
BPEL Processes for Non-Repudiation Protocols in Web Services

 M Bilal, J P Thomas, P Harrington Ajith Abraham
 Department of Computer Science School of Computer Science and Engineering
 Oklahoma State University Chung-Ang University

USA Korea
 jpt@cs.okstate.edu ajith.abraham@ieee.org

Abstract
BPEL provides a language for the formal specification
of business processes and business interaction
protocols. In business transactions non-repudiation is a
serious security issue in which any involved party
denies having participated in a transaction. In this paper
we propose and verify novel non-repudiation protocols
for business transactions in a number of scenarios and
specify them in BPEL. Our proposed protocols fulfill
the requirements of security, fairness, protection and
timeliness.

1. Introduction
Business Process Execution Language (BPEL) for Web
Services is a language for the formal specification of
business processes and business interaction protocols
[1]. BPEL provides an environment to describe
business processes that include multiple Web services
and standardize message exchange internally and
among partners. Linking those web services together
into a one large business process introduces a number
of security problems. One of these problems is non-
repudiation which means denial of having participated
in a message exchange [2]. A numbers of protocols
have been developed to solve non-repudiation. In
general, the messages are encrypted with a secret key
and sent to the receiver.

Fairness of a protocol depends on who is
controlling the execution of the protocol. It may be
inclined either toward the sender or receiver, or may be
fair to both. For example receiver repudiation can be
avoided by designing a protocol such that the sender
sends the encrypted message and does not release the
encryption key until he gets a receipt acknowledgment
from the receiver. Such a protocol favors the sender
because he may not send key after receiving
acknowledgement and claims that he did. On the other
hand if a Trusted Third Party (TTP) releases the key to
the receiver, this makes the protocol fair. To eliminate
the presence of TTP at the time of a dispute between
the sender and receiver, the protocol needs to generate
enough digital evidences for both the sender and the
receiver. In this paper, we propose a number of non-
repudiation protocols for two-party and chain-linked

business transactions involving web services. The
proposed protocols are specified in BPEL because they
provide security, accountability, fairness, timeliness and
confidentiality. We use Petri Net theory to analyze the
proposed non-repudiation protocols.

2. Related Work
A detailed description of BPEL can be found in [1]. As
for non-repudiation, there are two approaches. In
general these protocols encrypt the message with a
secret key and send it to the receiver and then the two
parties exchange a delivery receipt and the message key
to get the original message. An alternate approach is to
involve a trusted third party that acts as a notary. Zhou
[2] describes non-repudiation protocols in a number of
scenarios between two entities, for example, where
communicating channel is completely reliable and
where the sender and receiver don’t necessarily play a
fair role. In Zhou and Gollmann’s fair protocol [3], the
originator divides a message into two parts, a
commitment C and a key K. C is a cipher text of
message M and L is a unique label for the protocol run.
This protocol assumes that A, B and TTP are each
equipped with their own private signature key and the
related public verification keys and assumes that both
parties will be able to retrieve the key from TTP. The
main idea of this protocol is to send C first and then key
K, which unlocks the message, is released. In the non-
repudiation message protocol for collaborative e-
business [4], the message is encrypted with secret key,
which is generated at runtime. The sender sends a
message encrypted with the secret key. That key is
‘double-encrypted’ which means a twice-encrypted
secret key that is first encrypted with the receiver’s
public key and then with the public key of TTP. A non-
repudiation protocol for chain-linked transactions is
reported in [5]. In our approach there is no need for the
TTP to be available at the time of dispute. Furthermore
we outline verification of the protocols using Petri Nets
and we specify the protocols in BPEL to enable web
services implementation.

3. Secure Model for Web Services
From a security perspective, there are two things to be
considered.
• If messages at the business level contain confidential

information, it is required that no one can read the
original messages except the party to which it is sent.

• Repudiation among parties may arise. Two kinds of
disputes can arise [5]. Repudiation of recipient arises
when originator A claims having sent a message to
recipient N, who denies having received it.
Repudiation of origin arises when recipient N claims
having received the message from the originator A,
who denies sending it.

We propose a protocol that protects the confidentiality
of message contents such that no unauthorized
intermediary is able to read the original message. Non-
repudiation is achieved by involving a trusted third
authority (TTP) but this third party is not needed at the
time of dispute. Furthermore, the third party cannot
access the message sent between the business entities.

