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Abstract— Differential Evolution (DE) is a simple and efficient 
scheme for global optimization over continuous spaces. DE is 
generally considered as a reliable, accurate, robust and fast 
optimization techniques. It outperforms many other 
optimization algorithms in terms of convergence speed and 
robustness over common benchmark problems and real world 
applications. However, the user is required to set the values of 
the control parameters of DE for each problem. Such 
parameter tuning is a time consuming task. In this paper, a 
new Differential Evolution algorithm based on Adaptive 
Control parameters (ACDE) is introduced. The performance 
of ACDE algorithm is investigated with ten standard 
benchmark problems and the results are compared with the 
classical DE algorithm in terms of average fitness function 
value, number of function evaluations, convergence time and 
success rate. The numerical results show that the ACDE 
algorithm outperforms the classical DE in terms of all 
considered performance measures. 
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I.  INTRODUCTION 
Differential Evolution is a stochastic, population based 

search strategy developed by Price and Storn [1]. It is a novel 
evolutionary approach capable of handling non-
differentiable, non-linear and multi-modal objective 
functions. DE has been consistently ranked as one of the best 
search algorithm for solving global optimization problems in 
several case studies. DE has been designed as a stochastic 
parallel direct search method, which utilizes concepts 
borrowed from the broad class of EAs. The method typically 
requires few, easily chosen control parameters. Experimental 
results have shown that performance of DE is better than 
many other well known EAs [2], [3]. While DE shares 
similarities with other EAs, it differs significantly in the 
sense that in DE, distance and direction information is used 
to guide the search process [4]. Mutation operation plays the 
most significant role in the performance of a DE algorithm. 

Despite having several attractive features, it has been 
observed that DE sometimes does not perform as good as the 
expectations. Empirical analysis of DE has shown that it may 
stop proceeding towards a global optimum even though the 
population has not converged even to a local optimum [5]. 
The situation when the algorithm does not show any 
improvement though it accepts new individuals in the 
population is known as stagnation. Besides this, DE also 
suffers from the problem of premature convergence. This 
situation arises when there is a loss of diversity in the 

population. It generally arises when the objective function is 
multi objective having several local and global optimums. 
Like other EA, the performance of DE deteriorates with the 
increase in dimensionality of the objective function. Several 
modifications have been made in the structure of DE to 
improve its performance. One class of modification deals 
with the development of adaptive control parameters [9] – 
[15]. Use of self adaptive parameters saves the user from the 
trouble of fine tuning of parameters, which is a crucial task 
in Evolutionary Algorithms including DE. In this paper we 
introduce a new Differential Evolution algorithm with 
Adaptive Control parameters namely ACDE.  

The rest of the paper is organized as follows: Section II 
gives a brief survey on DE family of adaptive control 
parameter algorithms. Section III and IV discusses the basic 
DE and the proposed ACDE algorithms respectively. In 
section V, results and discussion are given; finally the paper 
concludes with section VI. 

II. RELATED WORKS 
There are quite different conclusions about the rules for 

choosing the control parameters of DE. Price and Storn [1] 
stated that the control parameters of DE are not difficult to 
choose. On the other hand, Gämperle et al. [6] reported that 
choosing the proper control parameters for DE is more 
difficult than expected. Liu and Lampinen [7] reported that 
effectiveness, efficiency, and robustness of the DE algorithm 
are sensitive to the settings of the control parameters. The 
best settings for the control parameters can be different for 
different functions and the same function with different 
requirements for consumption time and accuracy. However, 
there still exists a lack of knowledge on how to find 
reasonably good values for the control parameters of DE for 
a given function [8].  

