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A B S T R A C T

The huge complexity and uncertainty in real life requires the use of advanced automatic learning methods to find
out better approximators and suitable relationship in real data behavior. Neuro fuzzy systems have been proved to
be excellent universal approximators. In this paper we propose a new based function Interval Type-2 Fuzzy Neural
Network denoted ’’Beta basis function Interval Type-2 Fuzzy Neural Network’’, the BIT2FNN. The main idea is to
involve type-2 beta fuzzy sets in the design process of fuzzy networks. The proposed architecture is based on beta
type-2 fuzzy sets in the antecedent part, while the consequent part achieves the TSK (Takagi–Sugeno–Kang) fuzzy
output strategy. Thanks to the beta function flexibility, the network achieve a good performance and shows a good
resistance to noisy data. First order derivatives of type-1 and type-2 Beta functions were developed for the first
time for designing fuzzy logic systems based on given input–output pairs. The backpropagation algorithm was
used for the learning process of antecedent fuzzy beta parameters and the consequent part. The performance of
the proposed model of Beta fuzzy logic system is evaluated with mainly two problems of time series applications
: the Mackey Glass Chaotic Time-Series prediction problem with different setting of parameters and levels of
noise and the ECG heart-rate Time Series monitoring problem.

1. Introduction

Fuzzy neural networks have been widely used in intelligent method-
ologies to settle serious data science problems, since they provide better
learning capabilities. For instance, they have been fruitful applied in
solving non linear and complex systems. Fuzzy systems (FSs) have been
demonstrated to have good approximation capabilities (Wang, 1992),
which have been used widely for approximating non linear functions
and behaviors and forecasting many activities. Regarding learning type-
1 fuzzy systems applied to regression, non-linear identification and
time series problems, several works have been considered. In Fletcher
and Reeves (1964), The neural network weights adaptation is proposed
using an adaptive learning rate and momentum variable. An adaptive
neural fuzzy inference system have been proposed first by Jang in 1998
(Jang, 1993) denoted and known by ANFIS. This Neural Fuzzy System
(NFS) is based on an adaptive neural network structure using either
the backpropagation algorithm or hybrid learning algorithm and a TSK
model fuzzy logic system. In 1997, Mendel elaborated a type-1 FLS
for the first time applied to the Mackey glass time series prediction
problem (Mendel and Mouzouris, 1997). The TSK fuzzy structure was
considered in several studies. In Jang (1993), Jang has defined an
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adaptive neural fuzzy inference system applied to the chaotic time series
problem identification. For the learning process the gradient descent
based approach was utilized. In Juang and Lin (1998), a SONFIN self
constructing type-1 TSK FNN having an online learning ability was
suggested using a competitive learning method. In Wu and Er (2000),
a hierarchical on-line fuzzy neural network based radial basis function
for TSK systems was proposed. Then through many theoretical studies
and several successful applications, type-2 fuzzy neural systems have
proved their effectiveness regarding type-1 FNNs. In 1999 (Karnik and
Mendel, 1999), T2 concepts were added and applied for the Mackey
glass time series prediction problem. In Liang and Mendel (2000), Liang
and Mendel proposed a simplification of the generalized type-2 fuzzy
set theory to introduce by this the concept of interval fuzzy sets. Since,
much intention has been dutiful to learning type-2 FLS to have better
approximation of non linear aptitudes (Das et al., 2015; Tung et al.,
2013; Lee et al., 2003; Wang et al., 2004; Juang and Tsao, 2008). Jung
in Juang and Tsao (2008), proposed an online structure of a TSK type-
2 fuzzy neural network for fuzzy parameter learning. In this study,
the antecedent fuzzy parameters were tuned using gradient descent
algorithm while consequent parameters were tuned using a kalman filter
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algorithm. While in Juang et al. (2010), an interval type-2 fuzzy neural
network (IT2FNN) combined with support vector regression structure
(IT2FNN-SVR) was proposed. In Mndez and de los Angeles Hernandez
(2009), a hybrid learning methodology has been developed for interval
FNN. The back-propagation algorithm and the recursive orthogonal
least squares algorithm, were both applied for adjusting respectively
antecedent and consequent membership functions fuzzy parameters. In
MaNdez and De Los Angeles Hernández (2013), Mendez proposed a
hybrid learning algorithm for settling parameters of a non-singleton
interval A2-C1 model type-2 TSK FLS system. In Das et al. (2015)
a sequential meta-cognitive architecture of a learning algorithm has
been introduced using a model of a TSK type-2 NFS. Generally, the
performance of a neural network relies essentially on two matters to
know the network architecture and the transfer function used in layers.
Regarding the network structure the most used and simplest in neural
fuzzy architectures is the feedforward network with a simple or hybrid
backpropagation weight adjusting algorithm. In learning type-2 fuzzy
neural networks, the backpropagation algorithm with its variations is
the most used weight adjusting method for tuning fuzzy neural networks
parameters. This algorithm consists on reducing through iterations,
error between actual (FS) output network and a desired output. The
initial use of this algorithm for a fuzzy system was in 1992 (Wang and
Mendel, 1992), since, this algorithm have been proved its efficiency in
several fuzzy neural leaning process. The backpropagation algorithm
was defined for TSK interval type-2 FLS first in Mendel (2001a).
Derivatives and formulas that are needed to accomplish this algorithm
were provided in Mendel (2004). Those mathematical relations have
been given for only gaussian membership functions with uncertain
standard deviations or uncertain mean as in Rubio-Solis and Panoutsos
(2015). Learning type-2 FLS parameters have been proposed at first
in Lee et al. (2003), Mendel (2004), Wang et al. (2004) and Uncu
and Turksen (2007). In Castro et al. (2009), three (IT2FNN)s struc-
tures were defined using gradient descent backpropagation with and
without adaptive learning procedure. While in Wang et al. (2004) an
IT2FNN was proposed using backpropagation algorithm. In Gaxiola et
al. (2014b) a backpropagation leaning algorithm is used in the FNN
with type-1 and type-2 triangular fuzzy weights. In Gaxiola et al.
(2015), authors proposed a neural network with a generalized type-
2 fuzzy weights denoted (NNGT2FW) and presented a comparison to
the neural network with interval type-2 fuzzy weights (NNIT2FW).
Analysis were ensured using prediction of Mackey Glass time series. In
the considered neural network back-propagation algorithm is applied
and the adaptation of its weight is ensured using generalized type-2
fuzzy inference systems. Regarding the transfer function used in layers,
for fuzzy neural networks we mean the shape of membership function
used for defining a fuzzy system. As it was noticed in Wang et al.
(2004), since the variation of initial values of membership functions
may effect the performance of the training process, by consequent
also the used kind of shapes of membership function may also alter
the performance result of training. The most considered membership
function in literature is the gaussian membership function (Gaxiola et
al., 2014a). But, this does not exclude the existence of triangular and
trapezoidal membership functions in some works (Ishibuchi et al., 1993,
1995). In the context of comparing membership functions (MFs), in
Olivas et al. (2014) authors presented a comparative study on the impact
of the utilization of triangular and gaussian MFs in an IT2 fuzzy system
for adjusting the Particle Swarm Optimization algorithm parameters.
Considering type-2 fuzzy systems (T2FSs), the major cause of migration
from type-1 (T1) to type-2 (T2) systems is particularly in the reduction
of error and uncertainty that could be provided by T2FSs. But, the
contradiction that arises here is : on the one hand, type-2 fuzzy systems
which thanks to their type-2 membership functions that afforded the
opportunity to handle uncertainties, but, on the other hand, almost
all studies about, have neglected the possible impact of the chosen
shape of the type-2 membership function on the further reduce of that
uncertainty. Nevertheless it was mentioned in an earliest work (Wang,

1992) the possible impact of the shape of chosen membership function
of a fuzzy system on the smoothness of the input–output surface. In this
context, we demonstrated in this paper the great effect that can yield
a rich membership function, such the beta function. This function was
firstly proposed by Alimi in 1997 (Alimi, 1997a), as a transfer function
in an artificial feedforward three layers neural network denoted the Beta
Basis Function Neural Network (BBFNN). The beta function has several
benefits comparing to the gaussian one, for instance it has the ability
to provide more rich shapes specifically in points of view linearity,
asymmetry and flexibility (Alimi et al., 2000; Alimi, 2000; Alimi et al.,
2003). Successful applications have been utilized this function including
classification and pattern recognition (Alimi, 1997b; Ltaief et al., 2012;
Bezine et al., 2007, 2003), modeling of neural networks (Bouaziz et
al., 2013, 2014), and time series forecasting (Baklouti et al., 2015). In
this paper, a Beta basis function Interval Type-2 Fuzzy Neural Network
architecture BIT2FNN was introduced. Throughout this architecture, an
interval type-2 beta fuzzy set was defined and first order derivatives
of both type-1 and type-2 beta sets were calculated. Based on a given
data pairs and upon the backpropagation learning algorithm, weight
adjusting and fuzzy parameters update of the antecedent and consequent
part were performed. Comparison results were carried out using both
beta and gaussian membership functions. The BIT2FNN model was
tested using essentially two examples of time series applications: the
Mackey Glass Chaotic Time-Series prediction application with different
setting of parameters and levels of noise and the ECG heart-rate Time
Series monitoring application. The obtained results with beta functions
presented good performances. The paper is organized by following;
Section 2 presented a description of the interval type-2 beta fuzzy set and
properties including the beta primary MF with uncertain center. Next
section, considered calculation details of first order derivatives of type-
1 and type-2 beta functions. In Section 4 the structure of the BIT2FNN
was detailed. Then it follows a description of the used backpropagation
learning methodology. In Section 6, simulation studies are depicted.
Finally the paper is concluded.

