constrained DE variants. Qiao et al. [15]

gave an algorithm by combining the heuristics with

modified Differential evolution algorithm for

situations where the communication range value is

unknown. His proposed method gave better results

compared to other nonconvex optimization

techniques.

Variants of DE are developed to improve the

optimisation performance. Das et al.[16] stated that

DE is defensive to the choice of control parameters

making DE inconvenient to adjust to different

problems.Also, DE encounters premature

convergence in which searching of solution is getting

trapped in local minima. Many researches are done to

make DE more robust in resistant to interdependency

of search variables according to Das et al.[17] .De

also faces issues on non linearly separable functions.

For populations clusterd in limited regions, DE has

less capability to move its population across large

distance in search space. Owing to these reasons,

there is a need to create variants for DE that performs

better in these aspects.

3. Classical Differential Evolution:

Storn and Price [18] developed the Differential

Evolution (DE) algorithm whose processes are

almost similar to genetic algorithm. It is a simple real

parameter optimization algorithm. DE uses a

population of N candidate solutions given as Xi,G

where i=1,2.. N in which index i depicts population

and G shows the generation of the population.

Differential Evolution algorithm depends on the three

operations mainly mutation, selection and crossover.

Mutation: This operator makes DE different from

other Evolutionary algorithms. It computes the

weighted difference between the vectors in

population. Mutation process starts by selecting three

individuals at random from the population. For a

given parameter Xi,G, three vectors Xr1,G , Xr2,G and

Xr3,G are selected randomly such that r1, r2, r3 are

distinct. Then the donor vector Vi,G is computed as:

)

,3,2
(

,1, Gr
X

Gr
XF

Gr
X

Gi
V 

(1)

Here F is the mutation factor which is a constant from

[0,1].

53

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.06

Crossover: This process also called as

recombination takes the successful solutions into the

population. The trial vector Ui,G is created for the

target vector Xi,G through binomial crossover.

Elements of donor vector enter trial vector with

probability Cr ε [0,1] is the crossover probability

which is selected along with population size NP ≥ 4.

















rand
Ijifor

r
C

ji
randif

Gij
X

rand
Ijifor

r
C

ji
randif

Gij
V

Gij
U

]1,0[
,1,,

]1,0[
,1,,

1,,

 (2)

Here randi,j ≈ ᴜ[0,1] and Irand is random integer from

1,2…N.

Selection: This operation differs from the selection

operation of other evolutionary algorithms. Here the

population for next generation is selected from

vectors in current population and its corresponding

trial vectors. The target vector Xi,G is compared with

the trial vector Vi,G and the lowest function value is

taken into next generation.







 



 otherwise

Gi
X

Niwhere
Gi

Xf
Gi

Ufif
Gi

U

Gi
X

,

,...2,1)
,

()
1,

(
1,

1,

 (3)

Mutation, crossover and selection operations are

continued until some stopping criteria is reached.

4. Revised mutation strategy

A new strategy has been proposed for mutation

called Revised DE strategy (ReDE). As it involves

the best solution vector, it coincides faster as

compared to the traditional strategies having random

vectors only. This strategy of mutation uses two sets

of population: the old population represented as

popold and the new population from which the

variable 𝑋𝑟1
𝐺 is chosen at random. Here, two

parameters are being used. The parameter F known

as amplifying parameter takes a constant value while

the new parameter N takes a varying value which lies

between (0,1).The proposed strategy is given as:

)
1

()(
' G

r
X

G
best

XFpopold
G
best

XN
G
best

XX 

(4)

5. Experimental setting

The revised algorithm was implemented on i7

core processor, 64 bit operating system with 12 GB

RAM using MATLABr2008b and a comparative

result was obtained with five different mutation

strategy of DE algorithm. We have taken fifteen

different functions and computed the results. The

value to reach (VTR) is the global minimum or

maximum of the function or it is a value to stop the

optimisation if it is reached. We have also tabulated

various results by fixing the dimension as 25 and 50.

The results are tabulated for comparison with the

existing algorithms.

