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Abstract: Web caching is a technology to improve network traffic on the Internet.
It is a temporary storage of Web objects for later retrieval. Three significant ad-
vantages of Web caching include reduction in bandwidth consumption, server load,
and latency. These advantages make the Web to be less expensive yet it provides
better performance. This research aims to introduce an advanced machine learning
method for a classification problem in Web caching that requires a decision to cache
or not to cache Web objects in a proxy cache server. The challenges in this clas-
sification problem include the issues in identifying attributes ranking and improve
the classification accuracy significantly. This research includes four methods that
are Classification and Regression Trees (CART), Multivariate Adaptive Regression
Splines (MARS), Random Forest (RF) and TreeNet (TN) for classification on Web
caching. The experimental results reveal that CART performed extremely well in
classifying Web objects from the existing log data with a size of Web objects as a
significant attribute for Web cache performance enhancement.
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1. Introduction

Caching operation can execute in a client application, and generally, it is embedded
in most Web browsers [1, 2, 3, 4, 5, 6]. A number of products extend or replace
the embedded caches with systems that contain larger storage, more features, or
better performance. In most cases, these systems only cache net objects from many
servers for a single user [7, 8].

Caching can also be operated between the client and the server as a part of proxy
cache [9, 10, 11], which is often located close to network gateways to decrease the
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bandwidth connections. These systems can serve many users or clients with cached
objects from many servers. In fact, Davison [7] reported that the usefulness of Web
caching is up to 80% for some installations based on Web cache objects requested by
one client for later retrieval by another client. Even for better performance, many
proxy caches are part of cache hierarchies [12]; a cache can appeal to neighboring
caches for a requested document to lessen the need for direct fetching.

Furthermore, the location of caches can be directly in front of a particular
server, to reduce the number of requests that the server must handle. Most proxy
caches are available in this way with different names; reverse cache, inverse cache,
or sometimes httpd accelerator, to replicate the fact that it caches objects for
many clients but normally from one server [13, 14]. Many solutions are developed
for caching either from proxy cache or on Web server using statistical or machine
learning methods. In this study, we investigate the performance of Classification
and Regression Trees (CART), Multivariate Adaptive Regression Splines (MARS),
Random Forest (RF) and TreeNet (TN) as classifier of the Web cache objects in a
proxy cache server.

The rest of the paper is organized as follows: Section 2 describes the related
works, followed by the introduction on the machine learning methods in Section 3.
Section 4 is on experimental setup and Section 5 illustrates the performance result
of the proposed method. Section 6 discusses the result from the experiment and
finally, Section 7 concludes the article.

2. Related Works

Many researchers have looked for ways to improve current caching techniques.
Padmanabhan and Mogul [15] proposed a predictive model as a server hint. The
proposed model is equipped with a server that is able to create Markov model by
predicting the probability of object A tagging along with next n requests and object
B (n is a parameter of the algorithm). The server will use the model to produce
a forecast for subsequent references and proposed the forecast to the client. The
client will use the forecast result to pre-fetch an object on the server only if that
object is not in the client cache. The simulation shows that the proposed model
is able to reduce the latency until 45%. However, their technique has a limitation
as it also makes network traffic larger by two times than the pre-fetch without the
proposed technique [15]. That is why many researchers try to acquire latency and
network reduction at the same time.

In another work, Bestavros and Cunha [16] presented a model for the speculative
dissemination of World Wide Web data. Their work illustrates that reference
patterns from a Web server can be the main source of information for pre-fetching.
They also discovered latency reduction up to 50%, besides the increment in the
bandwidth utilization.

On the other hand, Pallis et al. [9] proposed a pre-fetching based on clustering
method. Web pre-fetching is an attractive solution to reduce the network resources
consumed by Web services as well as the access latencies perceived by Web users.
Unlike Web caching, which exploits the temporal locality, Web pre-fetching utilizes
the spatial locality of Web objects. Specifically, Web pre-fetching fetches objects
that are likely accessible in the near future and stores them in advance. In this
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context, a sophisticated combination of these two techniques may cause significant
improvements on the performance of the Web infrastructure.

Kroeger et al. [17] observed a local proxy caching which is able to decrease
latency until 26%, while pre-fetching could decrease latency at 57%. The combi-
nation of both local proxy caching and pre-fetching contributes to better latency
reduction until 60%. Furthermore, they also found that their proposed algorithm
on pre-fetching has contribution to reducing latency. The work also shows that pre-
fetching can provide double improvement on caching. However, it only decreases
the latency [18], see Fig. 1.

Fig. 1 Proxy configuration [18].

Xu et al. [19] proposed a solution by creating a proxy management. The
caching dynamic content is obtained by generating data and personalise data that
contributes up to 30-40% of the total traffic. These types of data are normally
identified as “uncachable”. To further improve Web performance, reverse caching
can make dynamic content to be more cachable and manageable [9]. However,
the challenge is still on how to maintain efficiently the consistency between the
cached content and the data source that frequently changes. Another important
issue is the analysis of query semantics to evaluate a complex query over the cached
content.