We propose novel non-repudiation protocols
between 2 parties as well as for a chain linked business
transactions that may involve intermediate parties in
different topologies. In one case of the protocol,
intermediate parties are not able to access and modify
the original message. In the other case intermediate
parties are able to access and modify the original
message depending upon the authorization granted. We
also analyze the protocols for security and reliability.
Furthermore, we specify these non-repudiation
protocols in BPEL and Petri net models are used to
verify the protocols.

We assume that web services within the
organization can trust each other. A non-repudiation
protocol is therefore required only when
communication is between external services.
Furthermore, we assume that the third party is not
available at the time of dispute. Communication
channels are assumed to be reliable.

BPEL is a layer on top of WSDL, i.e., it uses
WSDL to specify actions that should take place in a
business process, and to describe the web services
provided. There are ports in WSDL that must be
associated with bindings, one of which is SOAP.

We use the following notation [4] in this paper: X | Y : concatenation of two messages X and Y. MD (X) : message digest value of message X. eK(X) : encryption of message X with key K. dK(X) : decryption of message X with key K

sK(X) : digital signature of message X with the private
key K PA, SA : the public and private key of A. A → B : X : A sends message X to B.

3.1 Secure model of 2-party transactions

Here the transaction is between two parties, where
one is a Buyer and the other is a supplier. We involve a
TTP to establish Non-repudiation between parties.
There are four public web services (considering BPEL
process as a web service) and an internal web service.
An internal web service, which is an inventory
manager, sends an order to replenish inventory to the
buyer request process (figure 1) which interacts with
the external web service. These are the steps executed
between a buyer requester and a supplier.
1. Requester sends a purchase message M, which is

encrypted with a key generated by the requester, as
well as a double-encrypted key (generated key is first
encrypted with the public key of the recipient and
then with the public key of TTP) to the seller along
with the dual signature (this is a signature on the
message digest of the double encrypted key and
message digest of the encrypted message).

2. Supplier receives the encrypted message and sends an
acknowledgement receipt back to the requester after
checking the integrity of the encrypted message
(eK(M)) and the double-encrypted key by comparing
with the dual signature. Both eK(M) and the double-
encrypted key are checked by the supplier generating
the message digests and comparing with the message
digests in the signature. Supplier therefore confirms
that it received the correct encrypted message
contents before proceeding.

3. Supplier forwards the double-encrypted key to the
TTP, along with its signature1 on the message digest
of encrypted message to acknowledge the correct
receipt of the encrypted message. Supplier is required
to send this signature1 to the TTP in order to access
the key. TTP stores the signature1 temporarily for
signature distribution at the end of the protocol.

4. TTP decrypts the double-encrypted key using its
private key and releases the encrypted key to the
Supplier. The TTP then waits for acknowledgement
from the supplier. In case the TTP does not receive
this acknowledgement within a certain timeout, TTP
detects the supplier’s misbehavior.

5. The supplier decrypts the encrypted key received
from the TTP using its private key. It then sends
signature2 on the message digest of the decrypted
secret key to the TTP, as confirmation of receiving
the key. The supplier creates the signature2 on the
digested secret key so that TTP cannot access any
key information from the signature.

BPEL4WS (process, activities)

WSDL (definition, messageType, portType, etc)

SOAP (header, encryption, key, signature, etc)

Figure 1: Non-repudiation with 2 parties

6. TTP sends the two signatures received in steps 3 and

5 to the sender. These signatures are the supplier’s
acknowledgement of receiving correct purchase
message and secret key.

7. After processing the buyer’s request, supplier sends
the encrypted purchase acceptance message, along
with double encrypted key and dual signature to
Acceptance component of buyer.

8. Buyer Acceptance process sends an
acknowledgement receipt back to supplier.

9. This is same as step 3, but instead of supplier, this
message is send by Buyer acceptance component to
TTP.

10. TTP decrypt the double-encrypted key and release
the encrypted key to the Buyer Acceptance
component process.

11. The Buyer Receiver component sends signature to
the TTP, the confirmation of receiving the key same
as in step 5.

12. The protocol ends with TTP forwarding both
signatures to seller.

There are 12 messages. We can reduce it to 10 by
removing step 2 and 8 and use step 6 and 12 as
acknowledgments.

