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a b s t r a c t 

Hybridization of two or more algorithms has always been a keen interest of research due to the quality 

of improvement in searching capability. Taking the positive insights of both the algorithms, the devel- 

oped hybrid algorithm tries to minimize the substantial limitations. Clustering is an unsupervised learn- 

ing method, which groups the data according to their similar or dissimilar properties. Fuzzy c-means 

(FCM) is one of the popularly used clustering algorithms and performs better as compared to other 

clustering techniques such as k-means. However, FCM possesses certain limitations such as premature 

trapping at local minima and high sensitivity to the cluster center initialization. Taking these issues into 

consideration, this research proposes a novel hybrid approach of FCM with a recently developed chemical 

based metaheuristic for obtaining optimal cluster centers. The performance of the proposed approach is 

compared in terms of cluster fitness values, inter-cluster distance and intra-cluster distance with other 

evolutionary and swarm optimization based approaches. A rigorous experimentation is simulated and ex- 

perimental result reveals that the proposed hybrid approach is performing better as compared to other 

approaches. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The original evolvement of the term metaheuristic is quite in-

teresting and intends to solve different wide range of problems

through heuristic methods. The algorithmic framework of meta-

heuristic approaches is quite simple as general algorithms, which

helps to apply them for solving the real life problems with a

few modifications. The broad classification of various optimiza-

tion algorithms can be of evolutionary based, swarm based, physi-

cal based, chemical based, population based and nature based. Al-

though these approaches are quite successful with their own prin-

ciples, still a single metaheuristic may not be necessarily able to

completely obtain the true aspects of both exploration and ex-

ploitation. In last decade, a number of advance hybrid methods

by combining two or more algorithms have been developed for
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olving some complex real life problems ( Al-Mohair, Saleh, &

uandi, 2015; Amjady, 2007; Carvalho & Freitas, 2004; Chen, Tai,

arrison, & Pan, 2005; Esnaf & Küçükdeniz, 2009; Izakian & Abra-

am, 2011; Jiang, Li, Yi, Wang, & Hu, 2011; Li, Nguyen, Chen, &

ruong, 2015; Sarikprueck, Lee, Kulvanitchaiyanunt, Chen, & Rosen-

erger, 2015; Shin, Yun, Kim, & Park, 20 0 0; Silva Filho et. al., 2015;

ong et. al., 2015; Ta ̧s demir, Milenov, & Tapsall, 2012; Wong & Le-

ng, 2004; Xia et. al., 2015; Yang et. al., 2009; Yang, Huang, & Rao,

008 ). The main advantage of using the hybrid methods is to ex-

lore the strengths of each of the individual algorithms or pro-

edures for some synergetic performances in combination to both

he algorithms ( Ting, Yang, Cheng, & Huang, 2015 ). In such cases, if

ne will be limited to exploration capabilities, then the other may

ead towards exploitation and the outcome of such metaheuristic

s quite promising one. Moreover, hybrid approaches result more

fficiently in terms of high accuracy or good computational speed. 

The earlier days of hybrid metaheuristic algorithms (basically

volutionary and swarm based approaches) such as the develop-

ent of GA, PSO were interesting in terms of their successful ap-

lications. For an instance, the PSO algorithm may be used to op-

imize the mutation rate of GA. However, evolutionary approaches

ossess some limitations such as slow convergence, early conver-

http://dx.doi.org/10.1016/j.eswa.2017.02.037
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ence, late adaption to the problem etc. As a solution to such lim-

tations, enormous interest has been put forwarded towards some

ther metaheuristic based optimization approaches such as nature

nspired, population based, physical based and chemical based al-

orithms. The above issues are partially related with the solution

iversity, which is produced by the algorithms during the search-

ng process. In case of evolutionary based algorithms, the diversity

s sustained by the quality and quantity of organisms at a certain

lace and time. During the initial stage of searching process, the

iversity remains high and while leading towards the global opti-

um solutions, the diversity may decrease. Although high diversity

reates more chances to obtain optimal solution with good accu-

acy, but is responsible for slower convergence rate. Thus, it is very

mportant to maintain the tradeoff between accuracy with conver-

ence. Moreover, low diversity may result faster convergence and

ay not guarantee to produce optimal solutions as well as higher

ccuracy. So, it may be inferred that high diversity leads to ex-

loration and low diversity may not necessarily lead to exploita-

ion. Exploration or diversification is the method of finding the di-

erse solutions in a search space and exploitation or intensifica-

ion leads for searching for solution within a local neighborhood

f the best solutions i.e. exploitation of the information discovered

o far ( Fister, Yang, & Brest, 2013 ). Hence, it is significant to main-

ain good convergence by cleverly maintaining the exploitation at

 correct time and correct place. In addition to this, suitable diver-

ity should be maintained for escaping and jumping out of local

ptimum positions during the search process. To achieve this, hy-

ridization has been evolved as a key strategy for promoting the

iversity and to obtain the global optimum. 

Chemical reaction optimization (CRO) ( Lam & Li, 2010 ) is a

ecent metaheuristic based on the process of some elementary

hemical reactions in a chemical system. The advantage of CRO is

hat, it is free from intricate operators and critical parameter set-

ing like other algorithms and loosely couples chemical reactions

ith optimization. Also, it uses chemical energy as the heuristic

uide to model and optimize the processes. Moreover, it has the

dvantage of not using any local search methods for refining the

earch and possesses both local and global searching abilities. Since

ts inception, this algorithm has proven to be quite successful in

olving diversified problems ( Alatas, 2011; Asanambigai & Sasikala,

016; Bechikh, Chaabani, & Said, 2015; Duan & Gan, 2015; Duan

 Gan, 2015a; Dutta, Roy, & Nandi, 2016; Lam, Li, & Xu, 2013; Li

 Pan, 2012; Li et al., 2015; Naik, Nayak, & Behera, 2016; Truong,

i, & Xu, 2013 ) in the real world domain. The performance of CRO

as outperformed some of the popular evolutionary algorithms. In

his work, CRO is used for solving the clustering problem of data

ining and its performance is compared with other evolutionary

s well as swarm based approaches. 

Since last two decades, K-means and FCM are the two most

opular techniques for data clustering. K-means is a hard clus-

ering algorithm and is known for its simplicity. The algorithm

tarts with ‘k’ number of input parameters and for ‘n’ number

f objects, there will be a possibility of ‘k’ cluster partitions. The

utcome of k-means has more chances for intra-cluster similarity

nd low chances for inter-cluster similarity. The corresponding ob-

ect’s mean value is treated as the cluster’s centroid from which

he distance will be measured. In an advance to the working of

lgorithm, the value of k is to be selected and the performance

f the algorithm is purely dependent on the initial centroid for

hich, chances of getting stuck at local optima is more. On the

ther side, FCM is quite popular for its use of objective function

nd is considered as a complete technique. It has been successfully

sed in various real world applications ( Aghabozorgi & The, 2014;

ayak, Naik, & Behera, 2015 ) such as scheduling, data mining, im-

ge processing, feature extraction, nonlinear mappings, engineer-

ng domains etc. The reason behind considering the fuzzy based
lustering is to avoid the problems of getting stuck at local optima

nd to find out a solution for choosing optimal cluster center with

reater fitness values. However, although normal FCM algorithm

xhibits some advantages such as balancing the individual number

f cluster points, drifting of small cluster centers to large neighbor-

ng cluster centers, presence of fuzzy factor etc., it has also some

imitations such as consuming long time for computation, highly

ensitive to initial solution, trapping at local minima and sensitive

o noisy solutions in case of outliers ( Silva Filho, Pimentel, Souza,

 Oliveira, 2015 ). 

Additionally, the limitations of some evolutionary based ap-

roaches in solving clustering problems such as trapping at local

ptima, inappropriate cluster center after huge number of itera-

ions, tuning of some specific parameters, slow convergence, pro-

ucing non optimal solutions in some synthetic datasets etc. have

emained open challenges for the present research. In addition to

hat, during the distance calculation between the object and its

earer cluster center, the result may lead to circular or spherical

lusters, which is again very difficult to solve. By considering the

bove issues, a hybrid metaheuristic based approach (CRO-FCM) is

roposed in this work to obtain global optimal solutions and ef-

ective clustering. The rest of sections are organized as follows:

ection 2 describes the details about various preliminary concepts

uch as FCM, CRO. The proposed hybrid approach with its working

s explained in Section 3 . Section 4 outlines the details of param-

ter settings, result analysis. The results of statistical analysis are

entioned in Sections 5 and 6 concludes the work with future di-

ections. 