2. Interval type-2 beta fuzzy set

2.1. Type-1 beta fuzzy set

A type-1 beta fuzzy set in one dimensional case is the earlier defined
beta membership function in Alimi (1997a) and expressed as follows,

𝛽(𝑥; 𝑝, 𝑞, 𝑥0, 𝑥1) =

⎧

⎪

⎨

⎪

⎩

(

𝑥 − 𝑥0
𝑐 − 𝑥0

)𝑝(𝑥1 − 𝑥
𝑥1 − 𝑐

)𝑞
if 𝑥 ∈]𝑥0, 𝑥1[

0 elsewhere
(1)

𝑝, 𝑞, 𝑥0 and 𝑥1 are real values with 𝑝, 𝑞 > 0 and 𝑥1 > 𝑥0. The beta
function center is defined by 𝑐 = (𝑝𝑥1 + 𝑞𝑥0)∕𝑝 + 𝑞 and its width by
𝜎 = 𝑥1 − 𝑥0. The great significance and worth of the beta function
relies mainly on its ability to approximate several functions such as
triangular and gaussian functions (Alimi, 2003). Fig. 1 illustrates various
beta functions with different parameters setting. In Alimi (2003), Alimi
has demonstrated the ability of the beta function to approximate the
gaussian function, in which he proves that for any given precision
𝜖, and for any given gaussian function 𝐺𝑎𝑢𝑠𝑠(𝑥; 𝑐, 𝜎) it exists a beta
function 𝛽(𝑥; 𝑝, 𝑞, 𝑥0, 𝑥1) that can approximates the gaussian one by an
error of less than 𝜖, and it is worth noting that the reverse is not true.
𝛽(𝑥; 𝑝, 𝑞, 𝑥0, 𝑥1) − 𝐺𝑎𝑢𝑠𝑠(𝑥; 𝑐, 𝜎) < 𝜖 for any 𝑥 ∈ ℜ. Eq. (1) leads to:

𝛽(𝑥; 𝑐, 𝜎, 𝑝, 𝑞)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

1 +
(𝑝 + 𝑞)(𝑥 − 𝑐)

𝜎𝑝

)𝑝

×
(

1 −
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎𝑞

)𝑞
if 𝑥 ∈]𝑐 −

𝜎𝑝
𝑝 + 𝑞

, 𝑐 +
𝜎𝑞

𝑝 + 𝑞
[

0 else.

(2)
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Fig. 1. Examples of type-1 beta membership functions.

2.2. Interval type-2 beta fuzzy set: case of beta primary MF with uncertain
center 𝑐

An Interval beta type-2 (IT2) fuzzy set 𝐵, such defined an interval
type-2 gaussian set, is expressed by following equations (Mendel and
John, 2002):

𝐵 = ∫𝑥∈𝑋 ∫𝑣∈𝐽𝑋
1∕(𝑥, 𝑣) 𝐽𝑥 ⊆ [0, 1],where every 𝜇𝐵(𝑥, 𝑣) = 1.

𝐹𝑂𝑈 (𝐵) =
⋃

𝑥∈𝑋
𝑣 ∈ 𝐽𝑥;

𝐽𝑥 = [𝜇𝐵(𝑥), 𝜇𝐵
(𝑥)],∀𝑥 ∈ 𝑋.

(3)

The delimited region which is called the footprint of uncertainty (FOU),
defines the uncertainty of the primary membership function (MF);
where to each primary membership function exists a secondary 1-
unit membership function. This bounded region is delimited by an
(𝑈𝑀𝐹 ) upper MF and a (𝐿𝑀𝐹 ) lower MF called by 𝜇𝐵(𝑥) and 𝜇

𝐵
(𝑥),

respectively. Fig. 2 illustrated different forms of type-2 beta functions
with different parameter settings.

As the beta function has four parameters, then we can formulate
the Interval type-2 Beta fuzzy set variously according to the parameter
which is uncertain. In the whole paper we are using Beta primary MF
with uncertain center 𝑐 case. Other case studies are defined in the annex
part.

Definition: beta primary MF with uncertain center 𝑐:. A beta primary
membership function with uncertain center 𝑐, 𝑐 ∈ [𝑐1, 𝑐2] is expressed as
follows, whereabouts a different membership function matches to every
𝑐 value.

𝛽(𝑥) =
(

1 +
(𝑝 + 𝑞)(𝑥 − 𝑐)

𝜎𝑝

)𝑝(

1 −
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎𝑞

)𝑞

𝑤𝑖𝑡ℎ 𝑐 ∈ [𝑐1, 𝑐2].
(4)

Fig. 3 shows an instance of this kind of type-2 fuzzy set.
Upper and lower MFs will then be calculated by the following Eqs.

(5) and (6), respectively:

𝜇𝐴(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝛽(𝑥; 𝑐1, 𝜎, 𝑝, 𝑞) 𝑥 < 𝑐1
1 𝑐1 < 𝑥 < 𝑐2
𝛽(𝑥; 𝑐2, 𝜎, 𝑝, 𝑞) 𝑥 > 𝑐2

(5)

𝜇
𝐴
(𝑥) =

{

𝛽(𝑥; 𝑐2, 𝜎, 𝑝, 𝑞) 𝑥 ≤ (𝑐1 + 𝑐2)∕2
𝛽(𝑥; 𝑐1, 𝜎, 𝑝, 𝑞) 𝑥 > (𝑐1 + 𝑐2)∕2.

(6)

3. First order derivatives of type-2 beta functions

Since our research study in this paper is the first which is defining
type-2 fuzzy systems with beta membership functions, and for ensuring
the training of type-1 and type-2 beta neural fuzzy systems using the
back-propagation learning method, first order derivatives of type-1 and
type-2 beta functions need to be elaborated.

3.1. First order derivatives of type-1 beta functions

For tuning the membership functions parameters of the antecedent
and consequent of a type-1 beta FLS, we compute the following deriva-
tives 𝜕𝜇𝛽 (𝑥)

𝜕𝑐 , 𝜕𝜇𝛽 (𝑥)
𝜕𝜎 , 𝜕𝜇𝛽 (𝑥)

𝜕𝑝 and 𝜕𝜇𝛽 (𝑥)
𝜕𝑞 by the subsequent equations:

𝜕𝜇𝛽 (𝑥)
𝜕𝑐

=
𝜕𝛽(𝑥)
𝜕𝑐

=
−(𝑝 + 𝑞)

𝜎
𝛽(𝑥)

⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

(7)

𝜕𝜇𝛽 (𝑥)
𝜕𝜎

=
𝜕𝛽(𝑥)
𝜕𝜎

=
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎2
𝛽(𝑥)

⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

(8)

𝜕𝜇𝛽 (𝑥)
𝜕𝑝

=
𝜕𝛽(𝑥)
𝜕𝑝

=

𝛽(𝑥) ×
(

ln(1 +
(𝑝 + 𝑞)(𝑥 − 𝑐)

𝜎𝑝
)
)

− 𝛽(𝑥)

×
(

𝑞(𝑥 − 𝑐)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐)

−
𝑞(𝑐 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐 − 𝑥)

)

(9)

𝜕𝜇𝛽 (𝑥)
𝜕𝑞

=
𝜕𝛽(𝑥)
𝜕𝑞

=

𝛽(𝑥) ×
(

ln(1 −
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎𝑞
)
)

− 𝛽(𝑥)

×
(

𝑝(𝑐 − 𝑥)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐)

+
𝑝(𝑐 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐 − 𝑥)

)

.

(10)
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Fig. 2. Examples of type-2 beta membership functions.

Fig. 3. Beta primary membership function with uncertain center.

3.2. Derivatives of beta primary MF with uncertain 𝑐

The antecedent and consequent MFs parameters’ of the BIT2FNN
fuzzy neural network are tuned by calculating derivatives of the primary
beta membership functions. In the following, starting from Eqs. (5)–(6),
and (7)–(10), the subsequent upper and lower derivatives,

𝜕𝜇𝛽 (𝑥)

𝜕𝑐1
,
𝜕𝜇𝛽 (𝑥)

𝜕𝑐2
,

𝜕𝜇𝛽 (𝑥)

𝜕𝜎 ,
𝜕𝜇𝛽 (𝑥)

𝜕𝑝 ,
𝜕𝜇𝛽 (𝑥)

𝜕𝑞 ,
𝜕𝜇

𝛽
(𝑥)

𝜕𝑐1
,

𝜕𝜇
𝛽
(𝑥)

𝜕𝑐2
,

𝜕𝜇
𝛽
(𝑥)

𝜕𝜎 ,
𝜕𝜇

𝛽
(𝑥)

𝜕𝑝 and
𝜕𝜇

𝛽
(𝑥)

𝜕𝑞 are defined,
where 𝑥𝐼 = (𝑐1 + 𝑐2)∕2:

𝜕𝜇𝛽 (𝑥)
𝜕𝑐1

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−(𝑝 + 𝑞)
𝜎

𝛽(𝑥)
⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐1)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐1−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

𝑥 < 𝑐1

0 𝑥 ∈ [𝑐1, 𝑐2]
0 𝑐 > 𝑐2

(11)

𝜕𝜇𝛽 (𝑥)
𝜕𝑐2

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 𝑥 < 𝑐1
0 𝑥 ∈ [𝑐1, 𝑐2]

−(𝑝 + 𝑞)
𝜎

𝛽(𝑥)
⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐2)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐2−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

𝑥 > 𝑐2

(12)

𝜕𝜇𝛽 (𝑥)
𝜕𝜎

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑝 + 𝑞)(𝑐1 − 𝑥)
𝜎2

𝛽(𝑥)
⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐1 )

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐1−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

𝑥 < 𝑐1

0 𝑐1 < 𝑥 < 𝑐2
(𝑝 + 𝑞)(𝑐2 − 𝑥)

𝜎2
𝛽(𝑥)

⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐2 )

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐2−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

𝑥 > 𝑐2

(13)

𝜕𝜇𝛽 (𝑥)
𝜕𝑝

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝛽(𝑥) ×
[(

ln(1 +
(𝑝 + 𝑞)(𝑥 − 𝑐1)

𝜎𝑝
)
)

−
(

𝑞(𝑥 − 𝑐1)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐1)

−
𝑞(𝑐1 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐1 − 𝑥)

)]

𝑥 < 𝑐1

0 𝑐1 < 𝑥 < 𝑐2

𝛽(𝑥) ×
[(

ln(1 +
(𝑝 + 𝑞)(𝑥 − 𝑐2)

𝜎𝑝
)
)

−
(

𝑞(𝑥 − 𝑐2)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐2)

−
𝑞(𝑐2 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐2 − 𝑥)

)]

𝑥 > 𝑐2

(14)

𝜕𝜇𝛽 (𝑥)
𝜕𝑞

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝛽(𝑥) ×
[(

ln(1 −
(𝑝 + 𝑞)(𝑐1 − 𝑥)

𝜎𝑞
)
)

−
(

𝑝(𝑐1 − 𝑥)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐1)

+
𝑝(𝑐1 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐1 − 𝑥)

)]

𝑥 < 𝑐1

0 𝑐1 < 𝑥 < 𝑐2

𝛽(𝑥) ×
[(

ln(1 −
(𝑝 + 𝑞)(𝑐2 − 𝑥)

𝜎𝑞
)
)

−
(

𝑝(𝑐2 − 𝑥)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐2)

+
𝑝(𝑐2 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐2 − 𝑥)

)]

𝑥 > 𝑐2

(15)

𝜕𝜇
𝛽
(𝑥)

𝜕𝑐1
=

⎧

⎪

⎨

⎪

⎩

0 𝑥 < 𝑥𝐼
−(𝑝 + 𝑞)

𝜎
𝛽(𝑥)

⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐1)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐1−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

𝑥 > 𝑥𝐼
(16)
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𝜕𝜇
𝛽
(𝑥)

𝜕𝑐2
=

⎧

⎪

⎨

⎪

⎩

−(𝑝 + 𝑞)
𝜎

𝛽(𝑥)
⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐2)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐2−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

𝑥 > 𝑥𝐼

0 𝑥 < 𝑥𝐼

(17)

𝜕𝜇
𝛽
(𝑥)

𝜕𝜎
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑝 + 𝑞)(𝑐2 − 𝑥)
𝜎2

𝛽(𝑥)
⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐2)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐2−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

(𝑝 + 𝑞)(𝑐1 − 𝑥)
𝜎2

𝛽(𝑥)
⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐1)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐1−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

(18)

𝜕𝜇
𝛽
(𝑥)

𝜕𝑝
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝛽(𝑥) ×
[(

ln(1 +
(𝑝 + 𝑞)(𝑥 − 𝑐2)

𝜎𝑝
)
)

−
(

𝑞(𝑥 − 𝑐2)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐2)

−
𝑞(𝑐2 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐2 − 𝑥)

)]

𝑥 < 𝑥𝐼

𝛽(𝑥) ×
[(

ln(1 +
(𝑝 + 𝑞)(𝑥 − 𝑐1)

𝜎𝑝
)
)

−
(

𝑞(𝑥 − 𝑐1)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐1)

−
𝑞(𝑐1 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐1 − 𝑥)

)]

𝑥 > 𝑥𝐼

(19)

𝜕𝜇
𝛽
(𝑥)

𝜕𝑞
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝛽(𝑥) ×
[(

ln(1 −
(𝑝 + 𝑞)(𝑐2 − 𝑥)

𝜎𝑞
)
)

−
(

𝑝(𝑐2 − 𝑥)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐2)

+
𝑝(𝑐2 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐2 − 𝑥)

)]

𝑥 < 𝑥𝐼

𝛽(𝑥) ×
[(

ln(1 −
(𝑝 + 𝑞)(𝑐1 − 𝑥)

𝜎𝑞
)
)

−
(

𝑝(𝑐1 − 𝑥)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐1)

+
𝑝(𝑐1 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐1 − 𝑥)

)]

𝑥 > 𝑥𝐼 .

(20)

4. Beta basis function Interval Type-2 Fuzzy Neural Network
(BIT2FNN)

The proposed architecture in our paper consists on the design of a
MISO (multi-inputs/single-output) TSK (Takagi–Sugeno–Kang) (Takagi
and Sugeno, 1985) Beta Basis Function Interval Type-2 Fuzzy Neural
Network, which we note BIT2FNN. This model, point of view fuzzy
system relies on an antecedent part based on beta type-2 membership
functions. While consequent part is type-1 fuzzy sets based outputs.

A beta-TSK fuzzy basis system is defined by the up next relation (21):

𝑓 ∶ 𝐼 ⊂ ℜ𝑛 → 𝑂 ⊂ ℜ𝑛′

𝑦 = 𝑓𝑗 (𝑥) =

∑𝑀
𝑗=1 𝑓 (𝑥)

∏𝑝
𝑖=1 𝜇

𝑗
𝛽𝑖
(𝑥𝑖)

∑𝑀
𝑘=1

∏𝑝
𝑙=1 𝜇

𝑘
𝛽𝑙
(𝑥𝑙)

.
(21)

In which: {𝐼, 𝑂} represents the {𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡} space. 𝑥 = (𝑥1, 𝑥2,… ,
𝑥𝑝)𝑇 ∈ 𝐼 where 𝑥𝑖 ∈ [𝑥𝑖,𝑚𝑖𝑛, 𝑥𝑖,𝑚𝑎𝑥]. And 𝑦 ∈ 𝑂. 𝑀 represents the rule
number. A rule is represented as follows: 𝑅𝑗 :IF (𝑥 is 𝛽𝑗) Then (𝑦 = 𝑓𝑗 (𝑥));
𝛽𝑗 = (𝛽𝑗1 , 𝛽

𝑗
2 ,… , 𝛽𝑗𝑝)𝑇 specifies the linguistic fuzzy annotations assigned

to beta membership functions 𝜇𝑗
𝛽𝑖(𝑥𝑖). 𝑓𝑗 are the output polynomial

functions with 𝐼 ⊂ ℜ𝑛 → 𝑂 ⊂ ℜ. 𝑓𝑗 relies on input–output variables
accordingly to the TSK model zero, first or second order. In this paper
we are dealing with TSK type-2 fuzzy logic systems A2-C1 model.
As reported in literature (Mendel, 2001b), this model is considering
interval type-2 fuzzy sets and type-1 fuzzy sets in the antecedent and
consequent parts, respectively. An A2-C1 TSK rule is represented by the
following form:

𝐼𝐹 𝑥1 is 𝐹 𝓁
1 𝑎𝑛𝑑… 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐹 𝓁

𝑝 𝑇𝐻𝐸𝑁
𝑌 𝓁 = 𝐶𝓁

0 + 𝐶𝓁
1 𝑥1 +⋯ + 𝐶𝓁

𝑝 𝑥𝑝
𝐶𝓁
𝑗 = [𝑐𝓁𝑗 − 𝑠𝓁𝑗 , 𝑐

𝓁
𝑗 − 𝑠𝓁𝑗 ]

(22)

where 𝑐𝓁𝑗 and 𝑠𝓁𝑗 with 𝓁 = 1,… ,𝑀 and 𝑗 = 0,… , 𝑝, specified the center
and spread of the interval type-1 consequent elements 𝐶𝓁

𝑗 , respectively.

The proposed BIT2FNN is a six layered-type neural network. The
whole architecture is depicted in Fig. 4. The process elaboration of those
layers are given by the following.

4.0.1. Layer 1: input layer

That incorporates the vector input layer.

4.0.2. Layer 2: hidden beta basis function layer

This layer contains 𝑀 nodes, each 𝑀th one carries out the fuzzifica-
tion process under the T2 beta MFs of the vector input data and yields
to the upper and lower membership grades 𝜇𝑘𝓁

𝛽
= [𝜇𝑘𝓁

𝛽
, 𝜇𝑘𝓁

𝛽
] of the 𝑘th

feature of the 𝓁th rule, respectively. As described earlier in previous
section, we used Beta primary MF with uncertain center:

𝛽(𝑥) =
(

1 +
(𝑝 + 𝑞)(𝑥 − 𝑐)

𝜎𝑝

)𝑝(

1 −
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎𝑞

)𝑞

𝑤𝑖𝑡ℎ 𝑐 ∈ [𝑐1, 𝑐2].
(23)

And the upper and the lower grades of the 𝑘th feature of the 𝓁th
rule, are expressed by:

𝜇𝑘𝓁
𝛽
(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝛽𝑘𝓁(𝑥; 𝑐1, 𝜎, 𝑝, 𝑞) 𝑥 < 𝑐1
1 𝑐1 < 𝑥 < 𝑐2
𝛽𝑘𝓁(𝑥; 𝑐2, 𝜎, 𝑝, 𝑞) 𝑥 > 𝑐2

(24)

𝜇𝑘𝓁
𝛽
(𝑥) =

{

𝛽𝑘𝓁(𝑥; 𝑐2, 𝜎, 𝑝, 𝑞) 𝑥 ≤ (𝑐1 + 𝑐2)∕2
𝛽𝑘𝓁(𝑥; 𝑐1, 𝜎, 𝑝, 𝑞) 𝑥 > (𝑐1 + 𝑐2)∕2.

