
A Simple Adaptive Differential Evolution Algorithm

Radha Thangaraj1, Millie Pant1 and Ajith Abraham2
1Indian Institute of Technology Roorkee, India

2Norwegian University of Science and Technology, Norway
t.radha@ieee.org, millifpt@iitr.ernet.in, ajith.abraham@ieee.org

Abstract— Differential Evolution (DE) is a simple and efficient
scheme for global optimization over continuous spaces. DE is
generally considered as a reliable, accurate, robust and fast
optimization techniques. It outperforms many other
optimization algorithms in terms of convergence speed and
robustness over common benchmark problems and real world
applications. However, the user is required to set the values of
the control parameters of DE for each problem. Such
parameter tuning is a time consuming task. In this paper, a
new Differential Evolution algorithm based on Adaptive
Control parameters (ACDE) is introduced. The performance
of ACDE algorithm is investigated with ten standard
benchmark problems and the results are compared with the
classical DE algorithm in terms of average fitness function
value, number of function evaluations, convergence time and
success rate. The numerical results show that the ACDE
algorithm outperforms the classical DE in terms of all
considered performance measures.

Keywords-Differential Evolution; global optimization;
control parameters;

I. INTRODUCTION
Differential Evolution is a stochastic, population based

search strategy developed by Price and Storn [1]. It is a novel
evolutionary approach capable of handling non-
differentiable, non-linear and multi-modal objective
functions. DE has been consistently ranked as one of the best
search algorithm for solving global optimization problems in
several case studies. DE has been designed as a stochastic
parallel direct search method, which utilizes concepts
borrowed from the broad class of EAs. The method typically
requires few, easily chosen control parameters. Experimental
results have shown that performance of DE is better than
many other well known EAs [2], [3]. While DE shares
similarities with other EAs, it differs significantly in the
sense that in DE, distance and direction information is used
to guide the search process [4]. Mutation operation plays the
most significant role in the performance of a DE algorithm.

Despite having several attractive features, it has been
observed that DE sometimes does not perform as good as the
expectations. Empirical analysis of DE has shown that it may
stop proceeding towards a global optimum even though the
population has not converged even to a local optimum [5].
The situation when the algorithm does not show any
improvement though it accepts new individuals in the
population is known as stagnation. Besides this, DE also
suffers from the problem of premature convergence. This
situation arises when there is a loss of diversity in the

population. It generally arises when the objective function is
multi objective having several local and global optimums.
Like other EA, the performance of DE deteriorates with the
increase in dimensionality of the objective function. Several
modifications have been made in the structure of DE to
improve its performance. One class of modification deals
with the development of adaptive control parameters [9] –
[15]. Use of self adaptive parameters saves the user from the
trouble of fine tuning of parameters, which is a crucial task
in Evolutionary Algorithms including DE. In this paper we
introduce a new Differential Evolution algorithm with
Adaptive Control parameters namely ACDE.

The rest of the paper is organized as follows: Section II
gives a brief survey on DE family of adaptive control
parameter algorithms. Section III and IV discusses the basic
DE and the proposed ACDE algorithms respectively. In
section V, results and discussion are given; finally the paper
concludes with section VI.

II. RELATED WORKS
There are quite different conclusions about the rules for

choosing the control parameters of DE. Price and Storn [1]
stated that the control parameters of DE are not difficult to
choose. On the other hand, Gämperle et al. [6] reported that
choosing the proper control parameters for DE is more
difficult than expected. Liu and Lampinen [7] reported that
effectiveness, efficiency, and robustness of the DE algorithm
are sensitive to the settings of the control parameters. The
best settings for the control parameters can be different for
different functions and the same function with different
requirements for consumption time and accuracy. However,
there still exists a lack of knowledge on how to find
reasonably good values for the control parameters of DE for
a given function [8].

