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Abstract 
 

     This paper presents a simple, hybrid two phase 

global optimization algorithm called DE-PSO for 

solving global optimization problems. DE-PSO 

consists of alternating phases of Differential Evolution 

(DE) and Particle Swarm Optimization (PSO). The 

algorithm is designed so as to preserve the strengths of 

both the algorithms. Empirical results show that the 

proposed DE-PSO is quite competent for solving the 

considered test functions as well as real life problems.  

 

1. Introduction 
 

     In the past few years, DE and PSO have emerged as 

powerful optimization tools for solving complex 

optimization problems. Both are population based 

stochastic search techniques inspired by nature. 

Although, DE and PSO have been successfully applied 

to a wide range of problems including test and real life 

problems both have certain shortcomings associated 

with them. The major problems being lack of diversity 

resulting in a suboptimal solution [1] or a slow 

convergence rate. In order to improve the performance 

of these algorithms a number of variations have been 

suggested in literature, one of them being the 

hybridization of the two algorithms. Some hybrid 

versions of DE and PSO include Hendtlass approach 

[2], where the population evolved by DE is optimized 

by using PSO, Kannan approach [3]; in which DE is 

applied to each particle for a finite number of iterations 

to determine the best particle which is then included 

into the population. Methods of  Zhang and Xie [4] and 

Talbi and Batauche [5] apply DE to the best particle 

obtained by PSO. Omran et al [6] developed a hybrid 

version consisting of Barebones PSO and DE. In Zhi 

Feng et al [7] hybrid version, the candidate solution is 

generated either by DE or by PSO according to some 

fixed probability distribution. 

In this paper we propose a simple hybrid version of DE 

and PSO, called DE-PSO. DE-PSO starts with the 

usual DE and incorporated PSO to reach to the optimal 

solution.  

The global optimization problems in this paper follow 

the form: 

Min f (X) subject to X∈Λ 

where X is a continuous variable vector with domain 

Λ∈ R
n 

. The domain Λ is defined within upper and 

lower limits of each dimension. We notate the global 

optimal solution by X
*
, with its corresponding global 

optimal function value f (X
*
). 

The remaining of the paper is organized as follows: in 

Sections 2 and 3, we give a brief description of DE and 

PSO algorithms respectively. Section 4, describes the 

proposed DE-PSO algorithm. Benchmark problems, 

some real world problems and corresponding numerical 

results are given in Section 5. The paper finally 

concludes with Section 6.  

 

2. Differential Evolution 
 

     Differential evolution (DE) is an Evolutionary 

Algorithm (EA) proposed by Storn and Price in 1995 

[8]. DE is similar to other EAs particularly Genetic 

Algorithms (GA) [9] in the sense that it uses the same 

evolutionary operators like selection recombination and 

mutation like that of GA. However the significant 

difference is that DE uses distance and direction 

information from the current population to guide the 

search process. The performance of DE depends on the 



manipulation of target vector and difference vector in 

order to obtain a trial vector. Mutation is the main 

operator in DE. A brief working may be described as: 

For a D-dimensional search space, each target 

vector gix , , a mutant vector is generated by 
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where j = 1, 2,……, D; ]1,0[∈jrand ; CR is the 

crossover constant takes values in the range    [0, 1] 

and ),.....,2,1( Djrand ∈ is the randomly chosen index. 

Selection is the step to choose the vector between the 

target vector and the trial vector with the aim of 

creating an individual for the next generation. 

 

3. Particle Swarm Optimization  
 

     PSO was proposed in 1995 by Kennedy and 

Eberhart [10]. The mechanism of PSO is inspired from 

the complex social behavior shown by the natural 

species. For a D-dimensional search space the position 

of the ith particle is represented as Xi = (xi1,xi2,..xiD). 

Each particle maintains a memory of its previous best 

position Pi = (pi1, pi2… piD) and a velocity Vi = (vi1, 

vi2,…viD) along each dimension . At each iteration, the 

P vector of the particle with best fitness in the local 

neighborhood, designated g, and the P vector of the 

current particle are combined to adjust the velocity 

along each dimension and a new position of the particle 

is determined using that velocity. The two basic 

equations which govern the working of PSO are that of 

velocity vector and position vector are given by: 

)()( 2211 idgdidididid xprcxprcvv −+−+= ω  (2)                                                                  
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                                                    (3)

                                                

The first part of equation (2) represents the inertia of 

the previous velocity, the second part is tells us about 

the personal thinking of the particle and the third part 

represents the cooperation among particles and is 

therefore named as the social component. Acceleration 

constants c1, c2 and inertia weight ω are predefined by 

the user and r1, r2 are the uniformly generated random 

numbers in the range of [0, 1]. 