The next issue is caching streaming objects: The prediction is that streaming
media, such as music or video clips, symbolize a significant portion of the Web
traffic over the Internet. Due to the distinct features of streaming objects like huge
size, long duration, intensive use of bandwidth, and interactivity, conventional
proxy caching techniques are unable to solve this problem. Hence, a number of
studies have proposed partial caching algorithms in recent years [10, 11]. The
proposed algorithms show that even if a small size of video is stored on the proxy,
the consumption of network reduces significantly.

Xu et al. in [19] generally stated that the collaboration among proxies is based
on the premise, and it would be faster and cheaper to fetch an object from another
close proxy rather than the origin server. See Fig. 2 for the cooperative cache
organization.

Teng et al. [20] proposed a combination between Web caching and Web pre-
fetching. The combination is possible because the Web caching technique uses the
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Fig. 2 Examples of different cooperative cache organizations [19].

temporal locality while the Web pre-fetching technique utilizes the spatial locality
of Web objects. The proposed technique is obtained by evaluating the pre-fetching
rules.

There is continuity in the research especially on clustering pre-fetching, caching
on proxy level and designing a cache organization. The list of issues on Web caching
and pre-fetching is available in Tab. I.

Considering that there have been several caching policies proposed in the past,
the challenge is how to extend them by using data mining techniques. It presented
a clustering-based pre-fetching scheme using a graph-based clustering algorithm
that identifies clusters of “correlated” Web pages based on users’ access patterns
and then it creates adaptive websites [21].

Nevertheless, the research in this paper proposes a scheme that integrates data
mining techniques into a cache server for Web object classification, thus improving
its performance. Through a simulation environment using the Salford Systems [22]
and a real data set, the proposed scheme can be an effective way in improving
the performance of the Web caching environment. The use of the real data set
for classification of Web object data is based on two different Web log data from
Boston University (BU) and E-learning@UTM (EL) websites.

3. Machine Learning Methods

3.1 Classification and regression trees

Classification and Regression Trees (CART) is a robust decision-tree tool for data
mining, pre-processing and predictive modeling, suggested by Breiman et al. [23].
CART can analyze complex data for patterns and relationships and uncovering
hidden structures [24]. Moreover, CART is a nonparametric technique that can
select variables from a large data set and their interactions that are very important
in determining the outcome variable to be analyzed.

Decision Tree (DT) induction is one of the classification algorithms in data min-
ing. The classification algorithm is inductively learned to construct a model from
the pre-classified data set. Inductive learning means making general assumptions
from the specific examples in order to use those assumptions to classify unseen
data. The inductively learned model of classification algorithm is known as classi-
fier. Classifier may be viewed as a mapping from a set of attributes to a particular
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Author Proposed Solution Weakness
Ali Ahmed
and Sham-
suddin
(2011) [43]

– Proposed intelligent scheme based on
neuro-fuzzy system by splitting cache
to two caches, short-term cache and
long-term cache, on a client computer
for storing the ideal Web objects and
removing the unwanted objects in the
cache for more effective usage.

– Requires extra com-
putational overhead
for training process.

Albers
(2010) [42]

– Reduced web caching with request
reordering to a problem of computing
batched service schedules using a deter-
ministic algorithm.

– Do not know how to
modify the online algo-
rithm.

Hung et al.
(2008) [11]

– Proposed two levels caching to im-
prove the average of cache access time
and an adaptive pre-fetch strategy.

– Still hard to adapt
with different applica-
tion.

Nair and
Jayasudha
(2007) [10]

– Proposed an intelligent agent that is
able to monitor bandwidth usage and
helps the prediction engine to decide
the number of Web pages to be pre-
fetched.

– Needs an improve-
ment in artificial intel-
ligence of the agent.

Jin et al.
(2007) [41]

– Proposed an adaptive pre-fetching
concept to be more intelligible in term
of mobile context.

– Needs to be paired
with Web caching tech-
nology in order to
produce faster perfor-
mance.

Pallis et al.
(2007) [9]

– Proposed clustering method between
object that needs to be fetched and user
position.

– Needs more study on
implementing another
clustering algorithm.

Xu et al.
(2006) [19]

– Proposed cooperative cache organiza-
tions between client and proxy cache.

– Needs more study on
searching nearby proxy
when some objects are
requested.

Teng et al.
(2005) [20]

– Proposed an algorithm that is called
IWCP (Integration of Web Caching and
Pre-fetching). – To create appropriate
combination of pre-fetching and Web
caching by utilizing innovative cache re-
placement.

– Still hard to be im-
plemented in different
platform, such as Web
and mobile.

Tab. I The comparison of previous work on pre-fetching and Web caching.

class. Data items are defined by the values of their attributes and X is the vec-
tor of their values {x1, x2 . . . .xn}, where the value is either numeric or nominal.
Attribute space is defined as a set containing all possible attribute vectors and is
denoted by Z. Thus X is an element of Z (X ∈ Z). The set of all classes is denoted
by C = {c1, c2, ..., cn}. A classifier assigns a class c ∈ C to every attribute
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of the vector X ∈ Z. The classifier can be considered as a mapping f , where f :
X♦ C. The use of this classifier is to classify the unseen data with a class label.
A decision tree classifies the given data item using the values of its attributes.
The decision tree is initially constructed from a set of pre-classified data. Each
data item is defined by values of the attributes. The main issue is to select the
attributes which best divides the data items into their classes. According to the
values of these attributes, the data items are partitioned. This process is recur-
sively applied to each partitioned subset of the data items. The process terminates
when all the data items in the current subset belongs to the same class.