Das et al. [9] introduced two schemes for adapting the
scale factor F in DE. In the first scheme they varied F
randomly between 0.5 and 1.0 in successive iterations. They
suggested decreasing F linearly from 1.0 to 0.5 in their
second scheme. This encourages the individuals to sample
diverse zones of the search space during the early stages of
the search. During the later stages, a decaying scale factor
helps to adjust the movements of trial solutions finely so that
they can explore the interior of a relatively small space in
which the suspected global optimum lies. Teo [10] proposed
an attempt at self-adapting the population size parameter in
addition to self-adapting crossover and mutation rates. Brest
et al. [11], [12] encoded control parameters F and Cr into the
individual and evolved their values by using two new

probabilities τ1and τ2. In their algorithm (called SADE), a set
of F values was assigned to each individual in the
population. With probability τ1, F is reinitialized to a new
random value in the range of [0.1, 1.0], otherwise it is kept
unchanged. The control parameter Cr, assigned to each
individual, is adapted in an identical fashion, but with a
different re-initialization range of [0, 1] and with the
probability τ2. With probability τ2, Cr takes a random value
in [0, 1], otherwise it retains its earlier value in the next
generation. Differential Evolution with Preferential
Crossover (DEPC) was suggested by M. M. Ali in 2007 [13].
In his work he suggested three changes in the basic DE
structure. The DEPC algorithm uses Fi as a random variable
in]1,4.0[]4.0,1[∪−− for each targeted point. Secondly DEPC
used two population sets S1 and S2 containing N points. The
function of the auxiliary set S2 in DEPC is to keep record of
the trial points that are discarded in DE. Potential trial points
in S2 are then used for further explorations. Finally DEPC
differs used a new crossover rule, namely the preferential
crossover, that always generates feasible trial points. Ali
tested his algorithm on comprehensive set of benchmark
problems and showed that DEPC outperforms the basic DE
in most of the test cases.

Yang et al. [14] proposed a self adaptive differential
evolution algorithm with neighborhood search (SaNSDE).
SaNSDE proposes three self-adaptive strategies: self
adaptive choice of the mutation strategy between two
alternatives, self-adaptation of the scale factor F, and self-
adaptation of the crossover rate Cr. Qin et al [15] proposed a
Self-adaptive DE algorithm (SaDE), where the choice of
learning strategy and the two control parameters F and CR
are not required to be pre-defined. During evolution, the
suitable learning strategy and parameter settings are
gradually self-adapted according to the learning experience.
Many of the developments in DE algorithm design and
applications can be found in [16].

III. DIFFERENTIAL EVOLUTION
A general DE variant may be denoted as DE/X/Y/Z,

where X denotes the vector to be mutated, Y specifies the
number of difference vectors used and Z specifies the
crossover scheme which may be binomial or exponential.
Throughout the study we shall consider the mutation strategy
DE/rand/1/bin [1]. It is also known as the classical version of
DE and is perhaps the most frequently used version of DE.
DE works as follows: First, all individuals are initialized
with uniformly distributed random numbers and evaluated
using the fitness function provided. Then the following are
executed until maximum number of generation has been
reached or an optimum solution is found.

In a D-dimensional search space, for each target
vector gix , , a mutant vector is generated by

)
32

(*
1 ,,,1, grgrgrgi xxFxv −+=+ (1)

where },....,2,1{,, 321 NPrrr ∈ are randomly chosen
integers, which are different from each other and also
different from the running index i. F (>0) is a scaling factor

which controls the amplification of the differential vector
)

32
(,, grgr xx − .

Once mutation phase is complete, crossover is introduced
in order to increase the diversity of the perturbed parameter
vectors. The parent vector is mixed with the mutated vector
to produce a trial vector 1, +gjiu ,

⎩
⎨
⎧ =∨≤

= +
+ otherwisex

kjCrrandifv
u

gij

jgij
gij

,,

1,,
1,, (2)

where j , k ∈ {1, 2,……, D}; k is a random parameter
index, chosen once for each i .

]1,0[∈jrand ; Cr is the

crossover constant takes values in the range [0, 1].
Finally selection takes place where a tournament is held

between the target vector and trial vector and the one with
better fitness function is allowed to enter the next generation.
In this way individuals in a new generation are as good as or
better than the individuals in the previous generation.

IV. PROPOSED ACDE ALGORITHM
In this Section, we describe the adaptive Differential

Evolution (ACDE) algorithm. The only structural difference
between the proposed ACDE algorithm and the basic DE is
selecting the control parameters only. DE has only three
control parameters; they are the scale factor F, the crossover
rate Cr and the population size. Choosing suitable control
parameter values is, frequently, a problem-dependent task.
The trial-and-error method used for tuning the control
parameters requires multiple optimization runs. Moreover in
the modified versions of DE (other than adaptive ones), the
control parameters are kept fixed throughout the algorithm.
Varying the values of control parameters in successive
generations will provide more randomness to the algorithm
which in turn may help in improving the working of
algorithm in terms of exploration and exploitation.