 

4. Proposed DE-PSO 
 

     The proposed DE-PSO as mentioned earlier is a 

hybrid version of DE and PSO. DE-PSO starts like the 

usual DE algorithm up to the point where the trial 

vector is generated. If the trial vector satisfies the 

conditions given by equation (4), then it is included in 

the population otherwise the algorithm enters the PSO 

phase and generates a new candidate solution. The 

method is repeated iteratively till the optimum value is 

reached. The inclusion of PSO phase creates a 

perturbation in the population, which in turn helps in 

maintaining diversity of the population and producing a 

good optimal solution.  

The pseudo code of the Hybrid DE and PSO (DE-PSO) 

Algorithm is: 

 

Initialize the population  

For i = 1 to N (Population size) do 

Select r1, r2, r3 ∈ N randomly 

// r1, r2, r3 are selected such that r1≠ r2 ≠ r3// 

For j = 1 to D (dimension) do 

 Select jrand ∈D 

 If (rand () < CR or j = jrand) 

// rand () denotes a uniformly distributed random 

number between 0 and 1// 

 )(* ,,,1, 321 grgrgrgji xxFxU −+=+    

 End if 

If ( )()( ,1, gjigji XfUf <+  ) then  

1,1, ++ = gjigji UX  

 Else 

 PSO activated 

Find a new particle using equations (2) and (3).  

(Let this particle be jiTX ) 

 If ( )()( ,gjiji XfTXf < ) then jigji TXX =+1,  

 Else gjigji XX ,1, =+  

 End if 

 End if 

End for 

End for. 

 

 



5. Experimental Settings  
 

Experimental settings for proposed DE-PSO, DE and 

PSO (Table 2): 

For dimension 30: Pop=30, run=30, Max Gne=3000 

For dimension 50: Pop=50, run=20, Max Gne=5000 

For dimension 100: Pop=100, run=10, Max 

Gne=10000 

Experimental settings for proposed DE-PSO and 

DEPSO [7] (Table 4): 

Pop: 30, dim: 30, Max Gne.: 12000 

Experimental settings for proposed DE-PSO and 

BBDE [6] (Table 4): 

Pop: 30, dim: 30, Max number of function evaluations: 

100000 

     In the above mentioned settings, Pop denotes the 

population size taken; run denotes the number of times 

an algorithm is executed; Max Gne denotes the 

maximum number of generations allowed for each 

algorithm  

Computer Settings: 

All the three algorithms were implemented using 

Turbo C++ on a PC compatible with Pentium IV, a 3.2 

GHz processor and 2 GB of RAM. 

 

5.1 Benchmark Problems and Results  
 

     For the present study, a set of twelve unconstrained 

benchmark problems is taken (Table 1). Although this 

collection may not be called exhaustive but it is a good 

launch pad to decide the authenticity of an optimization 

algorithm. All the problems are scalable and are tested 

for dimensions 30, 50, 100. Functions f1, f3, f5-f9 are 

highly modal where the complexity of the problem 

increases with the increase in the number of variables. 

We have also taken a noisy function (f9), where a 

uniformly distributed random noise is added to the 

function. f11 is a discontinuous function and for f12, 

the optimum lies in a plateau like region. 

Numerical results in Table 2 show the performance of 

DE-PSO with the classical PSO and DE. In Table 4, we 

give a comparison of DE-PSO with two other recently 

proposed hybrid version of DE and PSO, namely 

BBDE [6] and DEPSO [7].  

Table 2 shows that the proposed DE-PSO algorithm 

gives a superior performance in comparison to both DE 

and PSO in almost all the test cases. Table 3 gives the 

number of times PSO phase is activated so as to reach 

the optimal solution. In [6] and [7] problems of 

dimension 30 are taken. For the purpose of comparison 

we took the problems common in [6] and [7] and 

followed the same experimental settings. Numerical 

results in Table 4 show that in comparison to [7], DE-

PSO gave a better performance in four out of five test 

cases tied and in comparison to BBDE, DE-PSO gave a 

superior performance in three out of five test cases 

tried. For f12 both BBDE and DE-PSO gave same 

performance. 

 

5.2 Real life Problems and Results  
 

     The credibility of an optimization algorithm also 

depends on its ability to solve real life problems. In this 

paper we took three real life problems to validate the 

performance of the proposed DE-PSO. 