Space limitations prevent a full BPEL specification
and an outline is shown below. WSDL definitions for
the processes, starting with Buyer.wsdl is created. This
web service allows replenishing the inventory by
placing an order. There are three messages, a request
for purchase order, acknowledgment receipt of the

request, and signature from TTP. Service links are used
to define the capabilities of partners in the BPEL
process. A partner is linked to a portType and also a set
of operations in the WSDL file using those service
links. Similarly there is the Request Component of
Buyer: This process takes the request from an inventory
manager and sends request with double-encrypted key
to the supplier. In the final step it receives signatures
from TTP. There are three partners of the buyer request
process - inventory manager, Supplier and TTP. We
first define partners and containers to store data. The
BPEL process at the buyer is BUYERrequest.bpel. It is
layered on top of the BUYER.wsdl file. In this process,
after defining the partners and containers of the process,
we specify the BPEL activities of the process starting
with the sequence activity.
Request process
Begin sequence
• Receive a request from Inventory Manager and

deposit it in the request container.
• Assign data from request container to container to be

sent to supplier.
• Invoke a "place purchase order" request with supplier

based on data stored in the pervious step.
• Assign acknowledgement received from supplier to

container being sent to Inventory Manager.
• Reply to Inventory Manager with the response from

supplier.
• Receive signatures from trusted third party showing

that supplier has accessed the original message.

End sequence
Note: Receive, Invoke, Reply, and Assign etc. are
BPEL activities.
Supplier Process: The sequence of activities of BPEL
process at supplier is as follows:
Begin sequence
• Receive Request from Buyer Request process.
• Assign a receipt message in the container that is used

in the reply activity.
• Reply to Buyer Request process.
• Assign encrypted message and double encrypted key

in the container that used in the invoke activity.
• Invoke TTP process and send Double-encrypted key

and signature1.
• After receiving key from TTP again invoke TTP

process to send signature2.
• After processing order send order status to Buyer

Acceptance process by invoke.
• Finally, receives signatures of buyer receive process

from TTP.
End sequence
Acceptance Component of Buyer. The second BPEL
process at BUYER has following sequence.
Begin sequence
• Receive Acceptance from Supplier.
• Reply to supplier with receipt acknowledgement.
• Invoke TTP to decrypt double encryption key and

send signature1 (on the message digest of original
message and dek), and to get the encrypted key.

• Invoke the TTP to send the signature2 (on the
digested key) after accessing original message.

End sequence
TTP Process
Begin sequence
• Receive Request and signature1 from supplier

process to decrypt the key.
• Reply to request from supplier process.
• Receive signature2 from supplier process.
• Invoke Buyer Request process to send signatures of

supplier process.
• Receive request and signature1 from Buyer

Acceptance process to decrypt the key.
• Reply to request from Buyer Acceptance process.
• Receive signature2 from Buyer Acceptance process.
• Invoke Supplier process to send the signatures of the

Buyer Acceptance process.
End sequence

Because messages can be modified business
process implementation should use WS-Security (web
service security). It provides security by keeping
security information in the SOAP part of the message.
WS-security does not provide fairness and
accountability. To fulfill such requirements there is a
need to use the fair non-repudiation protocol.

3.1.1 Petri Net Model of BPEL BPEL processes
consist of two types, abstract process and executable

process. Both processes contain elements that can be
model in Petri nets. Petri Net Model of WSDL is:
Place → PortType (Operations – input, output messages)
Transition → ServiceLinkType (Name, my role, partner role)
Token → Message (Data)
Arc → Binding
Note: The Service link type definition can be placed within
the WSDL document defining the portTypes from which the

different roles are defined.
Petri Net Model of Executable BPEL Process is:
Place → Containers
Transition → Invoke, Receive, Reply, Assign, Switch
Token → Message (Data)

A sequence activity is represented hierarchically
and can be refined into a number of lower level
activities such as invoke, receive etc. BPEL Models of
each process are merged to obtain a system-wide view a
complete web business transaction. Although the
individual models may display the desired properties of
livness, safeness and complete termination, the merged
net may not display such properties. To draw the Petri
net of B2B processes, global information of the
processes are required. Each process is only aware of
itself and other web services (or BPEL processes) it
calls. The entire business transaction can be therefore
modeled by merging the models of individual
transactions. When a process or web service needs to be
invoked, its respective WSDL file is traced. A WSDL
file has all the information required to communicate.
The complete Petri net represents all the possible
execution paths of the whole system, in our case
inventory manager’s web method (web services) is
followed by the WSDL and then the web service and
then WSDL of process and so on. Space limitations
prevent a detailed Petri Net representation.