Although we need to fix the values for some parameters
in the proposed ACDE algorithm, it can be called adaptive in
the sense that in every generation the values of control
parameters F and Cr change according to some simple rules
which are defined as follows:

⎪⎩

⎪
⎨
⎧ <++=+

otherwiseF
randPifGrandGrandrandFF Flg

0

2
2

2
2

111

 (3)

⎩
⎨
⎧ <

=+ otherwiseCr
randPifrandCr

Cr Crl
g

0

43
1

* (4)

With the help of equations (3) and (4) we calculate the

parameters F and Cr for a new generation.
Here, jrand , }4,3,2,1{∈j are uniform random numbers

in the interval (0, 1]. 1Grand and 2Grand are Gaussian
distributed random numbers with mean 0 and standard
deviation 1. PF and PCr are the probabilities to adjust the
factors F and Cr respectively. In the present study, we have
taken PF = PCr = 0.5. Values of the constants Fl, F0, Crl, Cr0
are taken as Fl = Crl = 0.1, F0 = Cr0 = 0.5. The scaling factor

F is kept within the range Fu and Fl where Fu = 0.5 and Fl is
0. We have used the following bounds for F.

611

511
*
*

randFFthenFFIf
randFFthenFFIf

lglg

ugug
=<
=>

++

++ (5)

Where jrand , }6,5{∈j are uniformly distributed
random numbers in the interval (0, 1].

Thus the new F takes values in the interval (0, 0.5] and
the new Cr takes values in the interval }5.0{]1.0,0(∪ .

1+gF and 1+gCr are obtained every iteration. So, they
influence the mutation, crossover and selection operations of
every new particle. The classic DE has three control
parameters that need to be adjusted by the user. Apparently,
the proposed ACDE has even more parameters, but it should
be noted that we have fixed values for Fl, Fu, F0, Crl, Cr0, PF
and PCr for all the test problems in our ACDE algorithm.

V. EXPERIMENTAL SETTINGS AND NUMERICAL RESULTS
In order to make a fair comparison of DE and all the

proposed algorithms, we fixed the same seed for random
number generation so that the initial population is same for
both the algorithms. The population size is taken as 50 for all
the test problems for both the algorithms. However, this is a
heuristic choice and may be increased, depending on the
complexity of the problem. The control parameters,
crossover rate and scaling factor F, for classical DE are fixed
at 0.2 and 0.5 respectively. For each algorithm, the
maximum number of iterations allowed was set to 5000 and
the error goal was set as 1*e-04. A total of 30 runs for each
experimental setting were conducted and the average fitness
of the best solutions throughout the run was recorded.

In order to check the compatibility of the proposed
ACDE algorithm we have tested it on a suite of ten
benchmark problems; the mathematical models of the test
problems with the true optimum value are given in Table I.
The test bed comprises of a variety of problems ranging from
a simple spherical function to highly multimodal functions
with several local and global optima. We have also
considered a noisy function, f5, having a uniformly
distributed random noise. In such type of functions the
position of optima keeps changing and therefore it becomes
challenging for a global optimization algorithm to locate the
correct solution. Figure 1 shows the comparison of DE and
ACDE based on number of function evaluations. The
comparison of DE and ACDE based on convergence time is
given in Figure 2. The performance curves of proposed DE
algorithms with classical DE for selected benchmark
problems are shown in Figures 3 – 6.

Performance comparisons of ACDE algorithm is
performed with classical DE on the basis of standard
performance measures like average fitness function value,
Number of Function evaluations (NFE), CPU time and
success rate (SR). From the numerical results given in Table
II, we can see that ACDE algorithm gave better performance
than classical DE in all the test cases except for the function
f4. For the function f1, the difference in the average fitness
function values for DE and ACDE is quite visible. The true

global minimum for the function f1 is located at 0.0. None of
the algorithms were able to reach this value. However ACDE
gave the value near about the true optimum and it is much
better value in comparison to DE. In this case the
improvement of ACDE in terms of fitness function value in
comparison with DE is 99.55%. Similarly for function f5, the
use of adaptive control parameters improves the function
value up to 80.5%. For other functions also, the proposed
ACDE algorithm outperform the classical DE algorithm. If
we compare the performance of ACDE with DE in terms of
NFE then the improvement of ACDE algorithm is around
53%. From the numerical results of comparison of CPU
time, it is clear that the proposed ACDE converges much
faster than the classical DE; there is an improvement of 83%
in CPU time. The total time taken by classical DE is 370.6
seconds whereas the total time taken by ACDE is 61.35
seconds only. If we talk about the success rate, which is also
given in Table 2, we can see that on an average the proposed
ACDE gives more than 88% success for all the test problems
considered in this study.