Das et al. [9] introduced two schemes for adapting the 
scale factor F in DE. In the first scheme they varied F 
randomly between 0.5 and 1.0 in successive iterations. They 
suggested decreasing F linearly from 1.0 to 0.5 in their 
second scheme. This encourages the individuals to sample 
diverse zones of the search space during the early stages of 
the search. During the later stages, a decaying scale factor 
helps to adjust the movements of trial solutions finely so that 
they can explore the interior of a relatively small space in 
which the suspected global optimum lies. Teo [10] proposed 
an attempt at self-adapting the population size parameter in 
addition to self-adapting crossover and mutation rates. Brest 
et al. [11], [12] encoded control parameters F and Cr into the 
individual and evolved their values by using two new 



probabilities τ1and τ2. In their algorithm (called SADE), a set 
of F values was assigned to each individual in the 
population. With probability τ1, F is reinitialized to a new 
random value in the range of [0.1, 1.0], otherwise it is kept 
unchanged. The control parameter Cr, assigned to each 
individual, is adapted in an identical fashion, but with a 
different re-initialization range of [0, 1] and with the 
probability τ2. With probability τ2, Cr takes a random value 
in [0, 1], otherwise it retains its earlier value in the next 
generation.  Differential Evolution with Preferential 
Crossover (DEPC) was suggested by M. M. Ali in 2007 [13]. 
In his work he suggested three changes in the basic DE 
structure. The DEPC algorithm uses Fi as a random variable 
in ]1,4.0[]4.0,1[ ∪−−  for each targeted point. Secondly DEPC 
used two population sets S1 and S2 containing N points. The 
function of the auxiliary set S2 in DEPC is to keep record of 
the trial points that are discarded in DE. Potential trial points 
in S2 are then used for further explorations. Finally DEPC 
differs used a new crossover rule, namely the preferential 
crossover, that always generates feasible trial points. Ali 
tested his algorithm on comprehensive set of benchmark 
problems and showed that DEPC outperforms the basic DE 
in most of the test cases. 

Yang et al. [14] proposed a self adaptive differential 
evolution algorithm with neighborhood search (SaNSDE). 
SaNSDE proposes three self-adaptive strategies: self 
adaptive choice of the mutation strategy between two 
alternatives, self-adaptation of the scale factor F, and self-
adaptation of the crossover rate Cr. Qin et al [15] proposed a 
Self-adaptive DE algorithm (SaDE), where the choice of 
learning strategy and the two control parameters F and CR 
are not required to be pre-defined. During evolution, the 
suitable learning strategy and parameter settings are 
gradually self-adapted according to the learning experience. 
Many of the developments in DE algorithm design and 
applications can be found in [16]. 

III. DIFFERENTIAL EVOLUTION 
A general DE variant may be denoted as DE/X/Y/Z, 

where X denotes the vector to be mutated, Y specifies the 
number of difference vectors used and Z specifies the 
crossover scheme which may be binomial or exponential. 
Throughout the study we shall consider the mutation strategy 
DE/rand/1/bin [1]. It is also known as the classical version of 
DE and is perhaps the most frequently used version of DE. 
DE works as follows: First, all individuals are initialized 
with uniformly distributed random numbers and evaluated 
using the fitness function provided. Then the following are 
executed until maximum number of generation has been 
reached or an optimum solution is found.  

In a D-dimensional search space, for each target 
vector gix , , a mutant vector is generated by 
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Once mutation phase is complete, crossover is introduced 
in order to increase the diversity of the perturbed parameter 
vectors. The parent vector is mixed with the mutated vector 
to produce a trial vector 1, +gjiu , 
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where j , k ∈ {1, 2,……, D}; k is a random parameter 
index, chosen once for each i .

 
]1,0[∈jrand ; Cr is the 

crossover constant takes values in the range [0, 1].  
Finally selection takes place where a tournament is held 

between the target vector and trial vector and the one with 
better fitness function is allowed to enter the next generation. 
In this way individuals in a new generation are as good as or 
better than the individuals in the previous generation. 

IV. PROPOSED ACDE ALGORITHM  
In this Section, we describe the adaptive Differential 

Evolution (ACDE) algorithm. The only structural difference 
between the proposed ACDE algorithm and the basic DE is 
selecting the control parameters only. DE has only three 
control parameters; they are the scale factor F, the crossover 
rate Cr and the population size. Choosing suitable control 
parameter values is, frequently, a problem-dependent task. 
The trial-and-error method used for tuning the control 
parameters requires multiple optimization runs. Moreover in 
the modified versions of DE (other than adaptive ones), the 
control parameters are kept fixed throughout the algorithm. 
Varying the values of control parameters in successive 
generations will provide more randomness to the algorithm 
which in turn may help in improving the working of 
algorithm in terms of exploration and exploitation. 