. Background study 

.1. Fuzzy c-means algorithm 

The FCM algorithm makes use of fuzzy membership function

hich is used to assign a degree of membership for each class.

CM is able to the form new clusters having close membership

alues to existing classes of the data points ( Dunn, 1974 ). The

echnique of FCM relies on three basic operators such as fuzzy

embership function, partition matrix and the objective func-

ion ( Bezdek, 2013 ). FCM is used to partition a set of ‘N’ clusters

hrough minimization of the objective function ( Zadeh, 1965 ) with

espect to the fuzzy partition matrix. 

(U, V ) = 

C ∑ 

i =1 

N ∑ 

j=1 

u i j 
m 

∥∥x j − v i 
∥∥2 

(1) 

here ‘ x j ’ denotes the j th cluster point, ‘ v i ’ represents the i th clus-

er center, u i, j is the membership value of ‘ x j ’ w.r.t. cluster ‘ i’ , ‘ m’

enotes the fuzzy controlling parameter i.e. for the value ‘1’, it will

end to hard partition and for the value of ‘ ∞ ’ it tends towards the

omplete fuzziness and ‖‖ represents the norm function. 

The iterative method is used to compute the membership func-

ion ( Lin, Huang, Kuo, & Lai, 2014 ) and cluster center as: 

 i j = 

⎡ 

⎣ 

c ∑ 

k =1 

( ∥∥x j − v i 
∥∥∥∥x j − v k 
∥∥
) 

2 
m −1 

⎤ 

⎦ 

−1 

(2) 

 i = 

N ∑ 

j=1 

u i j 
m x j 

/
N ∑ 

j=1 

u i j 
m where i ≥ 1 , i ≤ c (3)

The working procedure of FCM algorithm is illustrated in Fig. 1 .

.2. Chemical reaction optimization 

The potential solutions for CRO are simulated in terms of a

olecule which has kinetic energy, potential energy with some
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Fig. 1. Steps of FCM algorithm. 
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other characteristics. The working procedure of CRO depends on

four elementary chemical reactions such as intermolecular colli-

sion, synthesis, on wall collision and decomposition. In a chemical

reaction system, the potential energy leads towards the minimum

values at some balanced state. This behavior of potential energy

is treated as the value of the objective function and the potential

energy is the fitness value for the required process. 

The transformation of one or more chemical compounds into

another chemical compounds with different physical/chemical

properties by means of simultaneous breaking of and making of

chemical bonds is defined as chemical reaction ( Lam et al., 2013 ).

In every chemical reaction, the formation of product/products

is accompanied with the release of energy to the surroundings,

whereas; in order to allow the chemical compounds to react with

each other some short energy should supplied initially from the

surroundings to reach the active state of the chemical reaction. De-

pending on the amount of energy supplied for breaking of bonds

within the reactant molecules and the amount of energy released

during formation of products, the heat of enthalpy of product for-

mation is divided into two categories, endothermic and exother-

mic. Exothermic process is associated with final heating effect for

product formation, whereas; a net cooling effect is observed for

endothermic process. As every chemical entity possess a definite

amount of internal energy, related to all the bond energies within

that chemical entity, reactants have some specific energy as well as

product have some specific energy ( Nayak, Naik, & Behera, 2015a ).

If the products are formed with low energy as compared to the

reactants, then cooling will be observed, whereas; for reverse case

heating will be observed. 
.2.1. Intermolecular collision 

It means the collision of two or more reactant molecule with

ach other resulting in the formation of different product. 

Example: 2NO (Nitric Oxide) + 2H 2 (Hydrogen) → N 2 (Nitro-

en) + 2H 2 O (Water) 

In general: 

If w1 + w2 → w1 ′ + w2 ′ is a reaction and if KE(w1) + KE(w2) 

 PE(w1) + PE(w2) < PE(w1’) + PE(w2’), then the new chemical

ystem (w1 ′ + w2 ′ ) is accepted, else rejected. Here KE and PE are

he Kinetic & Potential Energy respectively, w1, w2, w1’, w2’ are

he reactants. 

.2.2. On wall collision 

It means collision occurs in between the reactant molecule and

all of a container. It is also known as uni-molecular reaction

here the molecule undergoes exothermic process with the re-

oval of some amount of heat energy. 

Example: 2O 3 (Ozone) → 3O 2 (Oxygen) 

In general: 

If w → w’ is a reaction and if KE(w) + PE(w) 

 PE(w’), then the new chemical system (w’) is accepted, else

ejected. 

.2.3. Synthesis 

A synthesis reaction occurs when more than one molecules or

eactants pooled each other to produce a sole compound. 

Example: 2Li (Lithium) + Cl 2 (Chlorine) → 2LiCl (Lithium

hloride) 

In general: 

If w1 + w2 → w is a reaction and if KE(w1) + KE(w2) + PE(w1) 

 PE(w2) < PE(w), then the new chemical system (w) is accepted,

lse rejected. 

.2.4. Decomposition 

Decomposition reaction occurs when a molecule dissociates

nto different fragments on collision with the wall of a container.

t is the reverse process of synthesis reaction. 

Example: NH 4 NO 2 (Ammonium Nitrite) → N 2 (Nitro-

en) + 2H 2 O (Water) 

In general: 

If w → w1 ′ + w2 ′ and if KE(w) + PE(w) < PE(w1’) + PE(w2’),

hen the new chemical system (w1 ′ + w2 ′ ) is accepted, else re-

ected. 

The four components along with the detail working of CRO al-

orithm has been described in Fig. 2 . 

. Proposed approach 

This section deals with the detail procedures of the proposed

ybrid CRO-FCM approach. Solving the problem in optimization

oint of view, the objective may be for the minimization of over-

ll deviation between the cluster partitions. So, distance is to be

alculated among the total distance between the clusters and their

elevant cluster center (the objective function value of FCM algo-

ithm). Each candidate solution (w i ) in the population is repre-

ented through k number of cluster centers. As per the size of

he population (i.e. n), the w i is generated randomly. Here uni-

orm distribution process has been adopted for the generation of

andom weight values for the candidate solution (set of weight)

n the population. This allows every possible solution for the in-

lusion in the population with equal chance. The objective of this

ork is to choose best cluster centers (w i ) from the population

o improve intra-cluster and inter-cluster distance. Traditionally,

CM starts with random initialization of cluster centers in which

hances of getting good cluster centers is low. To avoid this, in this
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Fig. 2. Working of CRO algorithm for population updation. 
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ork a recently developed chemical reaction based metaheuris-

ic such as CRO is used to select the best cluster centers which

ay improve the performance of FCM algorithm. Usually, FCM al-

orithm uses initial predefined number of cluster centers which

re to be initialized randomly and gradually, these cluster centers

re updated in FCM iterations based on membership values. Here,

ach cluster center is represented as a vector and each value in

his vector are generated randomly using uniform distribution, in

rder to explore the imaginary solution space uniformly. 

Here all the candidate solutions w 1 , w 2, …w n are considered as

n’ number of molecules in a chemical system. CRO basically works

n four elementary chemical reactions such as intermolecular col-

ision, synthesis, on wall collision and decomposition. Each of these

eactions generates more molecules (w i ) from the candidate solu-

ions and finally stable molecules from the resultant molecules are

hosen by eliminating unstable molecules from the population. The

omplete working model is illustrated in Fig. 3 . 