A decision tree consists of nodes, leaves and edges. A node of a decision tree
specifies an attribute by which the data are to be partitioned. Each node has
a number of edges, which are labeled according to a possible value of edges and
a possible value of the attribute in the parent node. An edge connects either
two nodes or a node and a leaf. Leaves are labeled with a decision value for
categorization of the data. Induction of the decision tree uses the training data,
which is described in terms of the attributes. The main problem here is on how to
decide the attribute, which is the best partition of the data into various classes.

The ID3 algorithm uses the information theoretic method to solve this problem.
Information theory uses the concept entropy, which measures the impurity of data
items. Entropy specifies the number of bits required to encode the classification of a
data item. The value of entropy is small when the class distribution is uneven, that
is when all the data items belong to one class. The entropy value is higher when
the class distribution is more even, that is when the data items have more classes.
Information gain is a measure or the utility of each attribute in classifying the
data items. It is measured using the entropy value. Information gain measures the
decrease of the weighted average impurity (entropy) of the attributes compared
with the impurity of the complete set of data items. Therefore, the attributes
with the largest information gain are considered as the most useful attributes in
classifying the data items.

To classify an unknown object, one starts at the root of the decision tree and
follows the branch indicated by the outcome of each test until a leaf node is reached.
The name of the class at the leaf node is the resulting classification. Several
algorithms have implemented decision tree induction. This includes the basic ID3
that has the extension of C4.5 and C5.0. C4.5. C4.5 handles continuous attributes
and is able to choose an appropriate attribute selection measure. It also deals
with missing attribute values and improves computation efficiency. C4.5 builds the
tree from a set of data items using the best attribute to test in order to divide
the data item into subsets and then it uses the same procedure on each subset
recursively. The selection of the best attribute to divide the subset at each stage
uses the information gain of the attributes. For nominal valued attributes, a branch
for each value of the attribute is formed, whereas for numeric valued attributes, a
threshold is found, thus forming two branches.

3.1.1 CART methodology

The CART methodology [23] is recognized as a binary recursive partitioning. The
process is binary due to splitting of parent nodes into exactly two child nodes. It is
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recursive because the process is repeatable by treating each child node as a parent.
The key elements of a CART analysis include a set of rules for splitting each node
in a tree; deciding when a tree is complete; and assigning each terminal node to
a class outcome. CART always asks questions that have a ‘yes’ or ‘no’ answer
to split a node into two child nodes; the yes answers to the left child node and
the no answers to the right child node. CART’s method is to look at all possible
splits for all variables included in the analysis. Next, CART ranks the order of
each splitting rule based on a quality-of-split criterion. One criterion commonly
used is a measure of how well the splitting rule separates the classes contained in
the parent node. Once it finds the best split, CART repeats the search process for
each child node, continuously and recursively until further splitting is impossible
or stopped. Splitting is impossible if only one case remains in a particular node or
if all the cases in that node are exact copies of each other (on predictor variables).
CART also allows splitting to stop for several other reasons, including that a node
has too few cases. One simple criterion is the plurality rule: the group with the
greatest representation determines the class assignment.

CART goes a step further: Because each node has the potential for being a
terminal node, a class assignment is made for every node whether it is terminal or
not. The rules of class assignment can be modified from simple plurality to account
for the costs of making a mistake in classification and to adjust for over- or under-
sampling from certain classes. A common technique among the first generation of
tree classifiers is to continue splitting nodes (growing the tree) until some goodness-
of-split criterion failed to be met. When the quality of a particular split fell below
a certain threshold, the tree is not grown further along that branch. When all
branches from the root reach terminal nodes, the tree is considered complete.

Instead of attempting to decide whether a given node is terminal or not, CART
proceeds by growing trees until it is not possible to grow any further. Once CART
has generated a maximal tree, it examines smaller trees obtained by pruning away
branches of the maximal tree. The important point is that CART trees are always
grown larger than they need to be and then selectively pruned back. Unlike other
methods, CART does not stop in the middle of the tree-growing process, because
there might still be important information to be discovered by drilling down several
more levels.

Once the maximal tree is grown and a set of sub-trees are derived from it,
CART determines the best tree by testing for error rates or costs. With sufficient
data, the simplest method is to divide the sample into learning and test sub-
samples. The learning sample is used to grow an overly large tree. Then use the
test sample to estimate the rate at which cases are misclassified (possibly adjusted
by misclassification costs). The misclassification error rate is calculated for the
largest tree and also for every sub-tree. The best sub-tree is the one with the
lowest or near-lowest cost, which may be a relatively small tree.

