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Abstract: In today’s scientific world, evolutionary algorithm is considered as a major area for research providing 

immense opportunity to researchers. Several works are done in this area to create different variants of the evolutionary 

algorithm and to further improve their performance. Differential Evolution (DE) is considered to be a dominant 

technique for optimization and is being used to solve various real time problems. In this paper, a revised mutation 

strategy has been implemented. This strategy uses two control parameters and two types of population. The results 

computed were compared with the existing mutation strategy with the results showing better performance for the new 

revised strategy. 
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1. Introduction 

Many of real time problems in the scientific world 

can be considered as constrained optimisation 

problems. For solving these optimisation problems, 

we can use various evolutionary algorithms. 

Evolutionary algorithms are those algorithms that 

uses the technique prompted by biological evolution 

such as reproduction, selection, mutation and 

recombination. Various evolutionary algorithms have 

been developed in due course of time.    

In 1995, Storn and Price proposed the Differential 

Evolution (DE) which is a powerful and efficient 

algorithm to solve optimisation problems. Like 

various other evolutionary algorithms, DE is also a 

population based stochastic method. DE is among the 

best of evolutionary algorithm for solving real valued 

test functions. DE has various significant features like 

its ease to implement, better performance, low space 

complexity and fewer control parameters. The 

efficiency and performance of DE greatly depends on 

the trial vector generation strategy and the control 

parameters used. 

Various researches are being done on improving 

the performance of DE by changing the control 

parameters and the trial vector generation strategy. In 

this paper we are introducing a new mutation strategy 

for DE named as Revised Differential Evolution 

(ReDE). This strategy uses two types of control 

parameters:  a variable parameter value and a 

constant parameter value between range (0,1) and 

two types of population: the population from 

previous generation and new population from current 

generation. This mutation strategy was implemented 

for Differential Evolution algorithm. The results 

obtained for best value, number of function 

evaluation and CPU time were computed for different 

dimensions. These results were then compared to the 

results obtained using traditional mutation strategies. 

Friedman’s testing was done on the values obtained 

and ranks for the various mutation strategies were 

computed. Graphs were also plotted for the values 

obtained. After close and comparative study, it was 

seen that ReDE strategy has remarkably better results 

in comparison to the classical DE approaches. 

 

2. Background literature study: 
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Madavan et al. [1] extended the Differential 

evolution approach to a multi objective optimisation 

problem using a Pareto based approach. The result is 

a simple strategy that is self - adaptive and maintains 

the diversity of pareto set. Babu et al. [2] used the 

Differential evolution approach to solve a multi 

objective optimisation problem with two objective 

functions and a classical HimmelBlau function. In 

both the approaches, the results obtained were better. 

Rene et al [3] improvised the DE algorithm with the 

crowding scheme. This made it possible to track and 

maintain the local optima. Qin et al [4] proposed a 

novel self – adaptive Differential evolution (SaDE) in 

which the control parameters need not be specified. 

The performance was evaluated and compared. Efren 

et al [5] did a comparative study on variants of 

Differential evolution on global optimisation. After 

the study, the best strategy among different variants 

were obtained. Hong–Kyu Kim et al. [6] gave some 

modifications to the differential evolution strategy 

for the constraint global optimisation problem. This 

method was applied to the design of gas circuit 

breaker to increase small current interruption 

performance. Rahnamayan et al. [7] presented a 

novel algorithm to accelerate differential evolution. 

This method employs opposition based learning for 

population initialization and generation jump. Qin et 

al. [8] proposed a self-adaptive DE algorithm where 

the control parameters and trial vector generation 

strategies are gradually self-adapted by learning from 

previous experience. This method eliminated time 

consuming search for trial vector generation and 

control parameters.  