The types of reactions to be selected are decided by the ran-

omly generated value of r 1 and r 2 . Both r 1 and r 2 will generate a

alue in between 0 to 1. If r 1 > 0.5 and r 2 > 0.5, then decomposition

eaction is triggered. In decomposition reaction, i th molecule (w i )

s selected and decomposed into two resultant molecules (w i ’ and

 i ”). Fitness of these molecules (w i , w i ’ and w i ”) are computed by

sing Eq. (4) . Best molecule among these is selected based on their

tness values, which replace ‘w i ’ in the population. If r 1 > 0.5 and

 2 < = 0.5, then on wall collision reaction takes place. In this reac-

ion, i th molecule (w i ) is selected and bounced back in the form of

ew molecule (w i ’) after collision with wall of the container. Fit-

ess of these two molecules (w i & w i ’) are computed by using Eq.

4) . Best molecule among these is selected based on their fitness

alues, which replace w i in the population. If r 1 ≤ 0.5 and r 2 ≤ 0.5,

hen intermolecular collision reaction occurs. In this reaction, two

umber of molecules (w i & w j ) are selected and produces two

ore new molecules (w i ’ & w j ’). Fitness of these four molecules

t  
w i , w j , w i ’, w j ’) is computed by using Eq. (4) . Best two molecules

mong these are selected based on their fitness values, which re-

lace w i & w j in the population. If r 1 ≤ 0.5 and r 2 > 0.5, then syn-

hesis reaction occurs. In this reaction, two numbers of molecules

w i & w j ) are selected and are synthesized into a new molecule

w k ). Fitness of these three molecules (w i , w j , w k ) are computed

y using Eq. (4) . Best two molecules among these are selected

ased on their fitness values, which replace w i & w j in the pop-

lation. In these processes, selecting best molecule based on their

tness is analogous to keeping stable molecules in a chemical sys-

em. By replacing initial candidate solutions with improved candi-

ate solutions produced from these four reactions, new population

s generated. If the stopping criteria are met, then stop the process

nd return the best candidate solution (cluster centers). Else, the

ld population is to be updated with new population. These reac-

ions are triggered conditionally and a single reaction is invoked

n the CRO iterations. Here, r1 and r2 are two random numbers

enerated with uniform distribution which allows the triggering of

ll four elementary reactions with equal probability. This process

s iterated until there is no further significant improvement in the

olution vectors or the maximum number of iteration is reached. 

After having the best cluster centers produced from the above

RO process, these centers are set as initial cluster center to FCM

lgorithm and then FCM algorithm will be simulated to get best

ptimal solutions to clustering. The mean of the clusters is calcu-

ated along with the fitness of each cluster center using Eq. (4) .

 ( w i ) = 

k 

( 
m ∑ 

j=1 

n ∑ 

r=1 

( o r − c i, j ) 
2 
) + d 

(4) 

In Eq. (4) , ‘ w i ’ indicates the i th candidate solution in the pop-

lation ‘P’, F(w i ) represents the fitness of the solution ‘ w i ’ , ‘n’ is

he number of instance in the dataset, ‘ o r ’ is the r th instance in

he dataset, ‘m’ is the number of cluster centers in ‘ w i ’ , ‘ c i,j ’ is
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Fig. 3. Working model of CRO-FCM approach. 
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the j th cluster center of i th ( w i ) solution from ‘P’, ‘ k’ is a positive

constant, ‘ d’ is a small valued constant ( Ahmadyfard & Modares,

2008 ). In Eq. (4) , the denominator part is the sum of cluster dis-

tance from cluster centers, which is usually a decimal or nearer to

decimal value and in fact, this cluster distance changes from data

sets to data sets. Based on considered data sets and obtained fit-

ness values, some other alternative suitable values may be consid-

ered for these parameters. In order to have a complete focus on

the performance comparison and making the test impartial, these

required parameters ‘k’, ‘d’ and ‘m’ (fuzziness factor) have been set

to fixed values. However, these values may be suitably changed

depending upon problem domain. While changing these values in

the allowed range, we have observed homogeneous effects (either

increasing/decreasing) on the performance of all the considered

models, i. e. if algorithm A is better than B in one parameter set-

ting, then it is remained as it is in other parameter settings. 

Here ‘ F’ is a function to evaluate the generalized solutions called

fitness function. ‘ o r - c i,j ’ is the Euclidean distance from the object

‘ o r ’ to ‘ c i,j ’ (cluster center). The main objective of using Eq. (4) to

minimize the intra-cluster distance. i.e. when the intra-cluster dis-

T  
ance is low, the value of the objective function will be high. The

etailed pseudo code of the of the proposed CRO-FCM algorithm

s described in Algorithm 1 . In the algorithm based on the condi-

ions, any of the four reactions such as decomposition ( Algorithm

 ), on wall collision ( Algorithm 4 ), synthesis ( Algorithm 5 ) and

ntermolecular collision ( Algorithm 6 ) will be triggered. The best

luster center based on the fitness values will be evaluated through

he BestMoleculeSelection procedure ( Algorithm 2 ). 

. Experimental analysis and simulation results 

This section deals with the experimental analysis and details

bout the required parameters to be set for the simulation of the

ybrid CRO-FCM approach. The section is divided into following

ubsections. 

.1. Dataset information 

The datasets used for this experiment are listed in Table 1 .

here are twelve number of real world benchmark datasets and
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Algorithm 1: Pseudo-code of the proposed hybrid CRO-FCM algorithm. 

1. Initialize the population of Cluster centers P = {w 1 ,w 2 ,…..w N } (candidate 

solutions) randomly, where w i = {c i,1 ,c i,2 ,…,c i,m }, N is the size of the 

population and m is the number of clusters in the population 

2. while (1) 

For i = 1:1:Lp-1 

r1 = rand(1); 

r2 = rand(1); 

If (r1 > 0.5) 

[w] = BestMoleculeSelection (P); 

If (r2 > 0.5) 

[P] = Decomposition (w,P); 

else 

P = OnWallCollision (w,P); 

end 

else 

If (fitnessmol(i) > fitnessmol(i + 1)) 

w4 = P(i,:); 

mxi1 = i; 

else 

w4 = P(i + 1,:); 

mxi1 = i; 

end 

[w] = BestMoleculeSelection (P); 

If (r2 > 0.5) 

P = Synthesis (w4,w5,P); 

else 

P = InterMolecularCollision (w4,w5,P); 

end 

end 

end 

iter = iter + 1; 

If (iter == max _iter) 

break; 

end 

End 

3. Compute the fitness of each cluster center w i in the population by using Eq. 

(4) and find out the best solution. 

4. Rank the cluster centers based on their fitness, obtain the best cluster 

center. 

5. Initialize the FCM center with position of the best cluster center. 

6. Then using this center, iterate the FCM algorithm. 

Repeat 

Update the membership matrix by Eq. (2) . 

Refine the cluster centers by Eq. (3) . 

Do until it meets the convergence criteria 

7. Exit 

Algorithm 2: BestMoleculeSelection Method. 

1. function [w] = BestMoleculeSelection (P) 

2. for i = 1:1:nor,where nor is number of row in P 

3. Calculate fitness of cluster center ‘w’ i.e. P(i,:) from population P by using 

Eq. (4) . 

4. end 

5. Select cluster center ‘best’ on the basis of maximum fitness. 

6. Assign w = best. 

7. end 

Algorithm 3: Decomposition method. 

1. function [P] = Decomposition (w,P) 

2. w1 = w + ( −1 + (1 - −1). ∗rand(1)); 

3. w2 = w + ( −1 + (1 - −1). ∗rand(1)); 

4. Compute fitness of cluster centers w, w1 & w2. 

5. Select best two among these to replace two number of cluster centers from 

P. 

6. end 

Algorithm 4: Onwallcollision method. 

1. function P = OnWallCollision (w,P) 

2. i = rand(1); 

3 . if (i > 0.5) 

4. w3 = w + ( −1 + (1 - −1). ∗rand(1)); 

5. else 

6. w3 = w-( −1 + (1 - −1). ∗rand(1)); 

7. end 

8. Compute fitness of cluster centers w & w3. 

9. Select best one among these to replace one number of cluster centers from P. 

10. end 

Algorithm 5: Synthesis method. 

1. function P = Synthesis (w4,w5, P) 

2. for k = 1:1:L, where ‘L’ is length of w4 or w5 

3. i = rand(1); 

4 . if (i > 0.5) 

5. w6(1,k) = w4(1,k); 

6. else 

7. w6(1,k) = w5(1,k); 

8. end 

9. end 

10. Compute fitness of cluster centers w4, w5 & w6. 

11. Select best two among these to replace two number of cluster centers from P. 

12. end 

Algorithm 6: InterMolecularCollision method. 