Computed on Best Value obtained after 25 runs (vtr=1.e-015):

Table 1. Best Value obtained after 25 Runs for different functions “

Function
 DE

DE/best/1 DE/rand/1 DE/best/1 De/best/2 DE/best/1 ReDE

Sphere 9.73×10-16 6.90 ×10-16 7.53 ×10-16 9.66 ×10-16 7.17 6.04 ×10-16

Beale 3.27 ×10-16 2.32 ×10-16 3.71 ×10-16 7.59 ×10-16 7.73 ×10-16 5.95 ×10-16

Booth 3.50 ×10-16 2.05 ×10-16 6.07 ×10-16 7.08 ×10-16 8.35 ×10-16 1.36 ×10-16

Schwefel -1.80 ×103 -2.25 ×103 -7.84 ×101 -1.38 ×103 -1.66 ×103 -2.10 ×x103

Michlewicz -7.64 -7.21 -7.39 -6.95 -6.84 -6.6

Schaffer N.2 6.60 ×10-16 8.88 ×10-16 4.43 ×10-16 6.55 ×10-16 8.87 ×10-16 2.22 x×10-16

Schaffer N.4 3.05 ×10-15 2.90 ×10-1 2.92 ×10-1 2.93 ×10-1 2.89 ×10-1 2.82 ×10-1

HimmelBlau 1.60 ×10-16 8.05 ×10-16 3.83 ×10-16 9.12 ×10-16 1.46 ×10-16 3.35 ×10-16

Bird -1.04 ×10-02 -1.07 ×10-2 -1.05 ×10-2 -1.07 ×10-2 -1.03 ×10-2 -1.03 ×10-2

Extended Cube 3.31 ×10-15 4.98 ×10-5 6.10 ×10-8 1.93 ×10-5 2.68 8.60 ×10-15

Ackeley 7.19 ×10-15 6.46 ×10-12 7.99 ×10-15 3.63 ×10-13 3.09 1.50 ×10-14

Gold 3.00 3.00 3.00 3.00 3.00 3.00

Griewank 9.99 ×10-16 9.99 ×10-16 1.60 ×10-13 6.56 ×10-13 1.07 2.40 ×10-2

Rastrigin 1.79 ×101 1.23 ×102 7.47 ×101 1.28 ×102 1.52 ×102 2.98 ×101

Rosenbrock 9.60 ×10-16 1.07 ×10-8 7.88 ×10-16 3.90 ×10-9 1.07 ×101 1.50 ×101

54

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.06

Computed on NFE based on fixed VTR after 25 runs (vtr=1.e-015):

Table 2. NFE based on fixed VTR for different functions

Function
 DE

DE/best/1 DE/rand/1 DE/best-to-rand/1 DE/best/2 DE/rand/2 ReDE

Sphere 288000 3705000 313000 3260000 5000000 155000

Beale 48000 94000 67000 85000 127000 50000

Booth 500000 90000 71000 77000 118000 48000

Schwefel 7000 12000 13000 4000 6000 2000

Michlewicz 1000 1000 1000 1000 1000 1000

Schaffer N.2 68000 148000 119000 139000 224000 10000

Schaffer N.4 5000000 5000000 5000000 5000000 5000000 5000000

HimmelBlau 45000 95000 67000 77000 199000 55000

Bird 1000 1000 1000 1000 1000 1000

Extended

Cube
5000000 5000000 5000000 5000000 5000000 5000000

Ackeley 5000000 5000000 5000000 5000000 5000000 5000000

Gold 5000000 5000000 5000000 5000000 5000000 5000000

Griewank 2880000 4579000 500000 500000 500000 5000000

Rastrigin 5000000 5000000 5000000 5000000 5000000 5000000

Rosenbrock 60900 5000000 77000 5000000 5000000 5000000

Computation on elapsed time of CPU in seconds after 25 runs (vtr=1.e-015):