Takahama et al. [9] proposed the Ɛ constrained 

differential evolution (ƐDE) combining Differential 

evolution with Ɛ constrained technique. This 

algorithm has faster execution and high quality 

results. Wang et al. [10] did a study on improving the 

performance of DE by combining the trial vectors 

strategies with control parameter settings. He also 

proposed a method composite DE (CoDE) using 

three trial vectors and three control parameters. Qu et 

al.[11] developed neighbourhood based differential 

evolution in which the mutation is performed within 

each Euclidean neighbourhood. The mutation 

neighbourhood maintains the multiple optima found 

during evolution and progress towards the respective 

global/local optimum. Saber et al. [12] gave an 

improved Differential evolution that uses a 

combination of differential mutation operations. This 

algorithm permits a covariance adaptation matrix 

evolution strategy algorithm for local search. Wei-Jie 

Yu et al.[13] proposed an adaptive DE(ADE) with 

two level adaptive parameter control scheme and a 

new mutation strategy. This technique has the 

advantage of balancing between fast convergence 

and population diversity. 

Wenyin et al. [14] devised the adaptive ranking 

mutation operator (ARMOR) for differential 

evolution. This technique is expected to make DE 

achieve feasible solutions faster and converge faster. 

This technique is simple and can be easily combined 

with most of constrained DE variants. Qiao et al. [15] 

gave an algorithm by combining the heuristics with 

modified Differential evolution algorithm for 

situations where the communication range value is 

unknown. His proposed method gave better results 

compared to other nonconvex optimization 

techniques. 

Variants of DE are developed to improve the 

optimisation performance. Das et al.[16] stated that 

DE is defensive to the choice of control parameters 

making DE inconvenient to adjust to different 

problems.Also, DE encounters premature 

convergence in which searching of solution is getting 

trapped in local minima. Many researches are done to 

make DE more robust in resistant to interdependency 

of search variables according to Das et al.[17] .De 

also faces issues on non linearly separable functions. 

For populations clusterd in limited regions, DE has 

less capability to move its population across large 

distance in search space. Owing to these reasons, 

there is a need to create variants for DE that performs 

better in these aspects. 

3. Classical Differential Evolution: 

Storn and Price [18] developed the Differential 

Evolution (DE) algorithm whose processes are 

almost similar to genetic algorithm. It is a simple real 

parameter optimization algorithm. DE uses a 

population of N candidate solutions given as Xi,G 

where i=1,2.. N in which index i depicts population 

and G shows the generation of the population. 

Differential Evolution algorithm depends on the three 

operations mainly mutation, selection and crossover. 

 

Mutation: This operator makes DE different from 

other Evolutionary algorithms. It computes the 

weighted difference between the vectors in 

population. Mutation process starts by selecting three 

individuals at random from the population. For a 

given parameter Xi,G, three vectors Xr1,G , Xr2,G and 

Xr3,G are selected randomly such that r1, r2, r3 are 

distinct. Then the donor vector Vi,G is computed as: 
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Here F is the mutation factor which is a constant from 

[0,1]. 
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Crossover: This process also called as 

recombination takes the successful solutions into the 

population. The trial vector Ui,G  is created for the 

target vector Xi,G through binomial crossover. 

Elements of donor vector enter trial vector with 

probability Cr ε [0,1] is the crossover probability 

which is selected along with population size NP ≥ 4. 
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Here randi,j ≈ ᴜ[0,1]  and   Irand is random integer from 

1,2…N. 

 

Selection: This operation differs from the selection 

operation of other evolutionary algorithms. Here the 

population for next generation is selected from 

vectors in current population and its corresponding 

trial vectors. The target vector Xi,G  is compared with 

the trial vector Vi,G   and the lowest function value is 

taken into next generation. 
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Mutation, crossover and selection operations are 

continued until some stopping criteria is reached. 