3.2 Secure model for chain of transactions

The protocol presented in Section 3.1 established
non-repudiation between two individual parties.
However, business transactions are rarely so simple,
and may involve more parties in many different
topologies. There is a need for non-repudiation in such
environments. We consider here a chain-linked
business transaction. Assume a supplier (X) wants to
publish details about a new product (say a bar of soap).
He publishes the information to a public Market Place
such as Transora. Transora gets the information from a
lot of suppliers. Retailer (X) sells soap and wants to
know when new soap products are available. Retailer
(X) has relationship with UCCnet. UCCnet sends
information to a lot of retailers. The flow is modeled as:

There are a number of security issues: How can
Retailer(X) be guaranteed that the information he
received is indeed from Supplier(X)? Or how can

Supplier(X Retailer(X) UCCnet Transora

Figure 2: Non-repudiation Protocol for Chained Linked Business Transaction.

Supplier(X) be guaranteed that Retailer(X) did actually
get the new product detail? We propose a novel non-
repudiation protocol for chain linked business
transactions. Non-repudiation in a chain linked system
is modeled as follows.
A B C N

There are the following cases
Case 1: A � N
Intermediate businesses (B, C …) cannot read the
message or key.
Case 2: A � N
Intermediate businesses (B, C …) can read message,
modify it or add their own information.

In this paper we only consider case 1.

3.2.1 Case 1 To avoid modification of the message by
intermediate nodes, there must be a non-repudiation
protocol down the whole business linked chain. The
proposed protocol works as follows (Figure 2).
K: a symmetric secret key generated by A. The receiver
N can access original message M only by using the
secret key K. t_id: transaction id,
message M encrypted using K: em = eK(M)
encrypted key from sender A: ek_from_A = ePN(K)
Double-encrypted Key: dek = ePTTP(ek_from_A) = ePTTP(ePN(K)) md1 = MD(em) md2 = MD(dek) md3 = MD(id_N) id_N = ePN(id_message) id-message generated by
originator or sender id_TTP = ePTTP(id_message)
treble signature: ts = t_id | md1 | md2 | md3 | sSA(t_id | md1 | md2 | md3)

Step 1: A sends the encrypted id-message, encrypted
message, double encrypted key and treble signature to
B, who sends it to C and so on until it reaches N.
Message from A → B : t_id | A | B | N | id_N | em | dek | ts
Message from B → C : t_id | B | C | N | id_N | em | dek | ts and so on
Step 2: A encrypts the id-message with public key of
TTP and sends it to TTP. A → TTP : t_id | ePTTP(id_message)
Step 3: Now suppose an intermediate node B tries to get
the key by sending it’s own id message dSB(id_N’) (it is not same as id_N). B → TTP : t_id | dSB(id_N’)
The TTP will not accept because id_message is not
equal to id_message it received in step 2 from A.
Step 4: TTP → B : t_id | Negative acknowledgement
Now consider messages with the recipient N. First the
recipient N uses the message digests to ensure the
message has not been trampled with (using treble
signature ts) and it then needs to identify itself to the
TTP.
Step 5: id_N is first decrypted at N using the private
key of N: dSN(id_N) to get id_message. It is next
encrypted using public key of the TTP and sent to the
TTP. N → TTP : t_id | ePTTP(id_message)
Step 6: TTP → N : Positive acknowledgement
Step 7: The recipient N sends double encrypted key
and signature1 to the TTP N → TTP : t_id | A | N | md1 | md3 | dek | sSN(t_id | md1 | md3)
Step 8: TTP decrypts the double encrypted key and
sends encrypted key to the recipient N.