(25)

4.0.3. Layer 3 (firing layer)

This layer is represented with 𝑀 nodes. Each node defines the firing
strength result of each of the 𝑀 rules with meet operation under product
t-norm, noted [𝑓

𝓁
, 𝑓𝓁]. Then the output of a node is an interval type-1

set expressed as follows:

𝐹 𝓁(𝑥′) = [𝑓𝓁(𝑥′), 𝑓
𝓁
(𝑥′)] ≡ [𝑓𝓁 , 𝑓

𝓁
]

= [𝜇
𝐹 𝓁
𝓁

(𝑥′1) ∗ ⋯ ∗ 𝜇
𝐹 𝓁
𝑝
(𝑥′𝑝), 𝜇𝐹 𝓁

𝓁
(𝑥′1) ∗ ⋯ ∗ 𝜇𝐹 𝓁

𝑝
(𝑥′𝑝)].

(26)

4.0.4. Layer 4

This layer is represented with 𝑀 nodes which define the consequent
nodes. Each node outcome from previous layer joined its associated
consequent node in layer 4. This layer yields to the following interval
type-1 fuzzy set:

𝜔𝓁 = [𝜔𝓁
𝑙 , 𝜔

𝓁
𝑟 ] = [𝑐𝓁0 − 𝑠𝓁0 , 𝑐

𝓁
0 + 𝑠𝓁0 ] +

𝑝
∑

𝑗=1
[𝑐𝓁𝑗 − 𝑠𝓁𝑗 , 𝑐

𝓁
𝑗 + 𝑠𝓁𝑗 ]𝑥𝑗 . (27)

Then,

𝜔𝑖
𝑙 =

𝑝
∑

𝑗=0
𝑐𝓁𝑗 𝑥𝑗 −

𝑝
∑

𝑗=0
𝑥𝑗𝑠

𝓁
𝑗 𝑤ℎ𝑒𝑟𝑒 𝑥0 ≜ 1. (28)

And,

𝜔𝑖
𝑟 =

𝑝
∑

𝑗=0
𝑐𝓁𝑗 𝑥𝑗 +

𝑝
∑

𝑗=0
𝑥𝑗𝑠

𝓁
𝑗 𝑤ℎ𝑒𝑟𝑒 𝑥0 ≜ 1. (29)
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Fig. 4. BIT2FNN: A2-C1 TSK-type six layered neural network.

4.0.5. Layer 5

The output of this layer is an IT1 fuzzy set [𝑦𝑙 , 𝑦𝑟] which indices
𝑗 and 𝑟 signify respectively the left and right limits. The calculation
steps of this output can be based upon the Karnik and Mendel iterative
procedure method (Mendel, 2001b). Explicitly in this technique, and
based on [] the consequent values are in an ascending way reordered.
Let we have the consequent value by the initial rule order 𝜔𝑙 and 𝜔𝑟 and
the reordered sequence 𝑦𝑙 and 𝑦𝑟 expressed respectively by:

𝜔𝑙 = (𝜔1
𝑙 ,… , 𝜔𝑀

𝑙 ) and 𝜔𝑟 = (𝜔1
𝑟 ,… , 𝜔𝑀

𝑟 ).

And
𝑦𝑙 = (𝑦1𝑙 ,… , 𝑦𝑀𝑙 ) and 𝑦𝑟 = (𝑦1𝑟 ,… , 𝑦𝑀𝑟 ), in which 𝑦1𝑙 ≤ 𝑦2𝑙 ≤ ⋯ ≤ 𝑦𝑀𝑙 and
𝑦1𝑟 ≤ 𝑦2𝑟 ≤ ⋯ ≤ 𝑦𝑀𝑟 .

According to Mendel the relation between the two vectors is pre-
sented by: [𝑦𝑙 , 𝑦𝑟] = [𝑄𝑙𝜔𝑙 , 𝑄𝑟𝜔𝑟] where 𝑄𝑙 and 𝑄𝑟 are both elementary
interchange matrices. Those matrices are used to reorder elements of the
vectors 𝜔𝑙 and 𝜔𝑟 in an ascending order in respectively, the transformed
vectors 𝑦𝑙 and 𝑦𝑟. By reordering the 𝑓

𝓁
and 𝑓𝓁 accordingly, we noted

them ℎ
𝓁

and ℎ𝓁 , respectively. Then the outputs 𝑦𝑙 and 𝑦𝑟 can be
calculated by the following equation:

𝑦𝑙 =
∑𝐿

𝓁=1 ℎ
𝓁
𝑦𝓁𝑙 +

∑𝑀
𝓁=𝐿+1 ℎ

𝓁𝑦𝓁𝑙
∑𝐿

𝓁=1 ℎ
𝓁
+
∑𝑀

𝓁=𝐿+1 ℎ
𝓁

. (30)

And

𝑦𝑟 =
∑𝐿

𝓁=1 ℎ
𝓁𝑦𝓁𝑟 +

∑𝑀
𝓁=𝐿+1 ℎ

𝓁
𝑦𝓁𝑟

∑𝐿
𝓁=1 ℎ

𝓁 +
∑𝑀

𝓁=𝐿+1 ℎ
𝓁

. (31)

4.0.6. Layer 6 (output layer)

Throughout this layer the output is computed by calculating the
average of incoming data from the previous nodes. Then the final output
𝑦 will be equal to:

𝑦 = (𝑦𝑙 + 𝑦𝑟)∕2. (32)

Then, according to the presented equations and anatomy, the final
output is calculated depending on the weighting interval sets and the
upper and lower antecedent membership functions. In next section, we
depict the backpropagation learning algorithm applied throughout the

BIT2FNN. The vital role of the algorithm is to reduce errors between the
neural fuzzy system output and the desired output to find out the best
relationship between data.

5. Backpropagation learning methodology

The beta fuzzy membership functions parameters are adjusted using
backpropagation leaning algorithm. The error will be by then back
propagated from the last layer until arriving to the first. And the
antecedent and consequent parameters will be altered by the gradient
descent method in accordance with the error between actual system
output and the desired output. For a given input–output pairs (𝑥𝑖 ∶
𝑦𝑖𝑑 ), the main idea is to find a FLS such that the error function given
in Eq. (33) is minimized:

𝑒𝑖 = 1
2
[𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ]

2 𝑖 = 1,… , 𝑁. (33)

Using (21) which depends on 𝑦𝑙 and the beta parameters 𝑝𝛽𝑙𝑘
, 𝑞𝛽𝑙𝑘 , 𝑥0𝛽𝑙𝑘

and 𝑥1𝛽𝑙𝑘
, where 𝑙 = 1,… ,𝑀 represents the rule number and 𝑘 = 1,… , 𝑝

the input index, we apply the steepest descent algorithm. This algorithm
consists essentially in minimizing 𝐽 (𝜃) in the following equation: 𝜃(𝑖 +
1) = 𝜃(𝑖) − 𝛼𝑔𝑟𝑎𝑑𝜃[𝐽 (𝜃)]𝑖 with 𝛼 is the step size that belongs to [0, 1].
Based on this relation and since 𝐽 (𝜃) = 𝑒𝑖 in (33), we need to derive
the parameters of both T1 and T2 beta fuzzy systems. For the update
of type-1 beta parameters, the update equations of the antecedent and
consequent parameters are calculated by next equations:

𝑐𝛽𝑙𝑘
(𝑖 + 1) = 𝑐𝛽𝑙𝑘

(𝑖) − 𝛼(𝑓𝑠(𝑥(𝑖)) − 𝑦(𝑖)𝑑 )(𝑦𝑙(𝑖) − 𝑓𝑠(𝑥(𝑖)))

×
−(𝑝 + 𝑞)

𝜎

⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐1)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐1−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

𝜙𝑙(𝑥(𝑖))
(34)

𝜎𝛽𝑙𝑘
(𝑖 + 1) = 𝜎𝛽𝑙𝑘

(𝑖) − 𝛼(𝑓𝑠(𝑥(𝑖)) − 𝑦(𝑖)𝑑 )(𝑦𝑙(𝑖) − 𝑓𝑠(𝑥(𝑖)))

×
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎2

⎛

⎜

⎜

⎝

1
1 + (𝑝+𝑞)(𝑥−𝑐)

𝜎𝑝

+ 1
1 − (𝑝+𝑞)(𝑐−𝑥)

𝜎𝑞

⎞

⎟

⎟

⎠

𝜙𝑙(𝑥(𝑖))
(35)

𝑝𝛽𝑙𝑘
(𝑖 + 1) = 𝑝𝛽𝑙𝑘

(𝑖) − 𝛼(𝑓𝑠(𝑥(𝑖)) − 𝑦(𝑖)𝑑 )(𝑦𝑙(𝑖) − 𝑓𝑠(𝑥(𝑖)))

×
[(

ln(1 +
(𝑝 + 𝑞)(𝑥 − 𝑐)

𝜎𝑝
)
)

−
(

𝑞(𝑥 − 𝑐)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐)

−
𝑞(𝑐 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐 − 𝑥)

)]

𝜙𝑙(𝑥(𝑖))

(36)
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Fig. 5. Output and desired output for: (a) GIT2FNN, (b) BIT2FNN.

𝑞𝛽𝑙𝑘
(𝑖 + 1) = 𝑞1𝛽𝑙𝑘

(𝑖) − 𝛼(𝑓𝑠(𝑥(𝑖)) − 𝑦(𝑖)𝑑 )(𝑦𝑙(𝑖) − 𝑓𝑠(𝑥(𝑖)))

×
[(

ln(1 −
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎𝑞
)
)

−
(

𝑝(𝑐 − 𝑥)
𝜎𝑝 + (𝑝 + 𝑞)(𝑥 − 𝑐)

+
𝑝(𝑐 − 𝑥)

𝜎𝑞 − (𝑝 + 𝑞)(𝑐 − 𝑥)

)]

𝜙𝑙(𝑥(𝑖)).