4. Revised mutation strategy  

A new strategy has been proposed for mutation 

called Revised DE strategy (ReDE). As it involves 

the best solution vector, it coincides faster as 

compared to the traditional strategies having random 

vectors only. This strategy of mutation uses two sets 

of population: the old population represented as 

popold and the new population from which the 

variable 𝑋𝑟1
𝐺  is chosen at random. Here, two 

parameters are being used. The parameter F known 

as amplifying parameter takes a constant value  while 

the new parameter N takes a varying value which lies 

between (0,1).The proposed strategy is given as: 

 

)
1

()(
' G

r
X

G
best

XFpopold
G
best

XN
G
best

XX 

  

(4) 

5. Experimental setting 

The revised algorithm was implemented on i7 

core processor, 64 bit operating system with 12 GB 

RAM using MATLABr2008b and a comparative 

result was obtained with five different mutation 

strategy of DE algorithm. We have taken fifteen 

different functions and computed the results. The 

value to reach (VTR) is the global minimum or 

maximum of the function or it is a value to stop the 

optimisation if it is reached.   We have also tabulated 

various results by fixing the dimension as 25 and 50. 

The results are tabulated for comparison with the 

existing algorithms.

 

Computed on Best Value obtained after 25 runs (vtr=1.e-015): 

Table 1. Best Value obtained after 25 Runs for different functions “  

Function 
                                                                   DE 

DE/best/1 DE/rand/1 DE/best/1 De/best/2 DE/best/1 ReDE 

Sphere 9.73×10-16 6.90 ×10-16 7.53 ×10-16 9.66 ×10-16 7.17  6.04 ×10-16 

Beale 3.27 ×10-16 2.32 ×10-16 3.71 ×10-16 7.59 ×10-16 7.73 ×10-16 5.95 ×10-16 

Booth 3.50 ×10-16 2.05 ×10-16 6.07 ×10-16 7.08 ×10-16 8.35 ×10-16 1.36 ×10-16 

Schwefel -1.80 ×103  -2.25 ×103 -7.84 ×101 -1.38 ×103 -1.66 ×103 -2.10 ×x103 

Michlewicz -7.64 -7.21 -7.39 -6.95 -6.84 -6.6 

Schaffer N.2 6.60 ×10-16 8.88 ×10-16 4.43 ×10-16 6.55 ×10-16 8.87 ×10-16 2.22 x×10-16 

Schaffer N.4 3.05 ×10-15 2.90 ×10-1 2.92 ×10-1 2.93 ×10-1 2.89 ×10-1 2.82 ×10-1 

HimmelBlau 1.60 ×10-16 8.05 ×10-16 3.83 ×10-16 9.12 ×10-16 1.46 ×10-16 3.35 ×10-16 

Bird -1.04 ×10-02 -1.07 ×10-2 -1.05 ×10-2 -1.07 ×10-2 -1.03 ×10-2 -1.03 ×10-2 

Extended Cube 3.31 ×10-15 4.98 ×10-5 6.10 ×10-8 1.93 ×10-5 2.68 8.60 ×10-15 

Ackeley 7.19 ×10-15 6.46 ×10-12 7.99 ×10-15 3.63 ×10-13 3.09 1.50 ×10-14 

Gold 3.00 3.00 3.00 3.00 3.00 3.00 

Griewank 9.99 ×10-16 9.99 ×10-16 1.60 ×10-13 6.56 ×10-13 1.07 2.40 ×10-2 

Rastrigin 1.79 ×101 1.23 ×102 7.47 ×101 1.28 ×102 1.52 ×102 2.98 ×101 

Rosenbrock 9.60 ×10-16 1.07 ×10-8 7.88 ×10-16 3.90 ×10-9 1.07 ×101 1.50 ×101 
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Computed on NFE based on fixed VTR after 25 runs (vtr=1.e-015): 