Figure 1. Comparison of DE and ACDE based on number of function

evaluations of all test problems

Figure 2. Comparison of DE and ACDE based on convergence time of all

test problems

TABLE I. NUMERICAL BENCHMARK PROBLEMS

Function Function Definition Dimension Range Optimum
Rastringin
Function

)10)2cos(10()(
1

2
1 +−= ∑

=
i

n

i
i xxxf π 30 [-5.12,5.12] 0

Spherical
Function

∑
=

=
n

i
ixxf

1

2
2)(30 [-5.12,5.12] 0

Griewank
Function

1)
1

cos(
4000

1)(
1

0

1

0

2
3 +

+
+= ∑

−

=
∑
−

=

n

i
in

i
i i

xxxf 30 [-600,600] 0

Rosenbrock
Function

21

0

22
14)1()(100)(−+−= ∑

−

=
+ i

n

i
ii xxxxf 30 [-30,30] 0

Noisy Function ∑
−

=
++=

1

0

4
5]1,0[))1(()(

n

i
i randxixf 30 [-1.28,1.28] 0

Schwefel
Function

)||sin()(
1

6 ∑
=

−=
n

i
ii xxxf 30 [-500,500] -12569.5

Ackley
Function)12.0exp(2020)(

1

2
7 ∑

=
−−+=

n

i
ix

n
exf ∑

=
−

n

i
ix

n 1
))2cos(1exp(π 30 [-32,32] 0

Michalewicz
function

min

i
i

x
ixxf 2

2

1
8)))(sin(sin()(

π
∑
=

−= , 10=m 30 [-π,π] ---

Himmelblau
Function 1

22
21

22
129)7()11()(xxxxxxf +−++−+= 2 [-5,5] -3.78396

Shubert
Function

∑
=

∑
=

++++=
5

1
2

5

1
110))1cos(())1cos(()(

jj
jxjjjxjjxf 2 [-10,10] -186.7309

Figure 3. Performance curves of DE and ACDE for function f1

TABLE II. NUMERICAL RESULTS OF DE AND ACDE ALGORITHMS

Function
Fitness value (Std) Average NFE CPU Time (sec) Success Rate

DE ACDE DE ACDE DE ACDE DE ACDE

f1
29.9076

(1.34989)
0.132725

(0.338219) 250050 55676 42.8 3.8 - 100

f2
6.87e-05

(9.13e-06)
5.82e-05

(1.10e-05) 57000 17590 8.6 1.2 100 100

f3
7.70e-05

(8.63e-06)
6.26e-05

(1.76e-05) 175570 26120 28.9 1.8 100 100

f4
26.3194
(1.4247)

34.3654
(18.1468) 250050 125320 106.9 21.2 - 80

f5
0.0177813

(0.0042194)
0.003460

(0.000695) 250050 250050 37.9 16.1 - -

f6
-12474.7
(4.73753)

-12530
(70.623) 122525 44786 2.3 0.46 100 100

f7
0.0001830
(2.077e-05)

0.000172
(3.23e-05) 100655 30526 13.9 2.2 100 100

f8
-27.095

(0.32179)
-29.6199

(0.015583) 250050 125697 129.1 14.4 - 100

f9
-3.28972

(0.388473)
-3.39549

(0.475781) 5470 3256 0.1 0.13 100 100

f10
-186.731

(1.11e-07)
-186.731

(8.24e-08) 18120 9553 0.1 0.06 70 100

∑ 1479540 688574 370.6 61.35 570 880

Average 147954 68857.4 37.06 6.135 57 88

Improvement (%) 53.4602 83.4457 54.3859

Figure 4. Performance curves of DE and ACDE for function f2

Figure 5. Performance curves of DE and ACDE for function f3

Figure 6. Performance curves of DE and ACDE for function f5

VI. CONCLUSION
In this paper, a new Differential Evolution based on

adaptive control parameters called ACDE was proposed.
ACDE algorithm uses a few simple rules to design adaptive
scaling factor F and crossover rate Cr. The ACDE algorithm
was tested on a test bed of ten standard benchmark problems
and the results were compared with the classical DE in terms
of average fitness function value, number function
evaluations, convergence time and success rate. From the
numerical results, we can see that the proposed ACDE
algorithm helps in improving the solution quality as well as
the convergence rate in all the test problems. In future we
will extend the proposed ACDE algorithm for solving more
comprehensive set of test problems including real life

problems. Also we plan to compare the proposed algorithm
with other models of DE.