Gas transmission compressor design [11]: 

Min 2/12
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Optimal thermohydralic performance of an artificially 

roughened air heater [12]: 
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Optimal capacity of gas production facilities [11]: 

Min 85.02
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2
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Subject to: 5.171 ≥x , 2002 ≥x ; 405.17 1 ≤≤ x , 

600300 2 ≤≤ x .       

     Numerical results for the real life problems are 

listed in Table 5. Numerical results show that in terms 

of average number of generations required to reach the 

optimum solution, the proposed DE-PSO gave the best 

results. However in terms of function value all the 

algorithms gave more or less similar results. 

6. Conclusions  
 

     A hybrid of DE and PSO called DE-PSO is 

proposed and its performnce is validated on a set of 

benchmark and real life problems. Numerical results 



show that DE-PSO outperformed the classical DE and 

PSO and also two recently proposed hybrid version of 

DE and PSO. Future research will investigate the 

performance of proposed DE-PSO on constrained 

optimization problems. 

 

 

 

Table 1. Numerical Benchmark Problems 
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Table 3.  Number of times PSO phase is activated 

 

f Dim NPSO f Dim NPSO f Dim NPSO f Dim NPSO 

30 157 30 142 30 180 30 68 

50 146 50 143 50 180 50 137 f1 

100 309 

f7 

100 ---- 

f4 

100 337 

f10 

100 ---- 

30 189 30 135 30 117 30 174 

50 162 50 147 50 117 50 176 f2 

100 194 

f8 

100 172 

f5 

100 196 

f11 

100 322 

30 178 30 35 30 142 30 63 

50 177 50 52 50 163 50 70 f3 

100 378 

f9 

100 147 

f6 

100 196 

f12 

100 63 

 

 



Table 2. Comparison results of PSO, DE and DE-PSO for functions f1 – f12 

f 
Dim 

PSO DE DE-PSO f 
Dim 

PSO DE DE-PSO 

30 37.819 

(7.456) 

2.531 

(5.19026) 

1.6141 

(3.885) 

30 0.020733 

(0.0528) 

5.505e-13 

(0.00000) 

5.504e-13 

(0.000) 

50 75.309 

(19.559) 

41.470 

(8.805) 

24.5788 

(14.6261) 

50 1.75361 

(2.4126) 

3.334e-13 

(1.488e-15) 

3.303e-13 

(0.000) 
f1 

100 186.045 

(4.939) 

261.198 

(1.64699) 

251.491 

(8.26771) 

f7 

100 
---- ---- ---- 

30 3.542e-16 

(4.26e-16) 

2.551e-47 

(3.032e-47) 

4.077e-48 

(1.593e-47) 

30 1.026e-08 

(1.90e-08) 

7.250e-15  

(7.742e-16) 

3.697e-15  

0.000) 

50 0.004 

(0.003) 

6.5094e-48 

(4.205e-48) 

2.753e-49 

(1.401e-49) 

50 0.797 

(0.423) 

1.717e-13 

(3.865e-14) 

7.250e-15 

(1.565e-15) 
f2 

100 0.070 

(1.43e-03) 

2.117e-39 

(3.576e-39) 

1.093e-40 

(1.769e-40) 

f8 

100 2.53057 

(1.45432) 

1.435e-14 

(1.790e-14) 

1.025e-15 

(2.501e-14) 

30 0.0184 

(0.023) 

0.00000 

(0.00000) 

0.000 

(0.000) 

30 0.508 

(0.2508) 

0.0074 

(0.001) 

0.0076 

(.002) 

50 0.381 

(0.173) 

5.421e-20 

(0.00000) 

5.421e-20 

(0.00000) 

50 0.147 

(0.035) 

0.012 

(0.002) 

0.011 

(0.001) 
f3 

100 1.051 

(0.618) 

8.131e-19 

(1.154e-17) 

1.084e-19 

(2.493-18) 

f9 

100 0.781 

(0.052) 

0.0531 

(0.021) 

0.0358 

(0.015) 

30 81.273 

(41.218) 

31.1369 

(17.1211) 

24.202 

(12.3086) 

30 5.357 

(3.204) 

4.239e-06 

(1.32e-06) 

2.474e-06 

(1.440e-06) 

50 174.222 

(113.635) 

50.3377 

(16.8557) 

44.741 

(1.402) 

50 17.643 

(2.027) 

0.0005 

(0.0004) 

3.697e-05 

(7.255e-06) 
f4 

100 250.681 

(24.643) 