Table 2. NFE based on fixed VTR for different functions 

Function 
                                                                   DE 

DE/best/1 DE/rand/1 DE/best-to-rand/1 DE/best/2 DE/rand/2 ReDE 

Sphere 288000 3705000 313000 3260000 5000000 155000 

Beale 48000 94000 67000 85000 127000 50000 

Booth 500000 90000 71000 77000 118000 48000 

Schwefel 7000 12000 13000 4000 6000 2000 

Michlewicz 1000 1000 1000 1000 1000 1000 

Schaffer N.2 68000 148000 119000 139000 224000 10000 

Schaffer N.4 5000000 5000000 5000000 5000000 5000000 5000000 

HimmelBlau 45000 95000 67000 77000 199000 55000 

Bird 1000 1000 1000 1000 1000 1000 

Extended 

Cube 
5000000 5000000 5000000 5000000 5000000 5000000 

Ackeley 5000000 5000000 5000000 5000000 5000000 5000000 

Gold 5000000 5000000 5000000 5000000 5000000 5000000 

Griewank 2880000 4579000 500000 500000 500000 5000000 

Rastrigin 5000000 5000000 5000000 5000000 5000000 5000000 

Rosenbrock 60900 5000000 77000 5000000 5000000 5000000 

 

 

 

Computation on elapsed time of CPU in seconds after 25 runs (vtr=1.e-015): 

Table 3. Elapsed time of CPU in seconds for different functions 

Function 
                                                                   DE 

DE/best/1 DE/rand/1 DE/best-to-rand/1 DE/best/2 DE/rand/2 ReDE 

Sphere 37.67 139.169 16.318 122.399 225.799 16.02 

Beale 48.163 9.5786 8.263 8.533 8.81 32.65 

Booth 11.6 8.25 6.817 8.494 8.5762 16.78 

Schwefel 17.712 5.337 4.3044 4.956 4.5789 13.05 

Michlewicz 2.73 2.217 2.817 2.064 2.074 6.4 

Schaffer N.2 36.311 23.22 17.3 18.86 21.19 16.7 

Schaffer N.4 190.07 227.9 261.1 238.23 245.6 360.1 

HimmelBlau 14.8 16.94 18.4 12.3 15.95 43.2 

Bird 12.39 11.8 8.25 8.71 8.07 16.64 

Extended 

Cube 
186.78 372.56 345.3 352.3 335.02 379.3 

Ackeley 314.6 310.42 325.56 312.2 300.4 362.3 

Gold 257.45 425.8 331.62 312.52 319.5 314.5 

Griewank 321.7 305.3 346.58 342.76 341.01 294.3 

Rastrigin 254.69 316.8 265.4 310.1 323.52 300.6 

Rosenbrock 52.01 36.23 52.79 324.06 34.53 300.6 
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Computed on Best Value obtained after 25 runs (vtr=1.e-014): 

Table 4. Best Value obtained after 25 Runs for different functions 

Function 
                                                                   DE 

DE/best/1 DE/rand/1 DE/best-to-rand/1 DE/best/2 DE/rand/2 ReDE 

Sphere 9.34 ×10-15 9.35 ×10-15 9.54 ×10-15 9.94 ×10-15 6.92 8.80 ×10-15 

Beale 4.26 ×10-15 7.72 ×10-15 1.13 ×10-15 1.36 ×10-17 7.50 ×10-15 1.19 ×10-15 

Booth 1.81 ×10-15 7.55 ×10-16 1.95 ×10-15 2.75 ×10-15 6.47 ×10-15 2.32 ×10-16 

Schwefel -2.22 ×103 -4.80 ×102 -1.67 ×103 -4.47 ×103 -1.50 ×103 -6.80 ×102 

Michlewicz -7.69 -7.64 -6.87 -7.35 -6.98 -6.6 

Schaffer N.2 1.33 ×10-15 1.33 ×10-15 6.66 ×10-16 5.30 ×10-15 1.33 ×10-15 4.40 ×10-16 

Schaffer N.4 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 

HimmelBlau 4.83 ×10-15 4.42 ×10-15 1.90 ×10-15 3.95 ×10-15 5.14 ×10-15 4.14 ×10-15 