1. function [w7,w8] = InterMolecularCollision (w4,w5) 

2. i = rand(1); 

3 . if (i > 0.5) 

4. w7 = w4 + ( −1 + (1 - −1). ∗rand(1)); 

5. w8 = w5 + ( −1 + (1 - −1). ∗rand(1)); 

6. else 

7. w7 = w4 - ( −1 + (1 - −1). ∗rand(1)); 

8. w8 = w5 - ( −1 + (1 - −1). ∗rand(1)); 

9. end 

10. Compute fitness of cluster centers w7, w8,w4 & w5. 

11. Select best two among these to replace two number of cluster centers from P. 

12. end 

Table 1 

Information about the datasets. 

Sl. No Datasets No. of pattern No. of clusters No. of attributes 

1. Iris 150 3 4 

2. Lenses 24 3 4 

3. Haberman 306 3 3 

4. Balance scale 625 3 4 

5. Wisconsin breast cancer 699 3 10 

6. Contraceptive method choice 1473 3 9 

7. Hayesroth 132 3 5 

8. Robot navigation 5456 4 2 

9. Spect heart 80 2 22 

10. Glass 214 6 9 

11. Wine 178 3 13 

12. Artificial dataset 600 3 2 

13. Lung cancer 32 3 56 
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Table 2 

Comparison on clustering metric results of K-means, FCM, TLBO and CRO algorithms. 

Clustering metric results of K-means, FCM, TLBO & CRO Algorithms 

K-Means FCM TLBO CRO 

Iris 0 .012395396 0 .012738542 0 .012800898 0 .03155815 

Lenses 0 .339904827 0 .381339952 0 .352281023 0 .340239036 

Haberman 0 .0 0 0317745 0 .0 0 0316547 0 .0 0 0337213 0 .0 0 0373982 

Balance scale 0 .002573387 0 .003332606 0 .002912077 0 .003172302 

Wisconsin breast cancer 7.25935E-14 7.48861E-14 6.49028E-14 7.38806E-14 

Contraceptive method choice 7.80139E-05 7.69432E-05 7.91398E-05 7.950183E-05 

Hayesroth 4.59807E-05 4.43056E-05 4.629092E-05 4.680829E-05 

Robot navigation 0 .001583094 0 .0 020 0 0381 0 .0 02220 018 0 .002298267 

Spect heart 0 .069341756 0 .077804472 0 .071902265 0 .069992846 

Glass 0 .181666666 0 .214233564 0 .219003011 0 .197523655 

Wine 4.83293E-07 4.6507E-07 4.723039E-07 4.782358E-07 

Artificial dataset 4.94137E-06 4.91855E-06 4.940607E-06 4.947219E-06 

Lung cancer 2 .30381921 2 .51627612 2 .820912221 2 .921829028 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of fitness value of CRO-FCM with other methods on Balance 

dataset. 
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one artificial dataset has been considered and the details about the

dataset such as number of pattern, number of clusters, number of

attributes are illustrated in the Table. 

4.2. Simulation environment 

The developing environment for the proposed method is MAT-

LAB 9.0 on a system with an Intel Core Duo CPU T5800, 2 GHz pro-

cessor, 2 GB RAM and Microsoft Windows-2007 OS. 

4.3. Experimental results and performance analysis 

For the experiment of the proposed hybrid approach and to

compare it with other approaches twelve real world bench mark

datasets from UCI machine learning repository ( Bache & Lichman,

2013 ) and one artificial dataset has been considered. The detail

properties of the datasets such as number of clusters, patterns and

attributes are explained in Table 1 . The performance of the pro-

posed approach is compared with some popular methods such as

K-means, FCM, TLBO, CRO and some hybrid methods such as GA-

K-means, PSO-K-means, TLBO-K-means, ETLBO-K-means, GA-FCM,

PSO-FCM. The performance of the proposed hybrid approach is

assessed and compared using the criteria such as cluster fitness

(cluster metric), intra-cluster distance, inter-cluster distance, error

rate and number of iterations. The rate of error ( Hatamlou, 2013 )

is calculated by dividing the number of misplaced objects with

the total number of objects belongs to one particular dataset ( Eq.

(5) ). 

Rate of error = no . of misplaced objects / 

total no of objects in the dataset (5)

For the implementations of FCM algorithm, the fuzzy control-

ling parameter or the weighting factor ‘m’ has been set to 2. The

details of implementation procedures and parameters set for the

approaches such as K-means, GA-K-means, PSO-K-means, TLBO-K-

means and ETLBO-K-means may be found in Kanungo, Nayak, Naik,

and Behera (2016 ), Nayak, Naik, Kanungo, and Behera (2015b ) and

Nayak, Kanungo, Naik, and Behera (2016 ). For PSO, the values of

the acceleration coefficients c1 and c2 are set to 1.4, inertia weight

is set in between 1.8 and 2; for TLBO, and the teaching factor (T F )

is set to 1 or 2 with equal probability. For implementing all the al-

gorithms, 50 number of independent runs is simulated and the re-

sults of 1400 number of iterations are indicated in Tables 2 –4 . The

performance comparison among the approaches such as K-means,

FCM, TLBO and CRO is shown in Table 2 and the fitness values of

four hybrid algorithms based on K-means clustering such as GA-

K-means, PSO-K-means, TLBO-K-means and ETLBO-means are rep-

resented in Table 3 . The comparison of the proposed hybrid CRO-

FCM with some other well known approaches such as GA-FCM &
SO-FCM in terms of their clustering metric values is indicated in

able 4 . From these three tables ( Tables 2 –4 ), it may be inferred

hat the performance of the proposed hybrid chemical reaction

ased approach is quite better as compared to all the considered

ethods in this work. The fitness values of CRO-FCM in all the

onsidered real world benchmark datasets are high (except the ar-

ificial dataset) than the hybrid K-means approaches and other hy-

rid FCM based approaches. In case of artificial dataset, the fitness

alue of CRO-FCM is 4.98865E-06, PSO-FCM is 4.97987E-06 and

A-FCM is 4.96589E-06. In this case, CRO-FCM is performing better

han all the considered approaches, but ETLBO-K-means produces

lightly better result than CRO-FCM. Other than this, the proposed

ybrid method has higher superiority over the other approaches.

he performance of fitness metric by using the methods such as K-

eans, FCM, GA-FCM, PSO-FCM and CRO-FCM for various datasets

as been illustrated in Figs. 4 –11 . 

Table 5 represents the mean and standard deviations of the

ntra-cluster and inter-cluster distances for all the considered

ethods along with the proposed method by considering the

atasets such as iris, Haberman, breast cancer, Hayesroth, glass and

ine datasets respectively. The obtained mean values for intra-

luster distance are 2.2803 for iris dataset, 27.498 for Haberman

ataset, 12.2487 for Wisconsin breast cancer dataset, 3.1022 for

ayesroth dataset, 62.8638 for glass dataset, and 442.7833 for

ine dataset respectively. In all these considered cases, the pro-

osed hybrid approach is quite efficient and produced less intra-

luster distance than the other approaches. 

Further, for better comparison among the methods, the average

f mean values of all the methods of both inter and intra cluster

istances for all the considered data sets are calculated. Both the

esults of inter and intra cluster distances are ranked according to
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Table 3 

Comparison on clustering metric results of GA-K-means, PSO-K-means, TLBO-K-means and ETLBO-K- 

means algorithms. 