(37)

Regarding the type-2 beta neuro-fuzzy system, BIT2FNN, which is
characterized by an uncertain center, the goal of the backpropagation
algorithm is to estimate the antecedent and the consequent parameters
giving the lowest error, to listing 𝑐𝓁𝑘1, 𝑐𝓁𝑘2, 𝜎𝓁𝑘 , 𝑝𝓁𝑘 , 𝑞𝓁𝑘 and [𝑤𝓁

𝑙 , 𝑤
𝓁
𝑟 ].

Thereby we derive the subsequent equations:

𝑐𝓁𝑘 (𝑖 + 1) = 𝑐𝓁𝑘 (𝑖) − 𝛼
𝜕(𝑒𝑖)
𝜕(𝑐𝓁𝑘 )

|𝑖

𝑐𝓁𝑘 (𝑖 + 1) = 𝑐𝓁𝑘 (𝑖) −
1
2
𝛼(𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ) × [

𝑤𝓁
𝑙𝑟 − 𝑦𝑙𝑟

∏𝑁
𝑘=1 𝜇𝐹 𝓁

𝑘

]
𝜕𝜇𝛽 (𝑥)

𝜕𝑐𝓁𝑘 (𝑖)

𝑐𝓁𝑘 (𝑖 + 1) = 𝑐𝓁𝑘 (𝑖) −
1
2
𝛼(𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ) × [

𝑤𝓁
𝑙𝑟 − 𝑦𝑙𝑟

∏𝑁
𝑘=1 𝜇𝐹 𝓁

𝑘

] × 𝛽(𝑥𝑘) ×

−(𝑝𝓁𝑘 + 𝑞𝓁𝑘 )

𝜎𝓁𝑘

⎛

⎜

⎜

⎜

⎝

1

1 +
(𝑝𝓁𝑘+𝑞

𝓁
𝑘 )(𝑥𝑘−𝑐

𝓁
𝑘 )

𝜎𝓁𝑘 𝑝
𝓁
𝑘

+ 1

1 −
(𝑝𝓁𝑘+𝑞

𝓁
𝑘 )(𝑐

𝓁
𝑘−𝑥𝑘)

𝜎𝓁𝑘 𝑞
𝓁
𝑘

⎞

⎟

⎟

⎟

⎠

(38)

where 𝑐𝓁𝑘 ∈ [𝑐𝓁𝑘1, 𝑐
𝓁
𝑘2].

Likewise, for tuning 𝜎, 𝑝, 𝑞 and the weighting parameters, we derive
the following equations:

𝜎𝓁𝑘 (𝑖 + 1) = 𝜎𝓁𝑘 (𝑖) − 𝛼
𝜕(𝑒𝑖)
𝜕(𝜎𝓁𝑘 )

|𝑖

𝜎𝓁𝑘 (𝑖 + 1) = 𝜎𝓁𝑘 (𝑖) −
1
2
𝛼(𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ) × [

𝑤𝓁
𝑙𝑟 − 𝑦𝑙𝑟

∏𝑁
𝑘=1 𝜇𝐹 𝓁

𝑘

]
𝜕𝜇𝛽 (𝑥)

𝜕𝜎𝓁𝑘 (𝑖)

𝜎𝓁𝑘 (𝑖 + 1) = 𝜎𝓁𝑘 (𝑖) −
1
2
𝛼(𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ) × [

𝑤𝓁
𝑙𝑟 − 𝑦𝑙𝑟

∏𝑁
𝑘=1 𝜇𝐹 𝓁

𝑘

] × 𝛽(𝑥𝑘) ×

(𝑝𝓁𝑘 + 𝑞𝓁𝑘 )(𝑐
𝓁
𝑘 − 𝑥𝑘)

𝜎𝓁2𝑘

⎛

⎜

⎜

⎜

⎝

1

1 +
(𝑝𝓁𝑘+𝑞

𝓁
𝑘 )(𝑥𝑘−𝑐

𝓁
𝑘 )

𝜎𝓁𝑘 𝑝
𝓁
𝑘

+ 1

1 −
(𝑝𝓁𝑘+𝑞

𝓁
𝑘 )(𝑐

𝓁
𝑘−𝑥𝑘)

𝜎𝓁𝑘 𝑞
𝓁
𝑘

⎞

⎟

⎟

⎟

⎠

(39)

𝑝𝓁𝑘 (𝑖 + 1) = 𝑝𝓁𝑘 (𝑖) − 𝛼
𝜕(𝑒𝑖)
𝜕(𝑝𝓁𝑘 )

|𝑖

𝑝𝓁𝑘 (𝑖 + 1) = 𝑝𝓁𝑘 (𝑖) −
1
2
𝛼(𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ) × [

𝑤𝓁
𝑙𝑟 − 𝑦𝑙𝑟

∏𝑁
𝑘=1 𝜇𝐹 𝓁

𝑘

]
𝜕𝜇𝛽 (𝑥)

𝜕𝑝𝓁𝑘 (𝑖)

𝑝𝓁𝑘 (𝑖 + 1) = 𝑝𝓁𝑘 (𝑖) −
1
2
𝛼(𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ) × [

𝑤𝓁
𝑙𝑟 − 𝑦𝑙𝑟

∏𝑁
𝑘=1 𝜇𝐹 𝓁

𝑘

] × 𝛽(𝑥𝑘) ×

[(

ln(1 +
(𝑝𝓁𝑘 + 𝑞𝓁𝑘 )(𝑥𝑘 − 𝑐𝓁𝑘 )

𝜎𝓁𝑘 𝑝
𝓁
𝑘

)

)

−

(

𝑞𝓁𝑘 (𝑥𝑘 − 𝑐𝓁𝑘 )

𝜎𝓁𝑘 𝑝
𝓁
𝑘 + (𝑝𝓁𝑘 + 𝑞𝓁𝑘 )(𝑥𝑘 − 𝑐𝓁𝑘 )

−
𝑞𝓁𝑘 (𝑐

𝓁
𝑘 − 𝑥𝑘)

𝜎𝓁𝑘 𝑞
𝓁
𝑘 − (𝑝𝓁𝑘 + 𝑞𝓁𝑘 )(𝑐

𝓁
𝑘 − 𝑥𝑘)

)]

(40)

𝑞𝓁𝑘 (𝑖 + 1) = 𝑞𝓁𝑘 (𝑖) − 𝛼
𝜕(𝑒𝑖)
𝜕(𝑞𝓁𝑘 )

|𝑖

𝑞𝓁𝑘 (𝑖 + 1) = 𝑞𝓁𝑘 (𝑖) −
1
2
𝛼(𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ) × [

𝑤𝓁
𝑙𝑟 − 𝑦𝑙𝑟

∏𝑁
𝑘=1 𝜇𝐹 𝓁

𝑘

]
𝜕𝜇𝛽 (𝑥)

𝜕𝑞𝓁𝑘 (𝑖)

𝑞𝓁𝑘 (𝑖 + 1) = 𝑞𝓁𝑘 (𝑖) −
1
2
𝛼(𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ) × [

𝑤𝓁
𝑙𝑟 − 𝑦𝑙𝑟

∏𝑁
𝑘=1 𝜇𝐹 𝓁

𝑘

] × 𝛽(𝑥𝑘) ×

[(

ln(1 −
(𝑝𝓁𝑘 + 𝑞𝓁𝑘 )(𝑐

𝓁
𝑘 − 𝑥𝑘)

𝜎𝓁𝑘 𝑞
𝓁
𝑘

)

)

−

(

𝑝𝓁𝑘 (𝑐
𝓁
𝑘 − 𝑥𝑘)

𝜎𝓁𝑘 𝑝
𝓁
𝑘 + (𝑝𝓁𝑘 + 𝑞𝓁𝑘 )(𝑥𝑘 − 𝑐𝓁𝑘 )

+
𝑝𝓁𝑘 (𝑐

𝓁
𝑘 − 𝑥𝑘)

𝜎𝓁𝑘 𝑞
𝓁
𝑘 − (𝑝𝓁𝑘 + 𝑞𝓁𝑘 )(𝑐

𝓁
𝑘 − 𝑥𝑘)

)]

(41)

𝑤𝓁
𝑙𝑟(𝑖 + 1) = 𝑤𝓁

𝑙𝑟(𝑖) −
1
2
𝛼(𝑓𝑗 (𝑥)𝑖 − 𝑦𝑖𝑑 ) ×

𝛽(𝑥)
∏𝑁

𝑘=1 𝜇𝐹 𝓁
𝑘

. (42)

In next section, we carried out simulation analysis with mainly two
examples of time series applications: the Mackey Glass Chaotic Time-
Series prediction problem with different setting of parameters and levels
of noise and the ECG heart-rate Time Series monitoring problem.

6. Simulation studies

6.1. Example 1 (a): free noise Mackey Glass Chaotic Time-Series prediction

To evaluate the performance of Beta fuzzy sets we test the well
known benchmark of Forecasting of Time-Series. The considered prob-
lem is an important case study that appears in many analysis, where
the main idea is better weather forecasts can, better the return on an
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Fig. 6. RMSE of different FLS with beta or gaussian MF for 500 iterations.

investment can occurs. In this part we are considering a free noise data.
The Mackey Glass Chaotic Time-Series data can be generated using the
delay differential equation:

𝑑𝑥(𝑡)
𝑑𝑡

=
𝑎𝑥(𝑡 − 𝜏)

1 + 𝑥𝑐 (𝑡 − 𝜏)
− 𝑏𝑥(𝑡). (43)

The setting of parameters of the data changes from one work to
another. In this part, we adopted the most used settings parameters, as
in Gaxiola et al. (2015), Gaxiola et al. (2014b) and Zarandi et al. (2013),
we take 𝑎 = 0.2, 𝑏 = 0.1, 𝑐 = 10 and 𝜏 = 17. In this forecasting problem,
four past values are used to predict a current value 𝑥(𝑡). The data pairs
are defined by: [𝑖𝑛𝑝𝑢𝑡𝑠; 𝑜𝑢𝑡𝑝𝑢𝑡𝑠] = [𝑥(𝑡−24), 𝑥(𝑡−18), 𝑥(𝑡−12), 𝑥(𝑡−6); 𝑥(𝑡)].