Table 3. Elapsed time of CPU in seconds for different functions

Function
 DE

DE/best/1 DE/rand/1 DE/best-to-rand/1 DE/best/2 DE/rand/2 ReDE

Sphere 37.67 139.169 16.318 122.399 225.799 16.02

Beale 48.163 9.5786 8.263 8.533 8.81 32.65

Booth 11.6 8.25 6.817 8.494 8.5762 16.78

Schwefel 17.712 5.337 4.3044 4.956 4.5789 13.05

Michlewicz 2.73 2.217 2.817 2.064 2.074 6.4

Schaffer N.2 36.311 23.22 17.3 18.86 21.19 16.7

Schaffer N.4 190.07 227.9 261.1 238.23 245.6 360.1

HimmelBlau 14.8 16.94 18.4 12.3 15.95 43.2

Bird 12.39 11.8 8.25 8.71 8.07 16.64

Extended

Cube
186.78 372.56 345.3 352.3 335.02 379.3

Ackeley 314.6 310.42 325.56 312.2 300.4 362.3

Gold 257.45 425.8 331.62 312.52 319.5 314.5

Griewank 321.7 305.3 346.58 342.76 341.01 294.3

Rastrigin 254.69 316.8 265.4 310.1 323.52 300.6

Rosenbrock 52.01 36.23 52.79 324.06 34.53 300.6

55

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.06

Computed on Best Value obtained after 25 runs (vtr=1.e-014):

Table 4. Best Value obtained after 25 Runs for different functions

Function
 DE

DE/best/1 DE/rand/1 DE/best-to-rand/1 DE/best/2 DE/rand/2 ReDE

Sphere 9.34 ×10-15 9.35 ×10-15 9.54 ×10-15 9.94 ×10-15 6.92 8.80 ×10-15

Beale 4.26 ×10-15 7.72 ×10-15 1.13 ×10-15 1.36 ×10-17 7.50 ×10-15 1.19 ×10-15

Booth 1.81 ×10-15 7.55 ×10-16 1.95 ×10-15 2.75 ×10-15 6.47 ×10-15 2.32 ×10-16

Schwefel -2.22 ×103 -4.80 ×102 -1.67 ×103 -4.47 ×103 -1.50 ×103 -6.80 ×102

Michlewicz -7.69 -7.64 -6.87 -7.35 -6.98 -6.6

Schaffer N.2 1.33 ×10-15 1.33 ×10-15 6.66 ×10-16 5.30 ×10-15 1.33 ×10-15 4.40 ×10-16

Schaffer N.4 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1

HimmelBlau 4.83 ×10-15 4.42 ×10-15 1.90 ×10-15 3.95 ×10-15 5.14 ×10-15 4.14 ×10-15

Bird -9.30 ×101 -1.04 ×102 -1.07 ×102 -1.03 ×102 -1.04 ×102 -1.03 ×102

Extended Cube 5.70 ×10-6 5.21 ×10-5 7.10 ×10-8 1.73 ×10-5 2.92 ×10-9 5.47 ×10-8

Ackeley 7.99 ×10-15 5.02 ×10-15 7.99 ×10-15 3.59 ×10-13 3.21 1.02

Gold 3.00 3.00 3.00 3.00 3.00 3.00

Griewank 1.48 ×10-2 9.21 ×10-15 7.88 ×10-15 5.07 ×10-9 1.06 6.66 ×10-16

Rastrigin 3.61 ×101 1.18 ×102 8.17 ×101 1.73 ×102 1.67 ×102 2.88

Rosenbrock 3.98 1.40 ×10-8 6.90 ×10-15 1.56 ×10-11 7.15 ×104 1.50

Computed on Best Value obtained after 50 runs (vtr=1.e-015):

Table 5. Best Value obtained after 50 Runs for different functions

Function
 DE

DE/best/1 DE/rand/1 DE/best-to-rand/1 De/best/2 DE/rand/2 ReDE

Sphere 8.50 ×10-16 9.99 ×10-16 6.20 ×10-16 9.70 ×10-16 2.52×10-1 9.68 ×10-16

Beale 5.90 ×10-16 2.56 ×10-16 3.80 ×10-16 9.73 ×10-16 3.90 ×10-16 7.40×10-15

Booth 3.17 ×10-16 5.87 ×10-16 1.76 ×10-16 5.90 ×10-16 3.7 ×10-16 4.31 ×10-16

Schwefel -5.60 ×102 -2.48 ×103 -6.40 ×102 -4.93 ×103 -2.40 ×103 -3.50 ×103

Michlewicz -1.13 ×101 -1.20 ×101 -1.21 ×101 -1.24 ×101 -1.12 ×101 -1.17 ×101

Schaffer N.2 6.66 ×10-16 8.88 ×10-16 0.00 8.88 ×10-16 6.66 ×10-16 6.56 ×10-16

Schaffer N.4 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1

HimmelBlau 6.19 ×10-16 7.18 ×10-17 5.85 ×10-17 7.17 ×10-16 7.67 ×10-16 3.67 ×10-16