Although we need to fix the values for some parameters 
in the proposed ACDE algorithm, it can be called adaptive in 
the sense that in every generation the values of control 
parameters F and Cr change according to some simple rules 
which are defined as follows: 
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With the help of equations (3) and (4) we calculate the 

parameters F and Cr for a new generation.  
Here, jrand , }4,3,2,1{∈j are uniform random numbers 

in the interval (0, 1]. 1Grand and 2Grand  are Gaussian 
distributed random numbers with mean 0 and standard 
deviation 1. PF and PCr are the probabilities to adjust the 
factors F and Cr respectively. In the present study, we have 
taken PF = PCr = 0.5.  Values of the constants Fl, F0, Crl, Cr0 
are taken as Fl = Crl = 0.1, F0 = Cr0 = 0.5. The scaling factor 



F is kept within the range Fu and Fl where Fu = 0.5 and Fl is 
0. We have used the following bounds for F. 
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Where jrand , }6,5{∈j are uniformly distributed 
random numbers in the interval (0, 1].  

Thus the new F takes values in the interval (0, 0.5] and 
the new Cr takes values in the interval }5.0{]1.0,0( ∪ .  

1+gF  and 1+gCr  are obtained every iteration. So, they 
influence the mutation, crossover and selection operations of 
every new particle. The classic DE has three control 
parameters that need to be adjusted by the user. Apparently, 
the proposed ACDE has even more parameters, but it should 
be noted that we have fixed values for Fl, Fu, F0, Crl, Cr0, PF 
and PCr for all the test problems in our ACDE algorithm.  

V. EXPERIMENTAL SETTINGS AND NUMERICAL RESULTS 
In order to make a fair comparison of DE and all the 

proposed algorithms, we fixed the same seed for random 
number generation so that the initial population is same for 
both the algorithms. The population size is taken as 50 for all 
the test problems for both the algorithms. However, this is a 
heuristic choice and may be increased, depending on the 
complexity of the problem. The control parameters, 
crossover rate and scaling factor F, for classical DE are fixed 
at 0.2 and 0.5 respectively. For each algorithm, the 
maximum number of iterations allowed was set to 5000 and 
the error goal was set as 1*e-04. A total of 30 runs for each 
experimental setting were conducted and the average fitness 
of the best solutions throughout the run was recorded.  

In order to check the compatibility of the proposed 
ACDE algorithm we have tested it on a suite of ten 
benchmark problems; the mathematical models of the test 
problems with the true optimum value are given in Table I. 
The test bed comprises of a variety of problems ranging from 
a simple spherical function to highly multimodal functions 
with several local and global optima. We have also 
considered a noisy function, f5, having a uniformly 
distributed random noise. In such type of functions the 
position of optima keeps changing and therefore it becomes 
challenging for a global optimization algorithm to locate the 
correct solution.  Figure 1 shows the comparison of DE and 
ACDE based on number of function evaluations.  The 
comparison of DE and ACDE based on convergence time is 
given in Figure 2. The performance curves of proposed DE 
algorithms with classical DE for selected benchmark 
problems are shown in Figures 3 – 6. 