We firstly design and fix the architecture of the FLS ahead the time,
then we use the data training pairs for optimizing the membership
function parameters. At first, we choose to make a comparative analysis
using both, the gaussian and the beta, shapes of membership functions.
We considered essentially four fuzzy neural networks using the same
backpropagation learning algorithm with type-1 and type-2 fuzzy sets
and using the both forms of membership functions. We will adopt
abbreviated names to design the four systems which are depending on
the nature of FLS itself and used MF within, i.e type-1 or type-2 and
the used membership functions gaussian functions or beta functions.
The name BIT2FNN designs our proposed system, Beta Basis Function
Interval Type-2 Fuzzy Neural Network, while GIT2FNN designs a type-2
FNN using gaussian membership functions. And we define by BT1FNN
(Beta Type-1 Fuzzy Neural Network) and GT1FNN (Gaussian Type-
1 Fuzzy Neural Network) the same considered systems, respectively,
except that they are using type-1 membership functions instead type-2.

Regarding type-2 fuzzy systems, BIT2FNN and GIT2FNN are sin-
gleton TSK FLS zero order (A2-C1), where membership functions in
the antecedent part are type-2 fuzzy sets and in the consequent part
are interval type-1 fuzzy sets. All considered systems have four inputs,
each one with two membership functions, and one output (the MISO
case: Multi Inputs Single Output). Reduction of number of rules is not
considered in this work. We envisage using the same maximum number
of rules for the four considered models, which is equal to 16 rules to
fairly compare the performances design under same conditions. In this
section, we used data noise free, which are denoted 𝑠(𝑘). We designed
the first 500 patterns 𝑠(1001),… 𝑠(1500) for the training phase and the
remaining 500 patterns for testing the output design. Number of epoch
for the convergence of the system was chosen equal to 1000. This value
was essentially chosen a little big to guarantee the convergence of the
FNN and to have a better comparison. Since the considered learning
process is offline, optimization of number of rules or time convergence

(a) 100 ECG original signal.

(b) Baseline removed drift signal.

(c) The denoised signal.

Fig. 7. 100 ECG original, baseline removed drift and de-noised signals.

do not matter a lot regarding the error system output. Performance

is evaluated using the root mean square error (RMSE) expressed as
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Table 1
Comparison for 1000 iterations in Example 1.

Model RMSE training RMSE testing Spread for T2 FLS

GT1FNN 0.0064 0.0062 –
GIT2FNN 0.0054 0.0055 Spread for antecedent = 0.1;

BT1FNN 0.0041 0.0042 –
BIT2FNN 0.0032 0.0034 Spread for consequent = 0.1

follows:

𝑅𝑀𝑆𝐸 = 1
500

500
∑

𝑘=1
[𝑦(𝑡 + 1) − 𝑦𝑑 (𝑡 + 1)]2. (44)

The 𝛼 parameter was taken equal to 0.2. Considering the parameter
initialization of the BT1FNN, initial values of standard deviation 𝜎,
𝑝, 𝑞 and center 𝑐 were fixed to respectively 1.5086, 2, 2 and 0.4256.
Regarding the BIT2FNN, where we are using beta primary membership
functions with uncertain center, we initialized 𝑐1 and 𝑐2 values to
respectively 𝑐 − 0.2 and 𝑐 + 0.2, in which 𝑐 is randomly initialized.

In Fig. 6, the obtained root mean square error from the different
systems are printed out. Those results are expressed in Table 1, where
the RMSE values for each of the four systems are given. We can observe
that fuzzy logic systems with either type-1 or type-2 beta membership
functions gave better results with the lowest errors with regard to
their gaussian membership functions systems. Final obtained forecasters
for systems GIT2FNN and BIT2FNN are presented in Fig. 5(a) and
(b), respectively, where both system outputs and the desired output
are illustrated. Final values of the best obtained fuzzy neural network
forecaster are presented in Tables 2–5.

In Table 6, we presented a comparison across our proposed beta
fuzzy neural networks BIT2FNN and the BIT1FNN, and some other fuzzy
neural networks known in literature. Those works are including the
NN with generalized type-2 fuzzy weights (NNGT2FW) (Gaxiola et al.,
2015), the NN with interval type-2 fuzzy weights (NNIT2FW) (Gaxiola
et al., 2015) and the monolithic neural network (NN) (Zarandi et al.,
2013). The associated simulation results were obtained from Gaxiola et
al. (2014b).

As can be seen from the presented results, fuzzy neural networks
using beta membership functions showed good performances. It can
be concluded that beta type-2 neuro-fuzzy systems provide excellent
forecasters and good relationship between input and output data for
Mackey Glass Chaotic Time-Series problems.

6.2. Example 1 (b): noisy Chaotic Time-Series prediction

Since operating in a noise free environment does not represent
the reality of things in real world, in this part we are considering a
noisy environment to see how robust are the beta type-1 and type-2
forecasters. The noise ability of the proposed beta system is analyzed
using different levels of noisy training and testing data. At first, We
take original training data 𝑥(𝑡) while for testing data, we add a gaussian
noise with a zero mean and standard deviations (SD) of 0.1 and 0.3,
respectively. Results are summarized in Table 7. Then, we take training
noisy data by adding to original data 𝑥(𝑡) a gaussian noise with a zero
mean and standard deviations (SD) of 0.1, 0.2 and 0.3, respectively.
Each of them was tested on three other datasets which are clean of
noise, and with SD noise of 0.1 and 0.3, respectively. Results are
showed in Table 8. The considered tables presented the training and

Table 2
Final values of 𝑝 and 𝑞 antecedent parameters for BIT2FNN in Example 1.

Rule N. Final 𝑝 values in antecedents Final 𝑞 values in antecedents

1 2.0231 2.0049 1.9853 2.0143 1.9336 1.9813 1.9910 1.9617
2 1.9631 1.9828 1.9878 2.0154 2.1338 2.0590 2.0435 2.0890
3 1.9855 2.0177 2.0359 2.0184 2.0238 1.9850 1.8801 1.9420
4 2.0152 2.0107 1.9828 1.9838 1.9455 1.9120 1.8808 1.9224
5 1.9947 2.0125 1.9969 1.9958 2.0232 2.0067 2.0113 2.0120
6 2.0019 1.9981 2.0022 1.9917 1.9760 1.9523 1.9931 1.9986
7 1.9979 1.9964 1.9976 1.9863 2.0211 2.0313 2.0521 2.0433
8 2.0619 2.0368 1.9901 1.9412 1.9321 2.1824 1.9405 1.9616
9 1.9527 2.0417 2.0814 2.0396 1.8759 1.8739 1.8253 1.8778

10 1.9892 1.9949 1.9999 1.9998 2.0143 2.0165 2.0048 2.0046
11 1.9755 2.0053 2.0005 2.0114 2.0133 1.9857 1.9812 1.9552
12 2.0262 2.0050 2.0118 1.9793 1.9518 1.9722 1.9746 2.0100
13 2.0284 1.9896 1.9981 1.9926 1.9996 2.0355 2.0136 2.0204
14 2.0203 2.0039 1.9996 1.9840 1.9735 2.0037 2.0108 2.0332
15 2.0554 2.0780 1.9165 2.1136 1.8920 1.7919 2.0978 1.7966
16 1.9876 2.0866 2.0278 1.8693 2.2511 2.3811 2.2484 2.3053

Table 3
Final center 𝑐, antecedent parameters values, for BIT2FNN in Example 1.

Rule N. Final 𝑐 values in antecedents

𝑐1 𝑐2 𝑐1 𝑐2 𝑐1 𝑐2 𝑐1 𝑐2
1 0.3982 0.5210 0.4143 0.4852 0.4143 0.4852 0.4582 0.4428
2 0.2260 0.3451 0.3583 0.38971 0.4016 0.5412 1.0853 1.1574
3 0.3145 0.4523 0.4083 0.5649 1.1034 1.4423 0.4919 0.8119
4 0.4355 0.5840 0.5638 0.6791 0.9820 1.127 0.9524 1.1890
5 0.3814 0.4527 1.0833 1.2843 0.4087 0.6472 0.4164 0.8576
6 0.5260 0.8691 1.1666 0.2891 0.4624 0.9531 0.9940 1.1120
7 0.3972 0.8614 0.9861 1.2161 1.0263 1.2237 0.4045 0.6241
8 0.6521 0.8542 0.8389 0.9215 0.9087 1.1201 0.8084 1.1871
9 0.8724 0.9543 0.5449 0.6517 0.6916 0.7465 0.5827 0.6742

10 0.9794 1.2451 0.3796 0.5278 0.3968 0.5345 0.9960 1.1042
11 0.9337 1.2103 0.3874 0.4256 0.9917 1.1420 0.4688 0.5214
12 1.1835 1.3591 0.5022 0.7153 1.1036 1.2459 0.9488 1.3245
13 1.1018 1.3210 0.9076 1.1389 0.4030 0.6214 0.3953 0.5234
14 1.1034 1.2358 1.0679 1.2410 0.3958 0.5219 0.9724 1.2140
15 1.0344 1.8941 1.1637 1.9125 0.8167 0.9872 0.6375 0.8654
16 0.8357 0.9823 1.2657 1.5634 1.0512 1.6534 0.7907 0.9853
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Table 4
Final sigma 𝜎, antecedent parameters values, for BIT2FNN in Example 1.