Bird -1.04 ×102 -1.06 ×102 -1.06 ×102 -1.06 ×102 -1.01 ×102 -1.05 ×102

Extended Cube 1.56 ×10-7 2.94 ×10-10 1.36 ×10-7 9.42 ×10-11 2.61 ×10-14 1.02 ×10-7

Ackeley 7.99 ×10-15 6.33 ×10-13 7.99 ×10-15 9.32 ×10-14 7.19 ×10-14 7.99 ×10-15

Gold 3.00 3.00 3.00 3.00 3.00 3.00

Griewank 1.23 ×10-2 8.88 ×10-16 7.65 ×10-16 8.88 ×10-16 6.77 ×10-11 7.7 ×10-16

Rastrigin 6.28 ×101 9.72 ×101 6.57 ×101 1.05 ×102 1.29 ×101 1.98 ×101

Rosenbrock 9.50 ×10-16 2.23 ×10-12 3.90 7.50 ×105 3.51 ×108 1.40 ×101

A comparative analysis was performed and study

done on each of the technique. By setting the

dimension as 25 and value-to-reach (VTR) as e-015,

the best value, number of function evaluation (NFE)

and the CPU time of different function strategies

were calculated. It was noted that the proposed hybrid

algorithm gave the best value for most of the standard

functions.

By changing the VTR value to e-014 for

dimension of 25, the best value was obtained for

proposed algorithm for most of the standard functions.

In some functions, the results were good for both

classical DE and proposed algorithm. NFE for most

of the standard functions were also best for the

proposed algorithm. By changing the dimension to 50

and setting the VTR to e-015, best value and NFE

was best for most of the standard functions using

proposed algorithm. CPU time was also best for

almost all standard functions using the proposed

algorithm. The results shown in bold depict the best

results obtained for different functions. From the

results tabulated, it is clearly shown that the strategy

ReDE gives good results for most of the functions

used.

56

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.06

6. Graphical results

The above tabulated values were represented in a

graphical form. The graphs show performance curve

of five different function strategies. The x-axis

represents the number of function evaluation and y-

axis represents the objective function. The graph is

plotted for the various values at each iteration for

fixed VTR value of e-015 and dimension size of 25.

Figure.1 Graphical representation for Schwefel function

Figure.2 Graphical representation for Michelawicz

function

A comparative study was done based on above

graphs. The study showed that the revised mutation

strategy gave better results compared to the existing

mutation strategy for various functions. The graphs

for schwefel and Michelawicz function show that

ReDE gives different results from the traditional

mutation strategy which has resulted in producing a

better curve compared to the earlier techniques. The

prevailing variants of DE use either two types of

population or differs in the number of control

parameters. As this strategy ReDE uses a

combination of two sets of population with two

different control parameters, the results were refined

and the efficiency of the strategy was increased.

7. Statistical analysis

Based on the values from table 1, Friedman test

was applied and the results obtained were tabulated.

Table 6 represents the values obtained from the test

and table 7 depicts the rank of the various mutation

strategies used based on best value, NFE and CPU

time.

Table 6. Test statistics using Friedman's test

N 25

Chi sq 22.68

Df 5

Asymptotic Significance 0.004

Table 7. Ranks of the different strategies

Strategies

Mean

Rank on

Best

Value

Mean

rank on

CPU time

Mean

rank on

NFE

DE/best/1 2.7 3.4 3.0

De/rand/1 3.2 3.6 4.2

DE/best-to-

rand/1
2.7 3.2 3.2

De/best/2 4.3 3.1 3.4

DE/rand/2 5.1 3.1 4.2

ReDE 3 4.4 2.86

The above tables show that the new mutation

strategy has significant performance in comparison to

the existing mutation strategies. The rank obtained on

the basis of NFE is the best for ReDE. The rank

obtained on the basis of best value is comparatively

better for best value case. These rankings obtained on

the basis of Freidman’s test justifies the efficiency of

57

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.06

ReDE strategy. Based on the ranks obtained, a

graphical representation of the results is shown below.