Clustering metric results of various hybrid K-means Algorithms 

GA-K-means PSO-K-means TLBO-K-means ETLBO-K-means 

Iris 0 .013826351 0 .014528017 0 .014635644 0 .014724565 

Lenses 0 .351735427 0 .360239542 0 .443532685 0 .4 4 4011111 

Haberman 0 .0 0 0328364 0 .0 0 0348162 0 .0 0 0388888 0 .0 0 0384213 

Balance scale 0 .002628475 0 .002810827 0 .003725464 0 .0 037220 08 

Wisconsin breast cancer 7.26287E-14 7.28928E-14 7.54648E-14 7.54844E-14 

Contraceptive method choice 8.03819E-05 8.20198E-05 8.25254E-05 8.25291E-05 

Hayesroth 4.70825E-05 4.73918E-05 4.75140E-05 4.77111E-05 

Robot navigation 0 .001828362 0 .001898018 0 .002746987 0 .002858946 

Spect heart 0 .072648917 0 .076041565 0 .084362513 0 .084384626 

Glass 0 .182496522 0 .1910 0 0 011 0 .265555551 0 .263018566 

Wine 4.84222E-07 4.85339E-07 4.88326E-07 4.88416E-07 

Artificial dataset 4.95447E-06 4.96647E-06 4.98822E-06 4.98888E-06 

Lung cancer 2 .670915679 2 .76985463 2 .966975354 2 .985648755 

Table 4 

Comparison on clustering metric results of GA-FCM, PSO-FCM and CRO-FCM algorithms. 

Datasets Clustering metric results of various hybrid FCM Algorithms 

GA-FCM PSO-FCM CRO-FCM 

Iris 0 .014154986 0 .014624876 0 .014859984 

Lenses 0 .390354824 0 .425698354 0 .495692544 

Haberman 0 .0 0 0330542 0 .0 0 0372865 0 .0 0 0442243 

Balance scale 0 .003425487 0 .003535478 0 .004238763 

Wisconsin breast cancer 7.50236E-14 7.52487E-14 7.59489E-14 

Contraceptive method choice 8.13254E-05 8.20398E-05 8.84358E-05 

Hayesroth 4.71657E-05 4.74493E-05 4.89622E-05 

Robot navigation 0 .002258745 0 .002454781 0 .003446324 

Spect heart 0 .079365885 0 .080456544 0 .086687254 

Glass 0 .235687998 0 .248023652 0 .479652264 

Wine 4.85985E-07 4.86258E-07 4.91633E-07 

Artificial dataset 4.96589E-06 4.97987E-06 4.98865E-06 

Lung cancer 2 .729946254 2 .863599423 3 .269744214 

Fig. 5. Comparison of fitness value of CRO-FCM with other methods on Glass 

dataset. 

Fig. 6. Comparison of fitness value of CRO-FCM with other methods on Haberman 

dataset. 

Fig. 7. Comparison of fitness value of CRO-FCM with other methods on Spect heart 

dataset. 

Fig. 8. Comparison of fitness value of CRO-FCM with other methods on Iris dataset. 
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Table 5 

Comparison of Intra-cluster and Inter-cluster distances among all the Clustering algorithms on thirteen datasets. 

Dataset Inter and Intra cluster values of all the methods 

K-means FCM TLBO CRO GA-K-means PSO-K-means TLBO-K-means ETLBO-K-means GA-FCM PSO-FCM CRO-FCM 

Iris Inter Mean 1 .5982 1 .6355 1 .7994 1 .7924 1 .6724 1 .6837 1 .7246 1 .7284 1 .9327 1 .7303 1 .7826 

Std. Dev 0 .4187 0 .4239 0 .0044 4.66E-16 0 .4463 0 .4868 0 .483 0 .4852 0 .4239 0 .4106 0 .3689 

Intra Mean 2 .5936 2 .5224 2 .5644 2 .5076 2 .4826 2 .4264 2 .4032 2 .4006 2 .3621 2 .3517 2 .2803 

Std. Dev 0 .1812 0 .1781 0 .0447 4.66E-16 0 .1552 0 .1504 0 .142 0 .1411 0 .1524 0 .1683 0 .1464 

Lenses Inter Mean 422 .81 438 .82 467 .22 469 .39 434 .83 442 .74 478 .9 482 .48 532 .85 544 .28 583 .72 

Std. Dev 11 .2 18 .03 21 .35 24 .83 26 .46 25 .93 35 .83 36 .22 46 .66 48 .53 54 .28 

Intra Mean 512 .62 476 .27 378 .92 356 .99 320 .88 311 .3 356 .99 355 .21 307 .64 318 .72 302 .11 

Std. Dev 23 .88 12 .99 11 .28 11 .68 22 .87 19 .36 12 .31 12 .26 10 .62 14 .82 10 .29 

Haberman Inter Mean 13 .16 14 .296 12 .6179 13 .3972 12 .3972 14 .2614 16 .2913 16 .31 18 .348 19 .63 19 .9 

Std. Dev 1 .2416 1 .5838 0 1 .4758 1 .1682 1 .646 1 .6894 1 .6896 1 .7493 1 .8453 1 .8824 

Intra Mean 41 .84 41 .92 44 .6816 42 .3893 39 .3328 38 .692 36 .2942 36 .29 35 .268 32 .238 27 .498 

Std. Dev 3 .2622 3 .2646 2.18E-14 3 .2421 3 .2421 3 .2238 3 .2019 3 .2042 3 .1942 3 .1256 2 .7608 

Balance scale Inter Mean 1027 .86 1243 .49 1228 .83 1282 .23 1296 .93 1383 .21 1392 .88 1397 .8 1458 .4 1472 .3 1483 .47 

Std. Dev 435 .99 572 .62 528 .2 538 .22 520 .82 578 .26 583 .71 592 .64 629 .72 677 .24 672 .02 

Intra Mean 1478 .34 1340 .43 1380 .52 1322 .93 1305 .27 1309 .29 1302 .37 1302 .15 1293 .4 1177 .27 1128 .29 

Std. Dev 522 .93 478 .38 492 .39 438 .29 446 .7 428 .69 418 .92 412 .62 406 .2 400 .84 357 .2 

Wisconsin breast cancer Inter Mean 3 .3658 3 .379 2 .9359 4 .3893 4 .5692 3 .5683 4 .7624 4 .7687 4 .962 4 .98 5 .5763 

Std. Dev 2 .0269 2 .0489 1 .9658 1 .8269 1 .8453 1 .3822 1 .8896 1 .8897 1 .9222 1 .9421 2 .3896 

Intra Mean 17 .1748 16 .2534 19 .7297 16 .6149 16 .5 16 .384 15 .07 15 .04 14 .872 14 .2453 12 .2487 

Std. Dev 0 .4176 0 .4012 0 .5276 0 .3938 0 .3808 0 .3682 0 .3402 0 .34 0 .2873 0 .265 0 .1985 

Contraceptive method choice Inter Mean 2414 .3 2786 .97 2902 .442 3109 .22 3566 .2 3878 .59 3939 .3 3983 .8633 3922 .2 3962 .52 3982 .34 

Std. Dev 6 .6212 18 .2901 16 .4432 21 .4432 24 .8624 26 .3277 23 .4423 23 .4955 28 .333 29 .0443 29 .8373 

Intra Mean 4872 .209 4209 .84 4277 .214 4199 .492 4086 .02 3977 .49 3399 .22 3372 .8832 3103 3006 .87 2994 .2 

Std. Dev 2 .3992 4 .232 16 .3 5 .3372 1 .7832 1 .0322 6 .4322 6 .1139 2 .3436 2 .038 1 .5826 

Hayesroth Inter Mean 1 .6531 1 .6382 1 .4124 1 .6838 1 .7184 1 .768 1 .9208 1 .9204 2 .4892 2 .6931 2 .8631 

Std. Dev 0 .2634 0 .247 0 .2153 0 .2863 0 .2966 0 .3257 0 .4698 0 .4693 1 .8763 1 .9164 1 .9642 

Intra Mean 3 .3782 3 .3987 3 .5823 3 .3539 3 .3486 3 .3208 3 .29 3 .2745 3 .16 3 .1243 3 .1022 

Std. Dev 1 .293 1 .3091 1 .3492 1 .2752 1 .2501 1 .2208 1 .1932 1 .1917 1 .1248 1 .1196 1 .1073 

Robot navigation Inter Mean 488 .72 568 .82 562 .82 574 .91 583 .45 588 .28 593 .37 598 .73 632 .8 674 .39 683 .29 

Std. Dev 32 .28 56 .77 54 .22 57 .27 54 .38 56 .61 59 .52 59 .92 67 .82 75 .28 86 .38 