The cross-validation method is used if the data is insufficient for a separate
test sample. In such cases, CART grows a maximal tree on the entire learning
sample. This is the tree that will be pruned back. This process is used to estimate
the independent predictive accuracy of the tree. This means that we can know
how well any tree will perform on completely fresh data even if we do not have
an independent test sample. Because the conventional methods of assessing tree

435



Neural Network World 5/2011, 429-452

accuracy can be wildly optimistic, cross validation is the method CART normally
uses to obtain objective measures for smaller data sets.

3.2 Multivariate adaptive regression splines

Splines can be an innovative mathematical process for complicated curve drawings
and function approximation. Splines find ever-increasing application in the numer-
ical methods, computer-aided design, and computer graphics areas. Mathematical
formulas for circles, parabolas, or sine waves are easy to construct. In order to
develop a formula to trace the shape of shared value fluctuations or any time series
prediction is to break the complex shape into simpler pieces, and then use a stock
formula for each piece. To develop a spline, the X-axis is broken into a convenient
number of regions. The boundary between regions is known as a knot. With a
sufficiently large number of knots virtually any shape can be well approximated.
While it is easy to draw a spline in two dimensions by keying on knot locations
(approximation using linear, quadratic or cubic polynomial regression etc.), ma-
nipulating the mathematics in higher dimensions is best accomplished using basis
functions.

The Multivariate Adaptive Regression Splines (MARS) model is a spline re-
gression model that uses a specific class of basis functions as predictors in place
of the original data [25, 26]. The MARS basis function transform makes it pos-
sible to selectively blank out certain regions of a variable by making them zero,
allowing MARS to focus on specific sub-regions of the data. MARS excels at find-
ing optimal variable transformations and interactions, as well as the complex data
structure that often hides in high-dimensional data.

Given the number of predictors in most data mining applications, it is infeasible
to approximate a function y = f(x) in a generalization of splines by summarizing
y in each distinct region of x. Even if we could assume that each predictor x had
only two distinct regions, a database with just 35 predictors contains 235 or more
than 34 billion regions. This is known as the curse of dimensionality. For some
variables, two regions may not be enough to track the specifics of the function. If
the relationship of y to some xs is different in three or four regions, for example, with
only 35 variables, the number of regions requiring examination can be even larger
than 34 billion. Given that, neither the number of regions nor the knot locations
can be specified as a priori and a procedure [26] that are needed to accomplish
judicious selection of which regions to look at and their boundaries, and judicious
determination of how many intervals are needed for each variable.

A successful method of region selection requires to be adaptive to the charac-
teristics of the data. Such solution probably rejects quite a few variables besides
the accomplishing of the selected variable. This solution takes into account only a
few variables at a time, thus reducing the number of regions.

3.2.1 MARS smoothing, splines, knots selection and basis functions

A key concept underlying the spline is the knot, which marks the end of one region
of data and the beginning of another. Thus, the knot is where the behavior of the
function changes. Between knots, the model could be global (e.g., linear regression).
In a classical spline, the knots are predetermined and evenly spaced, whereas in
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MARS, the knots are determined by a search procedure. Only as many knots as
needed are included in a MARS model. If a straight line is a good fit, there will be
no interior knots. In MARS, however, there is always at least one “pseudo” knot
that corresponds to the smallest observed value of the predictor.

Finding one best knot in a simple regression is a straightforward search problem:
Simply examine a large number of potential knots and choose the one with the best
R2. However, finding the best pair of knots requires far more computation, and
finding the best set of knots when the actual number needed is unknown is an even
more challenging task. MARS finds the location and number of needed knots in a
forward/backward stepwise fashion. First, a model that is clearly overfit with too
many knots is generated; then, those knots that contribute least to the overall fit
are removed. Thus, the forward knot selection will include many incorrect knot
locations, but these erroneous knots should eventually be deleted from the model
in the backwards pruning step (although this is not guaranteed).

Knot selection works very well to illustrate splines in one dimension; however,
this context is unwieldy for working with a large number of variables simultane-
ously. Both concise notation and easy to manipulate programming expressions are
required. It is also not clear how to construct or represent interactions using knot
locations. In MARS, Basis Functions (BFs) are the machinery used for generalizing
the search for knots. BFs are a set of functions used to represent the information
contained in one or more variables. Much like principal components, BFs essen-
tially re-express the relationship of the predictor variables with the target variable.
The hockey stick BF, which is the core building block of the MARS model, is often
applied to a single variable multiple times. The hockey stick function maps variable
X to new variable X*:

max (0, X − c), or

max (0, c−X).

In the first form, X* is set to 0 for all values of X up to some threshold value c
and X* is equal to X for all values of X greater than c. (Actually X* is equal to
the amount by which X exceeds threshold c.) The second form generates a mirror
image of the first. It starts with a constant in the model and then begins the search
for a variable-knot combination that improves the model the most (or, alternatively,
worsens the model the least). The measurement of the improvement is part of the
change in Mean Squared Error (MSE). Adding a basis function always reduces
the MSE. MARS searches a pair of hockey stick basis functions, the primary and
mirror image, even though only one might be linearly independent of the other
functions. This search is then repeated, with MARS searching for the best variable
to add given the basis functions that are already in the model. The brute search
process theoretically continues until the addition of every possible basis function
to the model.