The x axis of the graph represents the various

strategies used and the y axis shows the ranks

obtained.

Figure 3. Bonferoni Dunn bar chart for rank on best

value

Figure 4. Bonferoni Dunn bar chart for rank

based on CPU time

Figure 5.Bonferoni Dunn bar chart for rank

based on NFE

8. Conclusion

In the above proposed work, the revised strategy

was compared against the existing mutation

strategies. After performing the comparative study, it

was found that the proposed strategy gave much

better or almost similar results for most of the

functions evaluated. The ranks obtained also justifies

the efficiency of the strategy. Results wre compared

on the basis of VTR, CPU time and NFE. A detailed

study was done and graphs were plotted. Considering

all the results and details, the proposed strategy is

performing better than few classical strategies.

Moreover, the proposed strategy is easy and simple

to apply and do not disturb the basic structure of DE.

This proposed strategy can be extended to real time

problems and optimisation problems. Further the

work can applied to the field of clustering , image

thresholding , image enhancement , image analysis,

digital image processing etc. for verifying the

performance of the new mutation strategy in that area.

References

[1] Madavan, Nateri K., and Bryan A. Biegel.,

"Multiobjective optimization using a Pareto

differential evolution approach”, In: Proceedings of

the Evolutionary Computation on 2002. CEC'02.

Proceedings of the 2002 Congress-Volume 02, IEEE

Computer Society, pp. 1145-1150,2002.

[2] Babu, B. V., and M. Mathew Leenus Jehan.

"Differential evolution for multi-objective

optimization.", In Evolutionary Computation, 2003.

CEC'03, The 2003 Congress on, vol. 4, IEEE, pp.

2696-2703, 2003.

[3] Thomsen, Rene. "Multimodal optimization using

crowding-based differential evolution.",

58

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.06

In Evolutionary Computation, 2004. CEC2004.

Congress on, vol. 2, IEEE, pp. 1382-1389, 2004.

[4] Qin, A. Kai, and Ponnuthurai N. Suganthan. "Self-

adaptive differential evolution algorithm for

numerical optimization.", In 2005 IEEE congress on

evolutionary computation, vol. 2, IEEE, pp. 1785-

1791, 2005.

[5] Qin, A. Kai, and Ponnuthurai N. Suganthan. "Self-

adaptive differential evolution algorithm for

numerical optimization.", In 2005 IEEE congress on

evolutionary computation, vol. 2, IEEE, pp. 1785-

1791, 2005.

[6] Mezura-Montes, Efrñn, Jesús Velázquez-Reyes, and

Carlos A. Coello Coello. "A comparative study of

differential evolution variants for global

optimization." In : Proceedings of the 8th annual

conference on Genetic and evolutionary computation,

ACM, pp. 485-492, 2006.

[7] Kim, Hong-Kyu, Jin-Kyo Chong, Kyong-Yop Park,

and David A. Lowther., "Differential evolution

strategy for constrained global optimization and

application to practical engineering problems.", IEEE

Transactions on Magnetics 43, no. 4 (2007), pp.1565-

1568,2007.

[8] Qin, A. Kai, Vicky Ling Huang, and Ponnuthurai N.

Suganthan., "Differential evolution algorithm with

strategy adaptation for global numerical

optimization.", IEEE transactions on Evolutionary

Computation 13, no. 2 (2009), pp. 398-417,2009.

[9] Takahama, Tetsuyuki, and Setsuko Sakai.,

"Constrained optimization by the ε constrained

differential evolution with an archive and gradient-

based mutation.", In IEEE congress on evolutionary

computation, IEEE, pp. 1-9, 2010.

[10] Wang, Yong, Zixing Cai, and Qingfu Zhang.,

"Differential evolution with composite trial vector

generation strategies and control parameters.", IEEE

Transactions on Evolutionary Computation 15, no. 1

(2011), pp. 55-66, 2011.

[11] Qu, Bo-Yang, Ponnuthurai Nagaratnam Suganthan,

Jane-Jing Liang, "Differential evolution with

neighborhood mutation for multimodal

optimization.", IEEE transactions on evolutionary

computation 16, no. 5 (2012), pp. 601-614,2012.