Intra Mean 387 .43 328 .72 347 .62 319 .28 312 .44 304 .92 304 .24 304 .18 299 .9 234 .8 214 .66 

Std. Dev 48 .62 34 .6 42 .91 31 .18 31 .63 27 .82 26 .82 26 .55 22 .35 23 .73 17 .2 

Spect heart Inter Mean 2319 .92 2361 .98 2382 .9 2446 .72 2677 .82 2683 .39 2739 .62 2402 .28 2389 .8 2429 .82 2557 .83 

Std. Dev 1283 .49 1288 .2 1312 .94 1452 .22 1563 .38 1620 .33 1677 .3 1682 .43 1762 .4 1782 .34 1783 .93 

Intra Mean 1088 .29 1023 .61 1062 .81 1007 .38 883 .27 837 .62 828 .27 818 .76 862 .38 819 .62 802 .28 

Std. Dev 437 .82 432 .81 446 .82 407 .27 342 .77 322 .72 304 .72 303 .17 318 .29 302 .9 300 .72 

Glass Inter Mean 70 .8539 70 .2936 70 .1062 70 .38 70 .976 74 .6432 76 .5793 76 .82 77 .489 78 .4359 79 .4923 

Std. Dev 0 .962 0 .2983 0 .4931 0 .6934 1 .1638 2 .3976 3 .4682 3 .4765 2 .6347 3 .593 3 .76348 

Intra Mean 70 .37821 70 .2234 70 .2934 70 .31896 70 .121 69 .5324 66 .46 66 .1 64 .694 63 .9868 62 .8638 

Std. Dev 0 .63892 0 .58315 0 .37314 0 .6052 0 .2 0 .19634 0 .162284 0 .1602 0 .2111 0 .14936 0 .11632 

Wine Inter Mean 293 .3158 290 .693 265 .4835 270 .3789 294 .786 296 .635 298 .5238 298 .6281 306 .8 309 .748 318 .779 

Std. Dev 47 .1146 46 .4937 31 .4793 5.82E-14 48 .1796 48 .8934 49 .1394 49 .2653 58 .248 39 .2782 62 .2463 

Intra Mean 456 .7149 457 .249 459 .1782 462 .338 454 .492 451 .492 456 .9425 455 .8342 451 .49 458 .796 442 .783 

Std. Dev 2 .8698 2 .882 2 .8938 2 .9683 2 .7692 2 .7692 2 .682 2 .6652 2 .22 2 .1483 2 .1128 

Artificial dataset Inter Mean 13 .3097 14 .392 13 .3029 14 .8862 18 .2399 18 .8862 19 .8724 19 .7231 27 .309 28 .3902 34 .5874 

Std. Dev 2 .6721 2 .0489 2 .9342 3 .832 4 .8402 6 .3231 6 .7922 5 .4937 5 .3387 5 .3099 6 .332 

Intra Mean 28 .4898 24 .9821 26 .34 23 .4032 23 .087 22 .33 21 .2891 21 .0429 18 .201 17 .3056 14 .2215 

Std. Dev 3 .921 3 .7381 3 .5342 3 .3021 3 .3231 1 .3238 2 .3776 2 .1092 1 .2302 2 .2342 1 .1309 

Lung cancer Inter Mean 3 .1861 3 .2281 3 .3038 3 .3694 3 .8621 3 .884 3 .8904 3 .8942 4 .21 5 .8201 5 .8849 

Std. Dev 0 .3822 0 .3405 0 .1243 0 .0287 0 .3251 0 .4602 0 .5721 0 .5801 0 .5997 0 .6802 0 .725 

Intra Mean 7 .5107 7 .4263 7 .5542 7 .4722 7 .4201 7 .4094 7 .5308 7 .5296 7 .0711 6 .2844 4 .9287 

Std. Dev 0 .2954 0 .2741 0 .2994 0 .1242 0 .1224 0 .1205 0 .1186 0 .1173 0 .1028 0 .1127 0 .1092 

Mean average of all inter cluster distances 544 .1579 599 .972 608 .8595 635 .5959 689 .804 722 .426 735 .97192 714 .534323 721 .5 733 .441 750 .732 

Rank of Mean average of all inter cluster distances 11 10 9 8 7 4 2 6 5 3 1 

Mean average of all intra cluster distances 689 .7669 615 .604 621 .616 602 .6515 578 .82 565 .554 523 .10537 520 .053462 497 .19 473 .509 462 .421 

Rank of Mean average of all intra cluster distances 11 9 10 8 7 6 5 4 3 2 1 
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Fig. 9. Comparison of fitness value of CRO-FCM with other methods on Lense 

dataset. 

Fig. 10. Comparison of fitness value of CRO-FCM with other methods on Lung can- 

cer dataset. 

Fig. 11. Comparison of fitness value of CRO-FCM with other methods on robot nav- 

igation dataset. 
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heir performance on mean values and revealed that the proposed

ethod is superior as compared to others ( Fig. 12 ). Also, the per-

ormance of the proposed work is compared with some other re-

orted literatures ( Baral & Behera, 2013; Satapathy & Naik, 2014 )

nd found that, the mean values of both intra-cluster as well as

nter-cluster distance is better as compared to them. The reason

ehind the consideration of mean values is that the considered al-

orithms such as GA, PSO are stochastic algorithms, in which the

alue of each iteration may vary. Also, as the variation on the sim-

lation results in each iteration is directly dependent on the num-

er of iterative looping for a particular algorithm so, some effec-

ive performance measures such as fitness value and average num-

er of iterations required to obtain the optimal solution has been

onsidered in this work. The average number of iterations for re-

ulting optimal solution is demonstrated in Table 6 and it is found

hat the proposed method is able to get the optimal solution in

ess number of iterations than others. The rate of error for all the

onsidered algorithms is calculated by using Eq. (5) and is listed

n Table 7 . From Table 7 , it is clear that the average error rate of

he proposed method is quite less than other approaches. In both

he Tables 6 & 7 , the last row indicates the ranking of various al-
orithms based on their average number of iterations and average

umber of rate of errors over all the considered datasets respec-

ively. For both the considered metrics i.e. average number of it-

rations and average number of rate of errors, it is found that the

ank of proposed method is ‘1’, which clearly divulges it’s superi-

rity over the other methods. 

. Statistical significance 

In this section, to show the significance differences among

ll the methods, statistical tests such as Friedman test, Iman-

avenport test, Holm test are performed by considering all the

ases. First, Friedman test as well as Iman-Davenport test is em-

loyed to test the significance differences among the results in

arious clustering techniques. Then, if significant differences are

ound, post hoc test (Holm test) is carried out by considering one

roup as control group against all the other algorithms. These three

ests are carried out by considering two results such as fitness val-

es and error rate of all the considered algorithms. The value of

is set as 0.01 which is the confidence level in all the consid-

red cases. In Friedman test, the ranks are assigned to all the al-

orithms and the best performing algorithm is assigned as rank 1.

n this work, the proposed CRO-FCM is ranked as 1 and the rest of

he algorithms are ranked as per their performance. Accordingly,

he average ranks for all the considered cases are calculated and

hose ranks are used to compute the Friedman statistics. The de-

ailed description about all these tests is presented in Nayak et al.

2015a ). 

Fitness values of seven methods presented in Tables 3 & 4 has

een considered for assigning the ranks based on their perfor-

ance and accordingly the Friedman test is carried out on them.

he reason behind considering seven methods and not considering

he rest four methods such as K-means, FCM, TLBO & CRO is that,

hese four are not able to produce at least a nearer range of val-

es to the proposed method after 50 generations, for which results

f the proposed method is far better than them. Table 8 repre-

ents the ranks assigned to seven methods against all the thirteen

atasets based on the fitness metric and the average ranks are cal-

ulated accordingly. In Table 9 , the statistical values of Friedman’s

est and Iman-Davenport test are compared with the critical value,

s a result all the null hypothesis are rejected. Table 10 reports the

esults of Holm test, where the proposed CRO-FCM is considered as

he control algorithm which is to be tested with all the other al-

orithms. The results reported in the table divulge that, CRO-FCM

erforms quite better in maximum cases, except last two where

he marginal variability is very less. Out of six, in four cases the

ull hypothesis is rejected. So, based on the fitness metric, the pro-

osed method is statistically significant over other methods. The

ensity plot having (6, 72) degree of freedom based on the fitness

etric is shown in Fig. 13 . 