In practice, the user specifies an upper limit to generate the number of knots
in the forward stage. The limit should be large enough to ensure the capture of
the true model. The rule of thumb in determining the minimum number is three
to four times the number of basis functions in the optimal model. The setting of
this limit can be trial and error.
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3.3 Random Forest

Breiman [27] proposed the Random Forests (RF) algorithm in 1999 [27]. The algo-
rithm is usable for both regression and classification, as well as for variable selec-
tion, interaction detection, clustering etc. This technology represents a substantial
advance in data mining technology and it is based on novel ways of combining
information from a number of decision trees [23, 27].

A Decision Tree Forest (DTF) is an ensemble (collection) of decision trees, in
which the combination of predictions contributes to the overall prediction for the
forest. A decision tree forest grows a number of independent trees in parallel, and
those trees do not interact until after all of them have been built. Decision tree
forest models often have a degree of accuracy that cannot be obtained using a large,
single-tree model. An outline of the algorithm used to construct a decision tree
forest consisting of N observations as below:

(1) Take a random sample of N observations from the data set with replacement.
The selection of some observations is more than once, and there is no selection
for others. On average, about 2/3 of the rows will be selected by the sampling.
The remaining 1/3 of the rows are called the out of bag rows. A new random
selection of rows is performed for each tree constructed.

(2) As the tree is built, allow only a subset of the total set of predictor variables to
be considered as possible splitters for each node. Select the set of predictors
to be considered as a random subset of the total set of available predictors.
For example, if there are ten predictors, choose a random five as candidate
splitters. Perform a new random selection for each split. Some predictors
(possibly the best one) will not be considered for each split, but a predictor
excluded from one split may be used for another split in the same tree.

(3) and (2) are repeated for a large number of times to construct a forest of trees.

Decision tree forests have two stochastic elements: (1) the selection of data rows
used as input for each tree, and (2) the set of predictor variables considered as
candidates for each node split. For reasons that are not well understood, these
randomizations along with combining the predictions from the trees significantly
improve the overall predictive accuracy.

3.4 TreeNet

TreeNet (TN) is a robust multi-tree technology for data mining, predictive modeling
and data processing. This technology is an exclusive implementation of Jerome
Friedman’s MART methodology [28]. It offers exceptional accuracy, blazing speed,
and a high degree of fault tolerance for dirty and incomplete data. It can handle
both classification and regression problems and has been proven to be remarkably
effective in traditional numeric data mining and text mining [28].

TN is an enhancement of the CART model using stochastic gradient boosting
[28]. Boosting means the endeavors to “boost” the accuracy of any given learning
algorithm by fitting a series of models each having a low error rate, and then
combining into an ensemble that may perform better [29, 30]. The key features of
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TN models consist of [31]: automatic variable subset selection; ability to handle
data without pre-processing; resistance to outliers; automatic handling of missing
values; robustness to dirty and partially inaccurate data; high speed; and resistance
to over-training. A TN model can be thought as a series expansion approximating
the true functional relationship as shown in Equation 1 [29]:

F (X) = F0 + β1T1(X) + β2T2(X) + . . . + βMTM (X), (1)

where Ti is a small tree. Each tree refines and improves its predecessors. TN models
are typically composed of hundreds of small trees, each of which contributes a slight
refinement to the overall model.

4. Experimental Setup

In this study, two different log records are utilized; browser logs data and server
logs data. The first data from Boston University (BU) Web Trace (client-side or
browser) [32] collected by Oceans Research Group at BU functions as the exper-
iment data set. BU log data consists of 9,633 files, from 762 different users, and
recording 109,759 requests for data transfer. The browser logs data (from November
1994 to May 1995) are obtained from Mosaic clients at BU (http://ita.ee.lbl.gov/
html/contrib/BU-Web-Client.html) [33, 34, 35]. BU datasets consist of various
activities among users, for example the access from different workstations that can
cause multi Web log behavior. Hence, many uncertainties occur in this dataset,
which can affect the findings of the study.

The second data are from the E-Learning@UTM (EL) Web server from Univer-
siti Teknologi Malaysia (UTM). The server logs data that are obtained on 13 and 14
January 2008 with 65,015 record from one of EL Apache servers at Centre of Infor-
mation and Communication Technology (CICT), UTM (http://elearning.utm.my/)
[36]. Unlike BU datasets, EL datasets illustrate high similarity in Web log behavior
and activities since these datasets are meant for E-Learning Website
(E-Learning@UTM).

EL involved 17 faculties consisted of more than 2000 subjects who are under-
graduates and postgraduates at UTM. Tab. II shows the number of hits for only an
undergraduate subject that is Web Programming, in Semester 1, Session 2006/2007
(from July to November 2006). The data show the highest hit in the course module
(31.20%), followed by forum (16.87%), resource (16.57%) and workshop (13.93%).
Other modules are below 10% of the total hits. However, the log data for that
session are not available, as the CICT administrator did not keep the previous log.
Consequently, only the latest log data are available to be saved at that time.