[12] Elsayed, Saber M., Ruhul A. Sarker, and Daryl L.

Essam., "An improved self-adaptive differential

evolution algorithm for optimization problems.",

IEEE Transactions on Industrial Informatics 9 , no. 1

(2013), pp.89-99,2013.

[13] Yu, Wei-Jie, Meie Shen, Wei-Neng Chen, Zhi-Hui

Zhan, Yue-Jiao Gong, Ying Lin, Ou Liu, and Jun

Zhang. ,"Differential evolution with two-level

parameter adaptation." IEEE T. Cybernetics 44, no. 7

(2014), pp. 1080-1099,2014.

[14] Gong, Wenyin, Zhihua Cai, and Dingwen Liang.,

"Adaptive ranking mutation operator based

differential evolution for constrained

optimization.", IEEE transactions on cybernetics 45,

no. 4 (2015), pp.716-727,2015.

[15] Qiao, Dapeng, and Grantham KH Pang., "A Modified

Differential Evolution with Heuristic Algorithm for

Nonconvex Optimization on Sensor Network

Localization.", IEEE Transactions on Vehicular

Technology 65, no. 3 (2016), pp. 1676-1689, 2016.

[16] Das S, Abraham A, Chakraborty UK, Konar A. ,

“Differential evolution using a neighborhood-based

mutation operator.”, IEEE Trans Evol Comput

2009;13(3), pp.526–53,2009.
[17] Das, Swagatam, and Ponnuthurai Nagaratnam

Suganthan., "Differential evolution: a survey of the

state-of-the-art.", IEEE transactions on evolutionary

computation 15, no. 1 (2011), pp. 4-31,2011.

[18] Storn, Rainer, and Kenneth Price., "Differential

evolution–a simple and efficient heuristic for global

optimization over continuous spaces." ,Journal of

global optimization 11, no. 4 (1997), pp. 341-

359,1997.

[19] Das S., Suganthan P. N., "Differential evolution: a

survey of the state-of-the-art." Evolutionary

Computation, IEEE Transactions on 15.1 ,2011, pp. 4-

31,2011.

[20] Rahnamayan, Shahryar, Hamid R. Tizhoosh, and

Magdy MA Salama., "Opposition-based differential

evolution.", IEEE Transactions on Evolutionary

computation 12, no. 1 (2008), pp. 64-79,2008.

[21] Ramadas, Meera, and Sushil Kumar, "An efficient

hybrid approach using differential evolution and

flower pollination algorithm.", 6th International

Conference-Cloud System and Big Data Engineering

(Confluence), IEEE, 2016, pp.59-64,2016.

[22] Gandomi, Amir Hossein, Xin-She Yang, Siamak

Talatahari, and Suash Deb, "Coupled eagle strategy

and differential evolution for unconstrained and

constrained global optimization.", Computers &

Mathematics with Applications 63.1 (2012), pp. 191-

200, 2012.

[23] Ali, Musrrat, Millie Pant, and Ajith Abraham,

"Simplex differential evolution.",Acta polytechnic

Hungarica 6, no. 5 (2009), pp. 95-115,2009.

[24] Das, Swagatam, Ajith Abraham, And Amit Konar,

"Particle Swarm Optimization And Differential

Evolution Algorithms: Technical Analysis,

Applications And Hybridization Perspectives.",

Advances Of Computational Intelligence in Industrial

Systems, Springer Berlin Heidelberg, 2008, pp.1-38

[25] Das, Swagatam, Amit Konar, and Uday K.

Chakraborty, "Two improved differential evolution

schemes for faster global search.", In: Proceedings of

the 7th annual conference on Genetic and

evolutionary computation, ACM, 2005, pp. 991-998,

2005.

[26] Alam, S., Tawseef, M., Khan, F., Fattah, A.A. and

Kabir, M.R.,” Differential Evolution with Alternating

Strategies: A Novel Algorithm for Numeric Function

Optimization”, Communications on Applied

Electronics (CAE) – ISSN : 2394-4714 Foundation of

Computer Science FCS, New York, USA Volume 4–

No.2, January 2016, pp.12-16,2016.