Bird -9.30 ×101 -1.04 ×102 -1.07 ×102 -1.03 ×102 -1.04 ×102 -1.03 ×102 

Extended Cube 5.70 ×10-6 5.21 ×10-5 7.10 ×10-8 1.73 ×10-5 2.92 ×10-9 5.47 ×10-8 

Ackeley 7.99 ×10-15 5.02 ×10-15 7.99 ×10-15 3.59 ×10-13 3.21 1.02 

Gold 3.00 3.00 3.00 3.00 3.00 3.00 

Griewank 1.48 ×10-2 9.21 ×10-15 7.88 ×10-15 5.07 ×10-9 1.06 6.66 ×10-16 

Rastrigin 3.61 ×101 1.18 ×102 8.17 ×101 1.73 ×102 1.67 ×102 2.88 

Rosenbrock 3.98 1.40 ×10-8 6.90 ×10-15 1.56 ×10-11 7.15 ×104 1.50 

 

 

Computed on Best Value obtained after 50 runs (vtr=1.e-015): 

Table 5. Best Value obtained after 50 Runs for different functions 

Function 
                                                                   DE 

DE/best/1 DE/rand/1 DE/best-to-rand/1 De/best/2 DE/rand/2 ReDE 

Sphere 8.50 ×10-16 9.99 ×10-16 6.20 ×10-16 9.70 ×10-16 2.52×10-1 9.68 ×10-16 

Beale 5.90 ×10-16 2.56 ×10-16 3.80 ×10-16 9.73 ×10-16 3.90 ×10-16 7.40×10-15 

Booth 3.17 ×10-16 5.87 ×10-16 1.76 ×10-16 5.90 ×10-16 3.7 ×10-16 4.31 ×10-16 

Schwefel -5.60 ×102 -2.48 ×103 -6.40 ×102 -4.93 ×103 -2.40 ×103 -3.50 ×103 

Michlewicz -1.13 ×101 -1.20 ×101 -1.21 ×101 -1.24 ×101 -1.12 ×101 -1.17 ×101 

Schaffer N.2 6.66 ×10-16 8.88 ×10-16 0.00 8.88 ×10-16 6.66 ×10-16 6.56 ×10-16 

Schaffer N.4 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 2.92 ×10-1 

HimmelBlau 6.19 ×10-16 7.18 ×10-17 5.85 ×10-17 7.17 ×10-16 7.67 ×10-16 3.67 ×10-16 

Bird -1.04 ×102 -1.06 ×102 -1.06 ×102 -1.06 ×102 -1.01 ×102 -1.05 ×102 

Extended Cube 1.56 ×10-7 2.94 ×10-10 1.36 ×10-7 9.42 ×10-11 2.61 ×10-14 1.02 ×10-7 

Ackeley 7.99 ×10-15 6.33 ×10-13 7.99 ×10-15 9.32 ×10-14 7.19 ×10-14 7.99 ×10-15 

Gold 3.00 3.00 3.00 3.00 3.00 3.00 

Griewank 1.23 ×10-2 8.88 ×10-16 7.65 ×10-16 8.88 ×10-16 6.77 ×10-11 7.7 ×10-16 

Rastrigin 6.28 ×101 9.72 ×101 6.57 ×101 1.05 ×102 1.29 ×101 1.98 ×101 

Rosenbrock 9.50 ×10-16 2.23 ×10-12 3.90 7.50 ×105 3.51 ×108 1.40 ×101 

 

A comparative analysis was performed and study 

done on each of the technique. By setting the 

dimension as 25 and value-to-reach (VTR) as e-015, 

the best value, number of function evaluation (NFE) 

and the CPU time of different function strategies 

were calculated. It was noted that the proposed hybrid 

algorithm gave the best value for most of the standard 

functions. 