4.1 Pre-processing and normalized data

Pre-processing is the key component to classify the object to cache. Fig. 3 shows
the actual data prior to data pre-processing and Fig. 4 depicts the pre-process
data. Each line of a condensed log in BU Web Trace corresponds to a single URL
requested by the user; it contains the machine name, the time stamp when the
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Module Hits Percentage
assignment 2,640 9.60
blog 37 0.13
choice 12 0.04
course 8,582 31.20
forum 4,641 16.87
label 17 0.06
quiz 1,343 4.88
resource 4,557 16.57
upload 813 2.96
user 1,032 3.75
workshop 3,830 13.93
Total 27,504 100

Tab. II Number of hits and percentage for each module in Web programming
subject.

request is made (seconds and microseconds), the URL, the size of the document
(in bytes), and the object retrieval time in seconds [32].

Meanwhile, each line in the EL file represents an incoming HTTP request,
and Apache records information about it using a format known as the Common
Log Format (CLF). Reading from left to right, this format contains the following
information about the request; the source IP address, the client’s identity, the
remote user name (if using HTTP authentication), the date, time, and time zone
of the request, the actual content of the request, the server’s response code to the
request, and the size of the data block returned to the client in bytes.

Three common variables or attributes have been identified in Web performance
analysis [37, 38]. The attributes used in this study are:

Time: the counter that observes the time taken to receive data in seconds.
Object Size: the size is in bytes.
Numbers of Hit: the number of hits per data. Each completed request for a Web
file increases the number of hit for the requested file.

Each variable or attribute must be multiplied with defined Priority Value (PV)
[39] to get the total of the attributes for target output generation of the network.
An example is as follows:

Expected target = (size ∗ 0.266667) + (hit ∗ 0.200000) + (retrieval time ∗ 0.066667)
(2)

The total value determines the expected target for current data. It is com-
pared to a threshold number, and these threshold values are dynamic. Koskela [40]
proposed a threshold calculation based on the latency ratio on a request hit rate
obtained for a cache with an infinite size.

The threshold is calculated and updated for every epoch of the training. If the
expected target is smaller than the threshold, then the expected target is 0, or else
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Fig. 3 Examples of data from BU and EL log data: (a) BU (b) EL.

Fig. 4 Pre-process BU and EL log data: (a) BU (b) EL.

it becomes 1 if the expected target is equal or greater than that of the threshold
[33, 36] shown below:

Expected Network Output =
{

0 if expected target < threshold,
1 if expected target ≥ threshold. (3)

The network incorporates simplicity in generating the output for the Web
caching, to cache or not to cache. For each output generated from the non-training
mode, the outputs can be illustrated by employing sigmoid function that is bounded
between 0 and 1. For each output value that represents the values between the in-
terval of 0.5 and 1, the data are cached in the caching storage, and for each output
that represents values less than 0.5 the data are fetched directly from the originat-
ing database resource, in case the data are not found in the cache storage [33, 36,
40].

Normalization process (see Fig. 5) is done by determining the maximum and
minimum value for each attribute. The end values are between 0 and 1 to improve
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training characteristics. Min-max normalization is given as in formula 4:

X∗ =
X- min(X)

max(X) - min(X)
. (4)

Let X refer to an original attribute value and X∗ refer to the normalized at-
tribute value. From this formula, the summary of the results is as shown in Tab. III.

Fig. 5 Normalize BU and EL log data (a) BU (b) EL.

Summary BU EL
Number of actual data 109 759 54 605
Number of pre-process data 17224 23 105
Maximum size (byte) 16 384 015 16 384 015
Longest retrieval time (seconds) 1 749 0
Highest hits 3 328 1 141

Tab. III Summarization of BU and EL log data after the normalization.

4.2 Training and testing

The actual BU log data consist of 109,759 records and EL log data involve 65,015
records. 90% of it is used for training and the remaining is for testing purposes.
K-folds cross validation as a statistical technique is used to validate the performance
of the machine learning methods for both Web logs dataset. These experiments are
carried out on a Core Duo CPU, 2GHz Machine and the codes are executed using
Salford System tools. The details setting of CART, MARS, RF and TN using the
BU and EL datasets are shown in Tab. IV.
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Parameter Setting BU EL
CART

Number of predictors 3 2
Important 3 2
Nodes 31 5
Min node cases 1 328-374

MARS
Number of predictors 3 2
Max basis functions 12 8
Number of effective parameters 1 13-15
Min observation between knots 100 100

RF
Number of predictors 3 2
Max terminal nodes 7752 10398
Trees grown 500 500
Parent node min cases 1 2

TN
Number of predictors 3 2
Tree size 6 6
Tree grown 200 200
Last tree data fraction 0 0

Tab. IV Parameter setting for CART, MARS, RF and TN for BU and EL log
data.

5. Results and Analysis

Tabs. V and VI summarize the comparison of performances for CART, MARS,
RF and TN in terms of training and test error rate including the accuracy of
classification for BU and EL log data. Mean and standard deviation are used as a
statistical validation to verify the performance of CART, MARS, RF, and TN for
both datasets.