Similar tests are performed on all the seven methods based on

heir rate of error. The proposed CRO-FCM is ranked as 1 and then

uccessively ranked all other algorithms based on their perfor-

ance and the average ranks are computed in Table 11 . Based on

he average ranks, both Friedman’s statistic and Iman-Davenport

tatistical values are calculated and compared with the critical

alue. For both the cases the null hypothesis is rejected based on

heir rate of error ( Table 12 ). 

During the Holm test, based on the z values, corresponding p

alues are computed for all the algorithms and the results are re-

orted in Table 13 . From the obtained results, the null hypothesis

s rejected in four out of six, which demonstrates better statistical

ignificance of the proposed method than others based on the er-

or rates. The density plot having (6,72) degree of freedom based

n the rate of error is shown in Fig. 14 . 
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Fig. 12. Comparison of inter and intra cluster distance of various methods. 

Table 6 

Comparison among all the considered clustering approaches based on average number of iterations to obtain optimal solutions. 

Dataset Average no. of iterations required by various Clustering methods 

K-means FCM TLBO CRO GA-K-means PSO-K-means TLBO-K-means ETLBO-K-means GA-FCM PSO-FCM CRO-FCM 

Iris 73 34 78 27 33 .4 28 .65 26 .2 26 27 .4 26 .6 14 .3 

Lenses 48 .76 44 49 .4 38 .9 42 .44 34 .96 34 .7 32 .4 37 .66 30 .2 28 .4 

Haberman 106 .22 92 .83 71 .3 23 .73 67 .9 62 .3 72 .30 71 79 .5 49 .2 49 .66 

Balance scale 227 .8 186 .2 142 .4 113 .2 156 .93 112 .93 106 106 132 .4 128 .6 88 .2 

Wisconsin breast cancer 137 .4 70 .28 91 .23 44 .8 110 .8 114 .72 99 .9 99 87 .6 84 .39 62 .3 

Contraceptive method choice 227 .8 187 .6 134 .2 147 .2 122 .2 128 .6 110 .9 110 .9 124 .5 102 .6 84 

Hayesroth 48 .4 56 .3 40 .7 40 .9 39 .4 38 .82 30 .11 30 43 .2 36 .9 29 .3 

Robot navigation 112 .70 130 .8 109 .2 89 .65 97 .30 92 86 .49 83 .20 72 .2 78 .4 70 .29 

Spect heart 167 .82 120 .2 138 128 .3 118 .29 123 .8 120 .4 114 .8 98 92 .4 88 .6 

Glass 84 .2 42 65 .9 73 .2 54 .6 56 .8 50 .8 49 .81 40 .2 40 32 .80 

Wine 142 .3 64 .9 118 .20 42 .29 94 .2 86 .9 76 .40 78 .9 56 .9 52 .4 52 

Artificial dataset 237 .22 186 .4 78 .30 92 184 .34 162 .6 124 .99 124 132 .9 99 .2 102 .5 

Lung cancer 36 .9 14 67 .8 30 .6 34 .2 26 .66 44 .2 42 .9 12 .84 18 .8 9 .52 

Ranking of Algorithms on Average 

number of iterations over all the 

dataset 

11 10 9 3 8 7 5 4 6 2 1 

Table 7 

Comparison among all the considered clustering approaches based on average rate of error. 

Dataset Error rate of various Clustering methods in (%) 

K-means FCM TLBO CRO GA-K-means PSO-K-means TLBO-K-means ETLBO-K-means GA-FCM PSO-FCM CRO-FCM 

Iris 13 .34 12 .43 14 .3 13 .28 12 .3 12 .20 11 .87 11 .8 11 .20 11 .1 9 .18 

Lenses 20 .16 20 .12 20 .10 19 .39 20 .9 18 .03 17 .20 17 .1 19 .8 18 .34 16 .40 

Haberman 9 .29 9 .10 8 .2 8 .18 9 .16 9 .05 8 .12 8 .09 7 .62 7 .35 7 .19 

Balance scale 34 .20 31 .4 32 .10 31 .3 30 .90 30 .7 30 .4 30 .14 27 .62 27 .18 27 .10 

Wisconsin breast cancer 7 .39 7 .2 7 .27 7 .08 7 .15 7 .02 7 .01 7 7 .28 6 .94 6 .91 

Contraceptive method choice 53 .47 53 .12 54 .17 52 .89 52 .76 52 .68 52 .38 52 .36 52 .32 52 .30 52 .21 

Hayesroth 13 .46 13 .42 13 .38 13 .35 13 .28 13 .24 13 .21 13 .22 13 .26 13 .20 13 .16 

Robot navigation 23 .4 23 .37 23 .31 23 .25 23 .38 23 .34 23 .29 23 .28 23 .46 23 .25 23 .22 

Spect heart 6 .28 6 .23 6 .48 6 .21 6 .22 6 .21 6 .20 6 .14 6 .18 6 .17 6 .13 

Glass 38 .39 38 .26 42 .36 38 .11 38 .37 38 .32 38 .34 38 .27 38 .35 38 .31 38 .14 

Wine 31 .11 31 .26 31 .24 31 .08 31 .09 31 .06 31 .07 31 .08 30 .21 30 .18 30 .12 

Artificial dataset 24 .28 24 .16 23 .19 24 .10 23 .15 23 .13 23 .12 23 .10 24 .08 23 .28 23 .02 

Lung cancer 18 .52 18 .24 18 .16 18 .15 18 .50 18 .46 18 .20 18 .16 18 .49 18 .11 18 .06 

Ranking of Algorithms on Average 

rate of error over all the dataset 

10 9 11 7 8 6 5 3 4 2 1 
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Table 8 

Assignment of Friedman’s rank to all the considered algorithms based on fitness metric. 

Sl. No. of dataset Assigned ranks to Clustering metric results of various Clustering algorithms 

GA-K-means PSO-K-means TLBO-K-means ETLBO-K-means GA-FCM PSO-FCM CRO-FCM 

1. 0 .013826351(7) 0 .014528017(5) 0 .014635644(3) 0 .014724565(2) 0 .014154986(6) 0 .014624876(4) 0 .014859984(1) 

2. 0 .351735427(7) 0 .360239542(6) 0 .443532685(3) 0 .4 4 4011111(2) 0 .390354824(5) 0 .425698354(4) 0 .495692544(1) 

3. 0 .0 0 0328364(7) 0 .0 0 0348162(5) 0 .0 0 0388888(2) 0 .0 0 0384213(3) 0 .0 0 0330542(6) 0 .0 0 0372865(4) 0 .0 0 0442243(1) 

4. 0 .002628475(7) 0 .002810827(6) 0 .003725464(2) 0 .0 037220 08(3) 0 .003425487(5) 0 .003535478(4) 0 .004238763(1) 

5. 7.26287E-14(7) 7.28928E-14(6) 7.54648E-14(2) 7.54844E-14(3) 7.50236E-14(5) 7.52487E-14(4) 7.59489E-14(1) 

6. 8.03819E-05(7) 8.20198E-05(5) 8.25254E-05(3) 8.25291E-05(2) 8.13254E-05(6) 8.20398E-05(4) 8.84358E-05(1) 

7. 4.70825E-05(7) 4.73918E-05(5) 4.75140E-05(3) 4.77111E-05(2) 4.71657E-05(6) 4.74493E-05(4) 4.89622E-05(1) 

8. 0 .001828362(7) 0 .001898018(6) 0 .002746987(3) 0 .002858946(2) 0 .002258745(5) 0 .002454781(4) 0 .003446324(1) 

9. 0 .072648917(7) 0 .076041565(6) 0 .084362513(3) 0 .084384626(2) 0 .079365885(5) 0 .080456544(4) 0 .086687254(1) 

10. 0 .182496522(7) 0 .1910 0 0 011(6) 0 .265555551(2) 0 .263018566(3) 0 .235687998(5) 0 .248023652(4) 0 .479652264(1) 

11. 4.84222E-07(7) 4.85339E-07(6) 4.88326E-07(3) 4.88416E-07(2) 4.85985E-07(5) 4.86258E-07(4) 4.91633E-07(1) 

12. 4.95447E-06(7) 4.96647E-06(5) 4.98822E-06(3) 4.98888E-06(1) 4.96589E-06(6) 4.97987E-06(4) 4.98865E-06(2) 

13. 2 .670915679(7) 2 .76985463(5) 2 .966975354(3) 2 .985648755(2) 2 .729946254(6) 2 .863599423(4) 3 .269744214(1) 

Average Ranks 7 5 .53 2 .69 2 .23 5 .46 4 1 .07 

Table 9 

Results of Friedman and Iman-Davenport Test based on the fitness metric. 