By changing the VTR value to e-014 for 

dimension of 25, the best value was obtained for 

proposed algorithm for most of the standard functions. 

In some functions, the results were good for both 

classical DE and proposed algorithm. NFE for most 

of the standard functions were also best for the 

proposed algorithm. By changing the dimension to 50 

and setting the VTR to e-015, best value and NFE 

was best for most of the standard functions using 

proposed algorithm. CPU time was also best for 

almost all standard functions using the proposed 

algorithm. The results shown in bold depict the best 

results obtained for different functions. From the 

results tabulated, it is clearly shown that the strategy 

ReDE gives good results for most of the functions 

used. 
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6. Graphical results 

The above tabulated values were represented in a 

graphical form. The graphs show performance curve 

of five different function strategies. The x-axis 

represents the number of function evaluation and y- 

axis represents the objective function. The graph is 

plotted for the various values at each iteration for 

fixed VTR value of e-015 and dimension size of 25.  

 

                           

Figure.1 Graphical representation for Schwefel function 

 

Figure.2 Graphical representation for Michelawicz 

function 

A comparative study was done based on above 

graphs. The study showed that the revised mutation 

strategy gave better results compared to the existing 

mutation strategy for various functions. The graphs 

for schwefel and Michelawicz function show that 

ReDE gives different results from the traditional 

mutation strategy which has resulted in producing a 

better curve compared to the earlier techniques. The 

prevailing variants of DE use either two types of 

population or differs in the number of control 

parameters. As this strategy ReDE uses a 

combination of two sets of population with two 

different control parameters, the results were refined 

and the efficiency of the strategy was increased. 

 

7. Statistical analysis 

Based on the values from table 1, Friedman test 

was applied and the results obtained were tabulated. 

Table 6 represents the values obtained from the test 

and table 7 depicts the rank of the various mutation 

strategies used based on best value, NFE and CPU 

time. 

 

Table 6. Test statistics using Friedman's test 

N 25 

Chi sq 22.68 

Df 5 

Asymptotic Significance 0.004 

 

Table 7. Ranks of the different strategies 

Strategies 

Mean 

Rank on 

Best 

Value 

Mean 

rank on 

CPU time 

Mean 

rank on 

NFE 

DE/best/1 2.7 3.4 3.0 

De/rand/1 3.2 3.6 4.2 

DE/best-to-

rand/1 
2.7 3.2 3.2 

De/best/2 4.3 3.1 3.4 

DE/rand/2 5.1 3.1 4.2 

ReDE 3 4.4 2.86 

 

The above tables show that the new mutation 

strategy has significant performance in comparison to 

the existing mutation strategies. The rank obtained on 

the basis of NFE is the best for ReDE. The rank 

obtained on the basis of best value is comparatively 

better for best value case. These rankings obtained on 

the basis of Freidman’s test justifies the efficiency of 
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ReDE strategy. Based on the ranks obtained, a 

graphical representation of the results is shown below. 

The x axis of the graph represents the various 

strategies used and the y axis shows the ranks 

obtained. 

 
Figure 3. Bonferoni Dunn bar chart for rank on best   

value 

 

 
Figure 4. Bonferoni Dunn bar chart for rank 

based on CPU time 

 
Figure 5.Bonferoni Dunn bar chart for rank      

based on NFE 

8. Conclusion 

In the above proposed work, the revised strategy 

was compared against the existing mutation 

strategies. After performing the comparative study, it 

was found that the proposed strategy gave much 

better or almost similar results for most of the 

functions evaluated. The ranks obtained also justifies 

the efficiency of the strategy. Results wre compared 

on the basis of VTR, CPU time and NFE. A detailed 

study was done and graphs were plotted. Considering 

all the results and details, the proposed strategy is 

performing better than few classical strategies. 

Moreover, the proposed strategy is easy and simple 

to apply and do not disturb the basic structure of DE. 