Rule N. Final sigma values in antecedents

1 1.5554 1.4506 1.5622 1.4975
2 1.2754 1.4558 1.5223 0.8964
3 1.3494 1.3687 0.7921 1.5651
4 1.4593 1.7576 1.2739 0.9303
5 1.4417 0.8772 1.4889 1.5091
6 1.7060 0.7098 1.5703 0.9726
7 1.4604 1.0628 0.9113 1.5239
8 1.6136 0.9138 1.1396 1.3515
9 1.1656 1.5712 1.6131 1.6424

10 1.0142 1.4383 1.4518 0.9936
11 0.9898 1.4042 1.0087 1.5499
12 0.7632 1.6440 0.8822 1.1339
13 0.8611 1.0686 1.4768 1.4851
14 0.9301 0.8880 1.4496 0.9806
15 0.6340 1.0456 1.2718 1.4631
16 1.1314 0.7132 0.8688 1.4844

Table 5
Final consequent parameters for the BIT2FNN in Example 1.

Rule N. Consequent final values

1 0.4170 0.5096
2 0.5458 0.6672
3 0.0119 0.0145
4 0.9578 1.1706
5 0.6841 0.8361
6 0.0867 0.1059
7 0.4648 0.5680
8 1.3863 1.6943
9 1.2032 1.4706

10 0.8699 1.0633
11 0.2453 0.2999
12 0.7393 0.9035
13 0.5036 0.6156
14 0.4930 0.6026
15 0.2155 0.2635
16 0.7881 0.9633

Table 6
Comparison for 100 iterations in Example 1.

Model RMSE testing

NN (Zarandi et al., 2013) 0.0530
NNGT2FW (Gaxiola et al., 2015) 0.0548
NNIT2FW (Gaxiola et al., 2015) 0.0355
BT1FNN 0.0110
BIT2FNN 0.0102

Table 7
Comparison with free Training noise (STD = 0) in Example 2.

FLS GT1FNN GIT2FNN BT1FNN BIT2FNN

Test RMSE
Free noise 0.0062 0.0055 0.0042 0.0034
STD = 0.1 0.0092 0.0080 0.0053 0.0044
STD = 0.3 0.0641 0.0533 0.0246 0.0126

testing RMSE for both type-2 gaussian and beta neural systems with the
considered levels of noise. It can be seen from the established values
that RMSE increases as the noise STD increases. But we can observe
that the increase for 𝐵𝐼𝑇 2𝐹𝑁𝑁 is not significantly higher compared
to GIT2FNN, showing in consequence the noise resistance ability of the
proposed beta fuzzy network.

Simulation results showed that, compared with gaussian fuzzy sys-
tems, the Beta type-2 systems presented higher performance for both
clean and noisy data. The major reason is that Beta function has the
advantage to be flexible since it has the capacity to generate rich shapes
(linearity, asymmetry, etc.) by this function add extra degree of freedom
to the FOU zone.

Table 8
Prediction using noisy training and testing data in Example 2.

STD noise G2FLS B2FLS

Training Testing Test RMSE Test RMSE

0.1
Free 0.0981 0.0439
0.1 0.1583 0.0821
0.3 0.2145 0.1657

0.2
Free 0.1325 0.056
0.1 0.2025 0.087
0.3 0.2984 0.180

0.3
Free 0.1836 0.092
0.1 0.2871 0.127
0.3 0.3411 0.182

In order to further study the importance of the beta function as a
membership function in fuzzy systems, we test the ECG heart-rate Time
Series monitoring problem.

6.3. Example 2: ECG heart-rate time series monitoring

In this part we consider the electrodiagram (ECG) time series ap-
plication. ECG signals represent recordings of the electrical activity of
the cardiac system. An ECG waveform signal consists essentially by the
ventricular depolarization and the re-polarization of ventricle. In heart
diseases, this signal is very important clinical information that must
be controlled continuously. A normal ECG signal is always defined by
regular patterns showing heart muscles’ contractions and relaxations.
In the case of abnormalities and heart diseases, waveform patterns
will be altered from normal conditions to have irregular rhythms. This
irregularity may be presented by too slow, too fast or altered waveforms.
However, cardiac time series of normal and abnormal signals may be
very similar. It is very important to automatically distinguish between
them to have a better evaluation of abnormal situations, particularly
those that may lead to the cardiac deaths. Hence, early detection of
abnormal patterns in an ECG signal can alert about a heart disease
and may even help to avoid a sudden cardiac death. People with heart
problems must have a continuously monitoring of their heart’s electrical
activity. By consequent, the automation process of the monitoring task
has become a strong necessity in last years. ECG signal processing ma-
terials deal with the use of many techniques as autocorrelation, wavelet
transform parameter extraction, frequency analysis, baseline correction,
de-noising (Mjahad et al., 2017; de Chazal et al., 2000; Seena and
Yomas, 2014; Su and Zhao, 2005). In Xiong et al. (2016) for example,
authors proposed a neural network for de-noising an ECG signal and
removing any residual noise. The proposed method was performed
on ECG recordings from both MIT-BIH Arrhythmia and Noise-Stress
Test databases. Indeed, the ECG signal analysis have been discussed in
several works providing a prediction of abnormalities and arrhythmias
in the ECG signal. In Chua and Tan (2011) a non singleton genetic
fuzzy logic system was proposed for the classification of arrhythmias
in ECG signals from normal signals, signals with ventricular fibrillation
or tachycardia, while in Mjahad et al. (2017) for the same problem
classification authors used a time frequency approach. In Rai et al.
(2013), authors combined multi-resolution wavelet transform and a
neural network classifier for arrhythmia detection in an ECG signal. In
this work 48 features have been extracted for each ECG signal. Those
features have been defined based on Morphology features and discrete
Wavelet Transform. Fuzzy neural networks have been used in some
works for the ECG classification problem. In Gler and Beyli(2004) an
adaptive neuro fuzzy system for screening ECG modifications for persons
with partial epilepsy was explored. In Ranganathan et al. (2012) an es-
timation of heart-rate signals in different stress conditions was analyzed
by using a neural fuzzy technique. Whereas only few works proposed
type-2 fuzzy neural networks for resolving ECG arrhythmia detection
and classification problems. The works in Zbay et al. (2011) and Ceylan
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Fig. 8. Normal and abnormal ECG signals: (a) 100 and 104 ECG signals, (b) 100 and 200 ECG signals, (c) 100 and 214 ECG signals, (d) 100 and 230 ECG signals.

et al. (2009) proposed neural networks ECG classification based on type-
2 fuzzy clustering and/without wavelet transform, respectively. In Zbay
et al. (2011), the main idea was to proceed by three blocs: the type-
2 fuzzy clustering system followed by the wavelet transform feature
extraction model to finally proceed to the neural network system. Those
studies deals with type-2 fuzzy logic and neural networks separately.
While in Phong and Thien (2009), and as stated by Melin and Castillo
(2013), authors proposed a type-2 TSK fuzzy system for ECG arrhythmic
classification. In this study, the generalized bell primary membership
function is used to examine the performance of the system with different
shapes of membership functions. And in Tan et al. (2007) the feasibility
of using a type-2 fuzzy system for ECG arrhythmic beat classification was
studied. Authors used a combination of the fuzzy C-means clustering
algorithm and the amount of dispersion in each cluster to classify
ECG arrhythmic beats: normal sinus rhythm, ventricular fibrillation and
ventricular tachycardia. In this paper, we deal with neuro type-2 fuzzy
logic systems in which type-2 fuzzy parameters are fitted by using neural
networks. Especially in this section, we introduce the BIT2FNN as a new
automatic monitoring system for detecting abnormalities in a normal
ECG signal. We considered data from the MIT-BIH Physionet arrhythmia
database (Goldberger et al., 2000; Moody and Mark, 2001). We used
five data-files of one minute length-recording. (one data-files for normal
ECG signal 100, and four data-files for abnormal ECG signal defined by

104, 200, 214 and 230 files). These recordings were scanned with 11-
bit resolution over a range of 10 mV. Since the mathematical model
of an ECG is not defined, the proposed Beta fuzzy neural network is
applied for testing the regularity of heartbeats and then can detect if
any abnormality occurs.

Before to process with neural network computation, a preprocessing
stage of the ECG signal is performed. In this phase a baseline wander
removal and a de-noising of the ECG signal were carried out by using
multiresolution wavelet transform. The baseline wanders are generally
errors that come from respiration and are less than 0.3 Hz. Those errors
are removed by first smoothing the original ECG signal by applying
the moving average method with a span size equal to 150. Then the
smoothed signal is subtracted from the original signal to obtain a free
from baseline drift ECG signal. While the de-noise phase, which consists
in eliminating different noise structures, was established by using a
fourth order Daubechies wavelet. The chosen wavelet transform decom-
posed the ECG signal on N components. And then an automatic threshold
technique is applying to each level to detail coefficients. Finally, the
ECG signal is erected based on the approximated original coefficients of
level N and modified coefficients of level 1 to N. When the de-noised
phase is achieved, R-peaks ECG signal will be detected by using wavelet
transform decomposition with high level value. The detection of R-peaks
is benefit in our study in the phase of training and testing of neural
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Fig. 9. Results of: Training errors of normal 100-ECG signal, testing errors of normal 100 and abnormal 104-ECG of: (a) GT1FNN, (b) GIT2FNN, (c) BT1FNN, (d)
BIT2FNN.

networks. Once the preprocessing stage is realized, the whole resultant
signal from the de-noising phase is used to avoid any risk of losing data
and to have a better approximation result in the neural network. In all
the experimentation part we used only a same one channel recording
for all the database. Normal recording data (100-ECG) are divided into
two sets for the training and testing phases. While the abnormal data are
supposed to be the sudden abnormalities and arrhythmia on the normal
ECG. Hence, those abnormal recordings are used for a second testing
phase which is corresponding to a check phase of the automatic fuzzy-
neural system ability diagnose the arrhythmia. As described earlier
the idea is to predict 𝑥𝑘+1 from neighbor samples 𝑥𝑘−𝑛, 𝑛 > 0. We
defined the learning data pairs by: [𝑥(𝑡 − 15), 𝑥(𝑡 − 10), 𝑥(𝑡 − 5); 𝑥(𝑡)].
We designed the first 500 patterns of an ECG signal s(1001),. . . s(1500)
for the training phase and the remaining 500 patterns are used for
testing the output design. We considered the same models of fuzzy
neural networks described in the previous section, GT1FNN, GIT2FNN,
BT1FNN and BIT2FNN. All the considered systems have three inputs
which each is defined by five membership functions, one output and
are specified by 125 rules, which corresponds to the maximum number
of rules. The main idea is to use 1000 data pairs beginning from the first
R peaks of a normal ECG signal. Those data are used for the training and
testing phases. Then a 500 data pairs from an abnormal ECG signal and
beginning from the first R peaks, are used for checking the abnormality

Table 9
Used normal and abnormal database classes.