Test Statistical Value Obtained Critical Value Hypothesis 

Friedman 74 .30 3 .06 Rejected 

Iman-Davenport 240 .97 3 .06 Rejected 

Table 10 

Results of Holm Test based on the fitness metric (Control algorithm: CRO-FCM). 

i Method z-value p-value α/ ( m − i ) Hypothesis 

6 GA-K-means 6 .26 0 0 .01 Rejected 

5 PSO-K-means 5 .27 6.814477E-8 0 .005 Rejected 

4 GA-FCM 5 .18 1.109419E-7 0 .003 Rejected 

3 PSO-FCM 3 .46 0 .0 0 027 0 .0025 Rejected 

2 TLBO-K-means 1 .91 0 .028067 0 .002 Not Rejected 

1 ETLBO-K-means 1 .37 0 .085343 0 .0016 Not Rejected 
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Fig. 13. Density Plot on the Degree of Freedom (6,72) based on the Fitness metric. 

K
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. Conclusion and future directions 

Applying hybrid metaheuristic algorithms for solving complex

roblems as well as modeling and simulation of these algorithms

o achieve optimal solutions has been a recent interest among the

esearchers. In this work, a hybrid parameter free chemical reac-

ion based fuzzy-c-means clustering algorithm is proposed to ob-

ain optimal cluster centers. The experiments reported in the paper

onsidered twelve real world benchmark datasets and one artifi-

ial dataset. The experimental results of the proposed method are

ompared with some hybrid approaches such as GA-K-means, PSO-
Table 11 

Assignment of Friedman’s rank to all the considered algorithms bas

Sl. No. of Dataset Assigned ranks to error rates of various Cluster

GA-K-means PSO-K-means TLBO-K-mean

1. 12 .3 (7) 12 .20 (6) 11 .87 (5) 

2. 20 .9 (7) 18 .03 (4) 17 .20 (3) 

3. 9 .16 (7) 9 .05 (6) 8 .12 (5) 

4. 30 .90 (7) 30 .7 (6) 30 .4 (5) 

5. 7 .15 (6) 7 .02 (5) 7 .01 (4) 

6. 52 .76 (7) 52 .68 (6) 52 .38 (5) 

7. 13 .28 (7) 13 .24 (5) 13 .21 (3) 

8. 23 .38 (6) 23 .34 (5) 23 .29 (4) 

9. 6 .22 (7) 6 .21 (6) 6 .20 (5) 

10. 38 .37 (7) 38 .32 (4) 38 .34 (5) 

11. 31 .09 (7) 31 .06 (4) 31 .07 (5) 

12. 23 .15 (5) 23 .13 (4) 23 .12 (3) 

13. 18 .50 (7) 18 .46 (5) 18 .20 (4) 

Average Ranks 6 .69 5 .07 4 .30 
-means, TLBO-K-means, ETLBO-K-means, GA-FCM, PSO-FCM and 

ther benchmark models such as K-means, FCM, TLBO, CRO. The

imulation results have shown that the hybrid CRO-FCM proposed

n this paper achieved better results regarding various performance

riteria such as fitness metric, intra-cluster distance, inter-cluster
ed on rate of error. 

ing algorithms 

s ETLBO-K-means GA-FCM PSO-FCM CRO-FCM 

11 .8 (4) 11 .20 (3) 11 .1 (2) 9 .18 (1) 

17 .1 (2) 19 .8 (6) 18 .34 (5) 16 .40 (1) 

8 .09 (4) 7 .62 (3) 7 .35 (2) 7 .19 (1) 

30 .14 (4) 27 .62 (3) 27 .18 (2) 27 .10 (1) 

7 (3) 7 .28 (7) 6 .94 (2) 6 .91 (1) 

52 .36 (4) 52 .32 (3) 52 .30 (2) 52 .21 (1) 

13 .22 (4) 13 .26 (6) 13 .20 (2) 13 .16 (1) 

23 .28 (3) 23 .46 (7) 23 .25 (2) 23 .22 (1) 

6 .14 (2) 6 .18 (4) 6 .17 (3) 6 .13 (1) 

38 .27 (2) 38 .35 (6) 38 .31 (3) 38 .14 (1) 

31 .08 (6) 30 .21 (3) 30 .18 (2) 30 .12 (1) 

23 .10 (2) 24 .08 (7) 23 .28 (6) 23 .02 (1) 

18 .16 (3) 18 .49 (6) 18 .11 (2) 18 .06 (1) 

3 .30 4 .92 2 .69 1 
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Fig. 14. Density Plot on the Degree of Freedom (6,72) based on the rate of error. 

Table 12 

Results of Friedman and Iman-Davenport test based on the rate of error. 

Test Statistical value Obtained critical value Hypothesis 

Friedman 56 .32 3 .06 Rejected 

Iman-Davenport 31 .17 3 .06 Rejected 

Table 13 

Results of Holm Test based on the rate of error (Control algorithm: CRO-FCM). 

i Method z-value p-value α/ ( m − i ) Hypothesis 

6 GA-K-means 6 .77 0 0 .01 Rejected 

5 PSO-K-means 4 .84 6.492338E-7 0 .005 Rejected 

4 GA-FCM 4 .66 0 .0 0 0 0 02 0 .003 Rejected 

3 TLBO-K-means 3 .92 0 .0 0 0 044 0 .0025 Rejected 

2 ETLBO-K-means 2 .73 0 .003167 0 .002 Not Rejected 

1 PSO-FCM 2 .01 0 .022216 0 .0016 Not Rejected 
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distance, number of iterations and error rate as compared to other

methods in all datasets. Several statistical tests such as Friedman’s

rank test, Iman-Davenport test, Holm test were performed to verify

the results and the proposed method is proved to be statistically

significant. 

In this paper, the proposed method is a hybrid approach based

on chemical reactions for solving clustering problem. The literature

shows many of the clustering models both in standalone form and

hybrid form outperforms the classical clustering methods like K-

means, K-medoid, FCM. But they suffer from some of the impor-

tant issues like complex parameter tunings, large error rate etc.

On the other hand, the method developed in this paper is able to

tackle these issues by using a recently introduced chemical reac-

tion based optimization algorithm. The simulation results of the

proposed method have also shown that, it not only produces opti-

mal results in less number of iterations, but also its average error

rate is quite less as compared to other considered methods. More-

over, from the obtained fitness values, it can be clearly inferred

that CRO-FCM outperforms the other methods in all the consid-

ered real world bench mark datasets. The advantages of proposed

method are: (a) it is free from some complicated parameter tuning

issues, (b) easily implementable due to simple structure, (iii) less

error rate, (iv) statistically valid. 

The method proposed in this paper for fuzzy clustering may

be adapted to some other real life problems. The good simula-

tion results obtained in this work encourage for extension of the

method for these problems. Some of the important future direc-
ions include: (i) The adaptation of the proposed approach for han-

ling more complex data, such as histograms, real forecasting data

tc., (ii) The use of the proposed approach to train the higher or-

er neural networks such as Pi-sigma network, functional link net-

ork etc., as standard PSO and FCM based methods have already

een used to train the radial basis function networks ( Tsekouras &

simikas, 2013 ). (iii) Also, the investigation of the proposed method

ay be done on solving some other data mining problems such as

rediction, classification, forecasting. In addition to these, another

uture direction may comprise of solving some of the real life prob-

ems such as agricultural sectors, image processing, medical and

ealth related problems etc. 
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