91.2370 

(3.82465) 

91.024 

(3.400) 

f10 

100 
---- ---- ---- 

30 
-10652.33 

(663.174) 

-12534 

(54.2753) 

-12545.8 

(47.3753) 

30 2.063e-11 

(5.853e-

12) 

8.915e-27 

(3.348e-27) 

4.792e-27 

(4.523e-27) 

50 -16685.7 

(372.981) 

-20818.9 

(123.653) 

-20913.6 

(54.2753) 

50 0.0681 

(0.068) 

1.670e-26 

(5.592e-27) 

2.320e-27 

(1.216e-27) 

f5 

100 -30417.7 

(530.050) 

41898.3 

(0.000) 

41898.3 

(0.000) 

f11 

100 1.7619 

(0.976) 

1.779e-22 

(9.021e-26) 

1.016e-22 

(1.191e-23) 

30 -1.1384 

(0.0052) 

-1.149356 

(1.857e-16) 

-1.150 

(0.000) 

30 0.05 

(0.217) 

0.000 

(0.000) 

0.00000 

(0.00000) 

50 37.0296 

(22.9197) 

-1.15044 

(0.00000) 

-1.15044 

(0.000) 

50 3.1 

(2.507) 

0.000 

(0.000) 

0.00000 

(0.00000) 
f6 

100 173.854 

(11.330) 

-1.150 

(0.000) 

-1.150 

(0.000) 

f12 

100 63.5 

(4.5) 

0.000 

(0.000) 

0.00000 

(0.00000) 

 

Table 4. Comparison of DE-PSO with DEPSO [7] and BBDE [6] 

f 
DEPSO [7] 

Mean (Std) 

DE-PSO (This 

paper) 

Mean (Std) 

f 
BBDE [6] 

Mean (Std Dev) 

DE-PSO (This paper) 

Mean (Std Dev) 

F1 24.216 (6.417) 1.6141(3.885) F1 72.185 (3.018) 1.6141 (3.885) 

F3 6.2e-16 (4.1e-16)) 0.000  (0.000) F3 0.269e-01 (0.767-02) 0.000  (0.000) 

F5 -12547.7 (66.25) -12554.3 (95.304) F4 14.295 (0.948) 24.202(12.3086) 

F7 3.9e-20 (4.1e-21) 5.505e-013(0.000) F8 2.1361 (0.159) 3.697e-015 (0.000) 

F8 -0.0002 (0.0002) 3.697e-015 (0.000) F12 0.000 (0.000) 0.000 (0.000) 

 

 

 

 



Table 5. Numerical results of Real Life Problems 

Gavg – Average number of generations 

Nfeval – number of function evaluations 

NPSO – Number of times PSO activated 
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Gas Transmission Compressor Design 

Item PSO DE DE-

PSO 

[11] 

x1 55 51.9857 53.4474 55 

x2 1.19541 1.18335 1.1901 1.195 

x3 24.7749 24.7195 24.7186 25.026 

f(x) 296.446 

e+004 

296.448 

e+004 

296.436 

e+004 

296.45

5 

e+004 

 GAvg 786.7 146.4 129.6 NA 

f Eval 23631 4422 6205.1 NA 

NPSO  NA NA 34 NA 

Optimal Thermohydralic Performance of an 

Artificially Roughened Air Heater 

Item PSO DE DE-

PSO 

[12] 

x1 0.0580

9 

0.12469 0.15301 0.052 

x2 10 10 10 10 

x3 10400.

2 

3811.07 3000 10258 

f(x) 4.2142

2 

4.21422 4.21422 4.182 

 GAvg 205.9 87.4 83.9 NA 

f Eval 6207 2652 4115 NA 

NPSO  NA NA 16 NA 

Optimal Capacity of Gas Production Facilities 

Item PSO DE DE-

PSO 

[11] 

x1 17.5 17.5 17.5 17.5 

x2 600 600 600 465 

f(x) 169.84

4 

169.844 169.844 173.76 

 GAvg 10.4 15.1 9.9 NA 

f Eval 342 483 423 NA 

NPSO  NA NA 44 NA 
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Figures 1(a) – 4(a) : Performance comparison of DE-

PSO with DE and PSO for functions f1, f5, f9 and f12 

Figures 1(b) – 4(b) : Performance comparison of DE-

PSO with DE f1, f5, f9 and f12 for the last 1000 

generations. In all the above figures, the horizontal axis 

represents the generation and the vertical axis 

represents the fitness function value 
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