This proposed strategy can be extended to real time 

problems and optimisation problems. Further the 

work can applied to the field of clustering , image 

thresholding , image enhancement , image analysis, 

digital image processing etc. for verifying the 

performance of the new mutation strategy in that area. 

References 

[1] Madavan, Nateri K., and Bryan A. Biegel., 

"Multiobjective optimization using a Pareto 

differential evolution approach”, In: Proceedings of 

the Evolutionary Computation on 2002. CEC'02. 

Proceedings of the 2002 Congress-Volume 02, IEEE 

Computer Society, pp. 1145-1150,2002. 

[2] Babu, B. V., and M. Mathew Leenus Jehan. 

"Differential evolution for multi-objective 

optimization.", In Evolutionary Computation, 2003. 

CEC'03, The 2003 Congress on, vol. 4, IEEE, pp. 

2696-2703, 2003. 

[3] Thomsen, Rene. "Multimodal optimization using 

crowding-based differential evolution.", 



58 

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016   DOI: 10.22266/ijies2016.1231.06 

  

In Evolutionary Computation, 2004. CEC2004. 

Congress on, vol. 2, IEEE, pp. 1382-1389, 2004. 

[4] Qin, A. Kai, and Ponnuthurai N. Suganthan. "Self-

adaptive differential evolution algorithm for 

numerical optimization.", In 2005 IEEE congress on 

evolutionary computation, vol. 2, IEEE, pp. 1785-

1791, 2005. 

[5] Qin, A. Kai, and Ponnuthurai N. Suganthan. "Self-

adaptive differential evolution algorithm for 

numerical optimization.", In 2005 IEEE congress on 

evolutionary computation, vol. 2, IEEE, pp. 1785-

1791, 2005. 

[6] Mezura-Montes, Efrñn, Jesús Velázquez-Reyes, and 

Carlos A. Coello Coello. "A comparative study of 

differential evolution variants for global 

optimization." In : Proceedings of the 8th annual 

conference on Genetic and evolutionary computation, 

ACM, pp. 485-492, 2006. 

[7] Kim, Hong-Kyu, Jin-Kyo Chong, Kyong-Yop Park, 

and David A. Lowther., "Differential evolution 

strategy for constrained global optimization and 

application to practical engineering problems.", IEEE 

Transactions on Magnetics 43, no. 4 (2007), pp.1565-

1568,2007. 

[8] Qin, A. Kai, Vicky Ling Huang, and Ponnuthurai N. 

Suganthan., "Differential evolution algorithm with 

strategy adaptation for global numerical 

optimization.", IEEE transactions on Evolutionary 

Computation 13, no. 2 (2009), pp. 398-417,2009. 

[9] Takahama, Tetsuyuki, and Setsuko Sakai., 

"Constrained optimization by the ε constrained 

differential evolution with an archive and gradient-

based mutation.", In IEEE congress on evolutionary 

computation, IEEE, pp. 1-9, 2010. 

[10] Wang, Yong, Zixing Cai, and Qingfu Zhang., 

"Differential evolution with composite trial vector 

generation strategies and control parameters.", IEEE 

Transactions on Evolutionary Computation 15, no. 1 

(2011), pp. 55-66, 2011. 

[11] Qu, Bo-Yang, Ponnuthurai Nagaratnam Suganthan, 

Jane-Jing Liang, "Differential evolution with 

neighborhood mutation for multimodal 

optimization.", IEEE transactions on evolutionary 

computation 16, no. 5 (2012), pp. 601-614,2012. 

[12] Elsayed, Saber M., Ruhul A. Sarker, and Daryl L. 

Essam., "An improved self-adaptive differential 

evolution algorithm for optimization problems.", 

IEEE Transactions on Industrial Informatics 9 , no. 1 

(2013), pp.89-99,2013. 