REFERENCES
[1] Storn, R., “System design by constraint adaptation and differential

evolution”, IEEE Transactions on Evolutionary Computation, Vol. 3,
1999, pp. 22-34.

[2] Storn, R. and Price, K., “Differential Evolution – a simple and
efficient Heuristic for global optimization over continuous spaces”,
Journal Global Optimization, Vol. 11, 1997, pp. 341 – 359.

[3] Price, K. and Storn, R., “Differential Evolution – a simple and
efficient adaptive scheme for global optimization over continuous
spaces”, Technical Report, International Computer Science Institute,
Berkley, 1995.

[4] Engelbrecht, A. P., “Fundamentals of Computational Swarm
Intelligence”, John Wiley & Sons Ltd, 2005.

[5] Lampinen, J. and Zelinka, I., “On stagnation of the Differential
Evolution Algorithm”, In: Pavel Ošmera, (ed.) Proc. of MENDEL
2000, 6th International Mendel Conference on Soft Computing, 2000,
pp. 76 – 83.

[6] Gämperle, R., Müller, S. D. and Koumoutsakos, P., “A Parameter
Study for Differential Evolution”, WSEAS NNA-FSFS-EC 2002.
Interlaken, Switzerland, WSEAS, 2002, pp. 293 – 298.

[7] Liu, J. and Lampinen, J., “On Setting the Control Parameter of the
Differential Evolution Method”, In Proc. of 8th Int. Conf. Soft
Computing (MENDEL 2002), 2002, pp. 11–18.

[8] Liu, J. and Lampinen, J., “A Fuzzy Adaptive Differential Evolution
Algorithm”, Soft Computing - A Fusion of Foundations,
Methodologies and Applications, Vol. 9(6), 2005, pp. 448 – 462.

[9] Das, S., Konar, A. and Chakraborty, U. K., “Two improved
differential evolution schemes for faster global search”, ACM-
SIGEVO Proceedings of GECCO, Washington D.C., 2005, pp. 991-
998.

[10] Teo, J., “Exploring Dynamic Self-adaptive Populations in Differential
Evolution”, Soft Computing - A Fusion of Foundations,
Methodologies and Applications, Vol. 10 (8), 2006, pp. 673 – 686.

[11] Brest, J., Boˇskovi´c, B., Greiner, S., ˇZ umer, V. and Mauˇcec, M. S.,
“Performance Comparison of Self-Adaptive and Adaptive
Differential Evolution Algorithms”, Technical Report #2006-1-
LABRAJ, University of Maribor, Faculty of Electrical Engineering
and Computer Science, Slovenia, 2006, http://marcel.uni-
mb.si/janez/brest-TR1.html.

[12] Brest, J., Greiner, S., Boˇskovi´c, B., Mernik, M. and ˇZumer, V.,
“Self- Adapting Control Parameters in Differential Evolution: A
Comparative Study on Numerical Benchmark Problems”, IEEE
Transactions on Evolutionary Computation, Vol. 10(6), 2006, pp. 646
– 657.

[13] Ali, M. M., “Differential Evolution with Preferential Crossover”,
European Journal of Operational Research, Vol. 181, 2007, pp. 1137
– 1147.

[14] Yang, Z., Tang, K. and Yao, X., “Self-adaptive Differential Evolution
with Neighborhood Search”, In Proc. IEEE Congress on Evolutionary
Computation, Hong Kong, 2008, pp. 1110-1116.

[15] Qin, A. K., Huang, V. L. and Suganthan, P. N., “Differential
Evolution Algorithm with Strategy Adaptation for Global Numerical
Optimization”, IEEE Transactions on Evolutionary Computations,
Vol. 13 (2), 2009, pp. 398 – 417.

[16] Chakraborty, U. K., “Advances in Differential Evolution”, (Ed.)
Springer-Verlag, Heidelberg, 2008.