ECG class Database name

Normal 100
Abnormal 104 200 214 230

and the sudden change of the ECG signal. Performance is evaluated using
the root mean square error (RMSE) as presented in Eq. (44). Then a
threshold is applied to the 𝑅𝑀𝑆𝐸 value to classify the signal output
as normal or abnormal. Table 9 shows the normal and abnormal used
classes in our study analysis. The classification of those beats as normal
or abnormal have been detailed in Goldberger et al. (2000) and Moody
and Mark (2001).

Baseline wander removal and de-noising results of the ECG-100
original signal, are depicted in Fig. 7. The same process of the prepro-
cessing treatment (Baseline wander removal and de-noising) is applied
to abnormal signals. As follows from Fig. 8(a)–(d) shown next, resultant
used normal and abnormal ECG signals are depicted. All signals begin
from the first R-peaks to have an equal comparison in the testing phase.

For the training process, as previously taken, we fix the 𝛼 parameter
to 0.2. Regarding the parameter initialization of the BT1FNN, initial
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Fig. 10. (a) Initial MFs of GIT2FNN, (b) Final obtained MFs of GIT2FNN, (c) Initial MFs of BIT2FNN, (d) Final obtained MFs of BIT2FNN,.

Table 10
RMSE training and testing errors of normal 100-ECG signal versus abnormal
104/200/214/230-ECG signals.

RMSE of ECG-signals GT1FNN GIT2FNN BT1FNN, BIT2FNN

Training ECG-100 0.1219 0.1110 0.0992 0.0555
Testing ECG-100 0.1365 0.1311 0.1227 0.0898

Testing ECG-104 0.2857 0.2667 0.2761 0.3745
Testing ECG-200 0.4050 0.4448 0.4969 0.5153
Testing ECG-214 0.4934 0.4982 0.5207 0.5466
Testing ECG-230 0.2872 0.2889 0.2921 0.2986

values of standard deviation 𝜎, 𝑝, 𝑞 and center 𝑐 were fixed in the good
of having equal comparisons. Regarding the BIT2FNN, where we are
using beta primary membership functions with uncertain center, we
initialized 𝑐1 and 𝑐2 values to respectively 𝑐 − 0.1 and 𝑐 + 0.1. The same
strategy was used for gaussian type-1 and type-2 systems. Table 10
summarizes the obtained root mean square errors of the training and
testing phases of the normal ECG signal versus abnormal signals. We
can remark that the BIT2FNN gives the smallest errors values in both
the training and testing stages of normal ECG signal. Whereas in testing
abnormal ECG signals, BIT2FNN provides the biggest RMSE values.

Hence we can deduce the great ability of this model system, BIT2FNN,
in handling more uncertainties, approximating the real signal and
identifying abnormal inaccuracies. The results exhibit that within same
conditions, the BIT2FNN gives clearly better performance regarding
other systems. In this case study, an RMSE threshold for detecting fatal
abnormalities can be fixed to a value of 0.2.

For visual representation of those errors, we depicted the instanta-
neous errors results (Training and testing errors of normal ECG signal,
Testing error of Abnormal ECG signal) over 500 samples, for the 100 and
104 ECG signals, in the following Fig. 9(a), (b), (c) and (d). As can be
seen the BIT2FNN confirmed the previous results while it represents the
biggest values of testing error of abnormal ECG signals. An important
implication of these findings is that the BIT2FNN can detect potentially
fatal ECG abnormalities.

Initial and final obtained membership functions for GT1FNN and
BIT2FNN systems are depicted in Fig. 10.

The experimental results exhibit that type-2 beta neural networks are
able to predict relations in non linear data science equations even in the
presence of different levels of noise. The use of Beta membership func-
tion which has additional degree of freedom helps the fuzzy network to
achieve a better behavior.
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Fig. 11. FOU for Beta primary MF with uncertain standard deviation.

7. Conclusion

In this paper, a Beta Basis Function Interval Type-2 Fuzzy Neural
Network BIT2FNN was proposed for real time series applications.
Throughout this fuzzy network a type-2 beta fuzzy set was utilized. First
order derivatives of type-1 and type-2 beta functions were developed
and tuning parameters calculations were ensured based on a given
input–output data pairs and the backpropagation learning algorithm.
Simulation results have been performed by exploring two examples
of time series applications: the Mackay Glass Chaotic Time-Series
prediction problem with different setting of parameters and levels of
noise and the ECG heart-rate Time Series monitoring problem. The
results thus obtained in both examples deduct the great ability of
the proposed architecture, BIT2FNN, in handling more uncertainties.
They have achieving better forecasting performance and identifying
abnormal inaccuracies. The results exhibit that within same conditions,
the BIT2FNN have the faculty to deal with uncertain noisy data, and
proved to have good approximation ability. Then beta functions may
be considered as a supplement and an asset for type-2 fuzzy systems.
To yield better total performance, a dynamic learning rate optimization
process within an evolving network may be added to the BIT2FNN in
further research.
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Annexe.

Beta primary membership function with uncertain standard deviation
𝜎. In this case, a beta primary membership function an uncertain 𝜎,
𝜎 ∈ [𝜎1, 𝜎2], and fixed 𝑝, 𝑞, 𝑐, is expressed as follows:

𝛽(𝑥) =
(

1 +
(𝑝 + 𝑞)(𝑥 − 𝑐)

𝜎𝑝

)𝑝(

1 −
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎𝑞

)𝑞

𝑤𝑖𝑡ℎ 𝜎 ∈ [𝜎1, 𝜎2].
(45)

Fig. 12. A Beta primary MF with uncertain: 𝑝.

Fig. 13. A Beta primary MF with uncertain: 𝑞.

An example of this case is illustrated in Fig. 11.
Similarly, upper and lower membership functions can be expressed

by the following relations:

𝜇𝐴(𝑥) = 𝛽(𝑥; 𝑐, 𝜎2, 𝑝, 𝑞) (46)

𝜇
𝐴
(𝑥) = 𝛽(𝑥; 𝑐, 𝜎1, 𝑝, 𝑞). (47)

Beta primary MF with uncertain 𝑝. A beta primary membership func-
tion with an uncertain 𝑝 value, 𝑝 ∈ [𝑝1, 𝑝2], is defined by the following
equation in which to each value of 𝑝 corresponds a different MF. An
illustrative example of this type-2 fuzzy set is given in Fig. 12.

𝛽(𝑥) =
(

1 +
(𝑝 + 𝑞)(𝑥 − 𝑐)

𝜎𝑝

)𝑝(

1 −
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎𝑞

)𝑞

𝑝 ∈ [𝑝1, 𝑝2].
(48)

Expressions of the associated 𝑈𝑀𝐹 and 𝐿𝑀𝐹 to this case function
are given by Eqs. (49) and (50), respectively:

𝜇𝐴(𝑥) =
{

max(𝛽(𝑥; 𝑐, 𝜎, 𝑝1, 𝑞), 𝛽(𝑥; 𝑐, 𝜎, 𝑝2, 𝑞))
∇𝑥 ∈ 𝑋

(49)
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𝜇
𝐴
(𝑥) =

{

max(𝛽(𝑥; 𝑐, 𝜎, 𝑝1, 𝑞), 𝛽(𝑥; 𝑐, 𝜎, 𝑝2, 𝑞))
∇𝑥 ∈ 𝑋.

(50)

Beta primary MF with uncertain 𝑞. A beta primary membership func-
tion with an uncertain 𝑞 value, 𝑞 ∈ [𝑞1, 𝑞2] is defined by the following
equation, in which to each value of 𝑞, corresponds a different MF. An
example type of this type-2 fuzzy set can be illustrated in Fig. 13.

𝛽(𝑥) =
(

1 +
(𝑝 + 𝑞)(𝑥 − 𝑐)

𝜎𝑝

)𝑝(

1 −
(𝑝 + 𝑞)(𝑐 − 𝑥)

𝜎𝑞

)𝑞

𝑤𝑖𝑡ℎ 𝑞 ∈ [𝑞1, 𝑞2].
(51)

For this type-2 fuzzy set, the 𝑈𝑀𝐹 and 𝐿𝑀𝐹 can be defined by Eqs.
(52) and (53), respectively:

𝜇𝐴(𝑥) =
{

max(𝛽(𝑥; 𝑐, 𝜎, 𝑝, 𝑞1), 𝛽(𝑥; 𝑐, 𝜎, 𝑝, 𝑞2))
∇𝑥 ∈ 𝑋

(52)

𝜇
𝐴
(𝑥) =

{

min(𝛽(𝑥; 𝑐, 𝜎, 𝑝, 𝑞1), 𝛽(𝑥; 𝑐, 𝜎, 𝑝, 𝑞2))
∇𝑥 ∈ 𝑋.

(53)
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