[13] Yu, Wei-Jie, Meie Shen, Wei-Neng Chen, Zhi-Hui 

Zhan, Yue-Jiao Gong, Ying Lin, Ou Liu, and Jun 

Zhang. ,"Differential evolution with two-level 

parameter adaptation." IEEE T. Cybernetics 44, no. 7 

(2014), pp. 1080-1099,2014. 

[14] Gong, Wenyin, Zhihua Cai, and Dingwen Liang., 

"Adaptive ranking mutation operator based 

differential evolution for constrained 

optimization.", IEEE transactions on cybernetics 45, 

no. 4 (2015), pp.716-727,2015. 

[15] Qiao, Dapeng, and Grantham KH Pang., "A Modified 

Differential Evolution with Heuristic Algorithm for 

Nonconvex Optimization on Sensor Network 

Localization.", IEEE Transactions on Vehicular 

Technology 65, no. 3 (2016), pp. 1676-1689, 2016. 

[16] Das S, Abraham A, Chakraborty UK, Konar A. , 

“Differential evolution using a neighborhood-based 

mutation operator.”, IEEE Trans Evol Comput 

2009;13(3), pp.526–53,2009. 
[17] Das, Swagatam, and Ponnuthurai Nagaratnam 

Suganthan., "Differential evolution: a survey of the 

state-of-the-art.", IEEE transactions on evolutionary 

computation 15, no. 1 (2011), pp. 4-31,2011. 

[18] Storn, Rainer, and Kenneth Price., "Differential 

evolution–a simple and efficient heuristic for global 

optimization over continuous spaces." ,Journal of 

global optimization 11, no. 4 (1997), pp. 341-

359,1997. 

[19] Das S.,  Suganthan P. N., "Differential evolution: a 

survey of the state-of-the-art." Evolutionary 

Computation, IEEE Transactions on 15.1 ,2011, pp. 4-

31,2011. 

[20] Rahnamayan, Shahryar, Hamid R. Tizhoosh, and 

Magdy MA Salama., "Opposition-based differential 

evolution.", IEEE Transactions on Evolutionary 

computation 12, no. 1 (2008), pp. 64-79,2008. 

[21] Ramadas, Meera, and Sushil Kumar, "An efficient 

hybrid approach using differential evolution and 

flower pollination algorithm.", 6th International 

Conference-Cloud System and Big Data Engineering 

(Confluence), IEEE, 2016, pp.59-64,2016. 

[22] Gandomi, Amir Hossein, Xin-She Yang, Siamak 

Talatahari, and Suash Deb, "Coupled eagle strategy 

and differential evolution for unconstrained and 

constrained global optimization.", Computers & 

Mathematics with Applications 63.1 (2012), pp. 191-

200, 2012. 

[23] Ali, Musrrat, Millie Pant, and Ajith Abraham, 

"Simplex differential evolution.",Acta polytechnic  

Hungarica 6, no. 5 (2009), pp. 95-115,2009. 

[24] Das, Swagatam, Ajith Abraham, And Amit Konar, 

"Particle Swarm Optimization And Differential 

Evolution Algorithms: Technical Analysis, 

Applications And Hybridization Perspectives.", 

Advances Of Computational Intelligence in Industrial 

Systems, Springer Berlin Heidelberg, 2008, pp.1-38  

[25] Das, Swagatam, Amit Konar, and Uday K. 

Chakraborty, "Two improved differential evolution 

schemes for faster global search.", In: Proceedings of 

the 7th annual conference on Genetic and 

evolutionary computation, ACM, 2005, pp. 991-998, 

2005. 

[26] Alam, S., Tawseef, M., Khan, F., Fattah, A.A. and 

Kabir, M.R.,” Differential Evolution with Alternating 

Strategies: A Novel Algorithm for Numeric Function 

Optimization”, Communications on Applied 

Electronics (CAE) – ISSN : 2394-4714 Foundation of 

Computer Science FCS, New York, USA Volume 4– 

No.2, January 2016, pp.12-16,2016. 