The results have revealed that CART has the lowest mean error rate for BU
training (0.00191), test set (0.00721) and 0 for both EL training and test set. The
second lowest in error rate for BU training set is 0.00264 for TN. Nonetheless, the
highest error rate is 0.05896 for training set and 0.05932 for test set by using MARS
for BU dataset. As can be seen, Tab. VI reports TN for EL training and test set
as the highest error rate (0.45). Tab. V also explains that a standard deviation
of CART for both EL training and test set has the lowest value, 0 for both EL
training and test set compared with other statistical models.

At the same time, the testing process is done to determine the accuracy of the
output generated by all machine learning classifiers. The accuracy is executed,
based on the difference in results between the actual value and the generated value
by the CART, MARS, RF, and TN. In this research, the accuracy is measured as
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Fold

Error Rate of Training and Test Set for BU
Training Set Test Set

CART MARS RF TN CART MARS RF TN

1 0.00100 0.05941 0.00880 0.00460 0.00030 0.04678 0.00060 0.00030

2 0.00395 0.05960 0.00870 0.00110 0.01315 0.04594 0.01820 0.01395

3 0.00080 0.05911 0.00805 0.00075 0.01295 0.06286 0.01525 0.01230

4 0.00080 0.05839 0.00380 0.00035 0.01265 0.06786 0.01625 0.01500

5 0.00210 0.05940 0.00855 0.01110 0.00220 0.05285 0.00065 0.00095

6 0.00105 0.05880 0.00830 0.00305 0.00160 0.05619 0.00345 0.00345

7 0.00115 0.05804 0.00920 0.00075 0.01650 0.06931 0.05865 0.03640

8 0.00280 0.05934 0.00725 0.00080 0.00385 0.06087 0.00710 0.00095

9 0.00420 0.05990 0.00940 0.00235 0.00660 0.05580 0.00345 0.00690

10 0.00120 0.05765 0.00870 0.00155 0.00230 0.07477 0.00065 0.00345

Mean 0.00191 0.05896 0.00808 0.00264 0.00721 0.05932 0.01243 0.00937

Standard
Devia-
tion

0.00131 0.00073 0.00162 0.00325 0.00600 0.00958 0.01764 0.01102

Tab. V Mean and standard deviation for training and test set for BU dataset.

Fold

Error Rate of Training and Test Set for EL
Training Set Test Set

CART MARS RF TN CART MARS RF TN

1 0.00000 0.07615 0.00025 0.50000 0.00000 0.08060 0.00035 0.50000

2 0.00000 0.08241 0.00000 0.50000 0.00000 0.09516 0.00000 0.50000

3 0.00000 0.08383 0.00010 0.00000 0.00000 0.08049 0.00000 0.00000

4 0.00000 0.07534 0.00035 0.50000 0.00000 0.06890 0.00000 0.50000

5 0.00000 0.08265 0.00005 0.50000 0.00000 0.08708 0.00000 0.50000

6 0.00000 0.08394 0.00015 0.50000 0.00000 0.08140 0.00045 0.50000

7 0.00000 0.08445 0.00000 0.50000 0.00000 0.07008 0.00000 0.50000

8 0.00000 0.08582 0.00010 0.50000 0.00000 0.07048 0.00000 0.50000

9 0.00000 0.08111 0.00030 0.50000 0.00000 0.10824 0.00000 0.50000

10 0.00000 0.08300 0.00620 0.50000 0.00000 0.08390 0.00440 0.50000

Mean 0.00000 0.08187 0.00075 0.45000 0.00000 0.08263 0.00052 0.45000

Standard
Devia-
tion

0.00000 0.00347 0.00192 0.15811 0.00000 0.01219 0.00137 0.15811

Tab. VI Mean and standard deviation for training and test set for EL dataset.

shown in (5):

Accuracy =
Number of correct data

Total data
× 100%. (5)

Based on Equation 5, the CART accuracy is 99.81% and 100% for BU and
EL training dataset, respectively, which has the best accuracy compared to other
classifiers. The second highest is TN, 99.74% for BU training dataset and RF,
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99.93% for EL training dataset. This depicts that the CART model can classify
better (refer to Tabs. VII and VIII) with less nodes than others except MARS (see
Tab. IX). This condition occurred and might affect the time to generate the final

Fold

Accuracy of Training and Test Set for BU
Training Set Test Set

CART MARS RF TN CART MARS RF TN

1 99.90 66.93 99.12 99.54 99.97 76.00 99.94 99.97

2 99.61 71.43 99.13 99.89 98.69 72.98 98.18 98.61

3 99.92 68.85 99.19 99.93 98.71 65.07 98.47 98.77

4 99.92 70.03 99.62 99.96 98.74 71.00 98.37 98.50

5 99.79 71.07 99.14 98.89 99.78 68.48 99.93 99.91

6 99.89 71.53 99.17 99.69 99.84 70.31 99.65 99.66

7 99.88 69.24 99.08 99.93 98.35 69.23 94.13 96.36

8 99.72 69.73 99.27 99.92 99.62 70.12 99.29 99.90

9 99.58 69.10 99.06 99.76 99.34 74.25 99.65 99.31

10 99.88 71.81 99.13 99.84 99.77 71.26 99.93 99.66

Mean 99.81 69.97 99.19 99.74 99.28 70.87 98.75 99.07

Standard
Devia-
tion

0.12905 1.52781 0.16169 0.32500 0.59893 3.07824 1.76397 1.10195

Tab. VII Mean and standard deviation for accuracy of training and test set for
fold 1 to 10 BU dataset.