Performance comparisons of ACDE algorithm is 
performed with classical DE on the basis of standard 
performance measures like average fitness function value, 
Number of Function evaluations (NFE), CPU time and 
success rate (SR). From the numerical results given in Table 
II, we can see that ACDE algorithm gave better performance 
than classical DE in all the test cases except for the function 
f4. For the function f1, the difference in the average fitness 
function values for DE and ACDE is quite visible. The true 

global minimum for the function f1 is located at 0.0. None of 
the algorithms were able to reach this value. However ACDE 
gave the value near about the true optimum and it is much 
better value in comparison to DE. In this case the 
improvement of ACDE in terms of fitness function value in 
comparison with DE is 99.55%. Similarly for function f5, the 
use of adaptive control parameters improves the function 
value up to 80.5%. For other functions also, the proposed 
ACDE algorithm outperform the classical DE algorithm. If 
we compare the performance of ACDE with DE in terms of 
NFE then the improvement of ACDE algorithm is around 
53%. From the numerical results of comparison of CPU 
time, it is clear that the proposed ACDE converges much 
faster than the classical DE; there is an improvement of 83% 
in CPU time. The total time taken by classical DE is 370.6 
seconds whereas the total time taken by ACDE is 61.35 
seconds only. If we talk about the success rate, which is also 
given in Table 2, we can see that on an average the proposed 
ACDE gives more than 88% success for all the test problems 
considered in this study. 
 

 
Figure 1.  Comparison of DE and ACDE based on number of function 

evaluations of all test problems 

 
Figure 2.  Comparison of DE and ACDE based on convergence time of all 

test problems



TABLE I.  NUMERICAL BENCHMARK PROBLEMS 

Function Function Definition Dimension Range Optimum 
Rastringin 
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Figure 3.  Performance curves of DE and ACDE for function f1 

 

 



 

TABLE II.  NUMERICAL RESULTS OF DE AND ACDE ALGORITHMS 

Function 
Fitness value (Std) Average NFE CPU Time (sec) Success Rate 

DE ACDE DE ACDE DE ACDE DE ACDE 

f1 
29.9076 

(1.34989) 
0.132725 

(0.338219) 250050 55676 42.8 3.8 - 100 

f2 
6.87e-05 

(9.13e-06) 
5.82e-05 

(1.10e-05) 57000 17590 8.6 1.2 100 100 

f3 
7.70e-05 

(8.63e-06) 
6.26e-05 

(1.76e-05) 175570 26120 28.9 1.8 100 100 

f4 
26.3194 
(1.4247) 

34.3654 
(18.1468) 250050 125320 106.9 21.2 - 80 

f5 
0.0177813 

(0.0042194) 
0.003460 

(0.000695) 250050 250050 37.9 16.1 - - 

f6 
-12474.7 
(4.73753) 

-12530 
(70.623) 122525 44786 2.3 0.46 100 100 

f7 
0.0001830 
(2.077e-05) 

0.000172 
(3.23e-05) 100655 30526 13.9 2.2 100 100 

f8 
-27.095 

(0.32179) 
-29.6199 

(0.015583) 250050 125697 129.1 14.4 - 100 

f9 
-3.28972 

(0.388473) 
-3.39549 

(0.475781) 5470 3256 0.1 0.13 100 100 

f10 
-186.731 

(1.11e-07) 
-186.731 

(8.24e-08) 18120 9553 0.1 0.06 70 100 

∑   1479540 688574 370.6 61.35 570 880 

Average    147954 68857.4 37.06 6.135 57 88 

Improvement (%)     53.4602  83.4457  54.3859

 

 

Figure 4.  Performance curves of DE and ACDE for function f2 



 
Figure 5.  Performance curves of DE and ACDE for function f3 

 

Figure 6.  Performance curves of DE and ACDE for function f5 

VI. CONCLUSION 
In this paper, a new Differential Evolution based on 

adaptive control parameters called ACDE was proposed. 
ACDE algorithm uses a few simple rules to design adaptive 
scaling factor F and crossover rate Cr. The ACDE algorithm 
was tested on a test bed of ten standard benchmark problems 
and the results were compared with the classical DE in terms 
of average fitness function value, number function 
evaluations, convergence time and success rate. From the 
numerical results, we can see that the proposed ACDE 
algorithm helps in improving the solution quality as well as 
the convergence rate in all the test problems. In future we 
will extend the proposed ACDE algorithm for solving more 
comprehensive set of test problems including real life 

problems. Also we plan to compare the proposed algorithm 
with other models of DE. 
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