Fold

Accuracy of Training and Test Set for EL
Training Set Test Set

CART MARS RF TN CART MARS RF TN

1 100.00 96.05 99.98 50.00 100.00 98.20 99.97 50.00

2 100.00 63.83 100.00 50.00 100.00 66.92 100.00 50.00

3 100.00 63.96 99.99 100.00 100.00 66.30 100.00 100.00

4 100.00 63.31 99.97 50.00 100.00 63.49 100.00 50.00

5 100.00 64.24 100.00 50.00 100.00 62.67 100.00 50.00

6 100.00 64.21 99.99 50.00 100.00 64.13 99.96 50.00

7 100.00 63.92 100.00 50.00 100.00 64.70 100.00 50.00

8 100.00 65.03 99.99 50.00 100.00 82.13 100.00 50.00

9 100.00 64.69 99.97 50.00 100.00 61.80 100.00 50.00

10 100.00 64.24 99.38 50.00 100.00 64.00 99.56 50.00

Mean 100.00 67.35 99.93 55.00 100.00 69.43 99.95 55.00

Standard
Devia-
tion

0.00000 10.09577 0.19253 15.81139 0.00000 11.66307 0.13747 15.81139

Tab. VIII Mean and standard deviation for accuracy of training and test set for
fold 1 to 10 EL dataset.
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Classifier
Nodes/Basis Functions/Trees Grown
BU EL

CART 30-37 5
MARS 9 4-6
RF 500 500
TN 200 200

Tab. IX Number of nodes, basis functions, and tree grown for both the training
and test set for fold 1 to 10 BU and EL log dataset.

classification, to cache or not to cache the Web objects, which is faster by using
CART as compared to other classifiers.

Moreover, Tab. X reports the receiver operating characteristic (ROC) as a
graphical plot of the confusion matrix for a two-class classifier, either to cache-1
or not to cache-0. ROC analysis has recently been introduced in various fields
like medicine, radiology and others. Conversely, it has been introduced recently in
other areas, for instance data mining and machine learning. ROC approved that
CART and TN for EL dataset is the best classifier compared to other machine
learning classifiers, and RF is the best classifier for BU dataset.

In addition, Tab. XI shows the important level of three variables based on the
means of each variable for a fold 1 to 10 of BU log data. Nonetheless, the EL log
data only provided the size and the number of hits variable. The most significant
variable is the size, followed by the number of hits and retrieval time for each BU
and EL log data. It has been proven that size constructs an effective use of space
for Web caching in the cache server.

Previous results in Tabs. VII and VIII show that CART classifier is one of the
best classifiers of Web cache objects especially for the EL dataset. Due to the earlier
analysis by using paired-samples t-test, the significant analysis for CART classifier
is evaluated. The results of evaluation are available in Tabs. XII and XIII. Positive
means revealed that CART is significantly better than all other classifiers for BU
and EL datasets. As evident in the same table, the accuracy criterion for CART
is significantly better than all other classifiers with a p-value < 0.05 excluding TN
for both BU training and test datasets and RF for BU and EL test datasets.

6. Discussions

Various methodology and approaches to manage proxy cache have been proposed
[15-20]. This particular study applied different computational models to decide
and classify the objects on Web documents and to either cache or not to cache the
objects.

The results imply that CART and TN have a distinct advantage over MARS
and RF in classifying the cache objects. This scenario occurred due to the strengths
and weaknesses of the models themselves (refer to Tab. XIV).
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Subsequently, the modeling of the data set can be a suitability factor of the
models. Based on the experimental results in this study, the summary is as below:

• Intelligent Web caching is able to store ideal objects and remove unwanted
objects, which may cause insufficient cache. Thus, the caching insufficiency
can be improved.

• Both CART and TN achieve correct classification accuracy in the range of
99.8% to 100% for testing data of BU and EL log data, and in the range of
0 to 0.002 for training error rate data for both data compared to MARS and
RF, respectively.

• ROC for CART has the highest sensitivity and specificity for testing. Conse-
quently, CART is identified as the best classifier that is closest to the convex
hull.

• In all conditions, MARS is the worst model to be applied in classifying all log
data because MARS is highly sensitive to extrapolation caused by the local
nature of the basis functions. A change in the predictor value towards the
end of its range can cause the prediction to go largely off scale.

• Size of Web objects is recognized as the most important variable in affecting
the performance of the proxy cache server.

7. Conclusions and Future Work

In this research, an accomplishment of different machine learning methods for Web
caching technology promises alleviation of congestion in the Internet access mainly
for BU and EL. Therefore, this study proves that the classification of Web objects
through log mining using CART, MARS, RF and TN models can be applied in
cache server. Hence, this situation can affect the size of data in the cache server
and the time to retrieve the data from the cache server. Future work includes the
evaluation and comparison of performance analysis for machine learning methods
with other hybrid soft computing methods for Web caching technology using BU
and EL datasets.
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