TTP → N : t_id | ek_from_TTP
Where, ek_from_TTP = dSTTP(dek): decryption of dek
using private key of TTP.
Step 9: The recipient N sends his signature2 on a
digested secret key to the TTP. N → TTP : t_id | sSN(MD(ek_from_TTP))
Step 10: TTP sends both signatures to the originator A. TTP → A : t_id | sSN(t id | md1 | md3) | sSN(MD(ek_from_TTP))
We give an informal security analysis of our protocol.
• Intermediate nodes cannot get the key from the TTP

because of id_N.
• Originator A knows that the recipient N gets the

message because of md3 in the recipient N’s
signature.

• The originator A knows that message is correct
because of md1 in the recipient N’s signature.

• The originator A knows that the key is delivered
correctly because of the signature of the recipient N
on the digested secret key i.e. sSN(MD(ek_from_TTP)) .

• N know that this message is from the originator A by
checking the integrity of the message using treble
signature. It is the only sender that can generate that
signature.

3.2.1.1 Dispute Resolution
Repudiation of Recipient If the recipient N denies
receiving message ‘M’, the originator A can present
evidence in the form of signatures of N plus (t_id, em,
dek, id_message, md1, md2, md3, K, M, PTTP, PN,
ek_from_TTP) to arbitrator. The arbitrator will
compare the t_id and check the different encrypted
messages, message digests and signatures. The log of
the TTP may also be checked. The originator A wins
the dispute if all the checks are positive. Originator A
will win even if he is unable to provide log information
of the TTP as in the last check. The presence of the
TTP is therefore not required at the time of dispute.
Repudiation of Origin If originator A denies sending
the message ‘M’, the recipient N can present evidence
in the form of treble signature of A plus the different
encrypted messages, message digests and signatures.
Recipient N will win the dispute if all the checks are
positive.
3.2.1.2 Security Protocol Properties: The properties of
our non-repudiation services are:
Fairness - neither party can gain an advantage by
quitting prematurely or misbehaving during the
execution of the protocol. Detailed verification of
fairness is not provided due to lack of space. For
example, if the protocol terminates at step 1 because of
communication problems or misbehavior of an
intermediate node, the originator loss nothing. At this
time, intermediate nodes or the recipient N may have an
encrypted message em = eK(M) and double encrypted
key dek = ePTTP(ek_from_S) but they cannot access the

message until the TTP decrypts the key. If any
intermediate node tries to access the secret key, first it
needs to identify itself by decrypting id_N and this is
not possible because id_message is encrypted with the
public key of recipient N. The recipient N gets access to
entire original message only after step 8.
Protection and integrity of Message: - This protocol
protects the involved parties from common message
protection threats such as message interception and
modification, and replay attacks. We used message
digest and encryption techniques to protect the message
from interception and modification. The integrity of the
message can be verified by comparing with the message
digest values in the treble signature. Protection is
provided by encrypting a message with a key which is
double encrypted so that no one but recipient can access
the message content. The protocol generates a new
transaction id (t_id) every time to protect from replay
attacks.
Confidentiality of transaction - The protocol provides
confidentiality such that only the recipient can access
the original contents of the message. The TTP or
intermediate parties cannot read the message. The
recipient needs to identify itself by sending id_message
to TTP. Although the intermediate nodes are involved
in the communication, they cannot access the message.
The only way to read the message is through the secret
key that encrypts the message. The secret key is double
encrypted to prevent the intermediaries and TTP from
getting access to the key and hence the original
message.
Timeliness - The Protocol achieves timeliness as each
involved party can terminate the protocol at any time at
their own judgment while maintaining fairness. For
example, if the protocol terminates after step 1, the
recipient N cannot take advantage because it cannot
access the message even it gets the treble signature.
3.2.1.3 Building the BPEL Processes
For the BPEL specification we consider only one
intermediate node in the above protocol. For more
intermediate nodes, the BEPL specification for the
intermediate nodes can be simply replicated for each
intermediate node. We therefore need four processes,
supplier A, buyer N, intermediate party B and TTP
(figure 2).
Supplier Process A: This process takes request from
process B and sends request with double-encrypted key
to the intermediate process. Process A also sends
id_message to process TTP. Finally it receives
signatures from TTP process. First we define partners
and containers to store data. After defining the partners
and containers of the process, we define activities of the
process starting from sequence of process.
Begin sequence
• Receive a request from the intermediate node.

• Invoke a process to produce encrypted id_message,
encrypted message and double encrypted key.

• Assign the data to the container to be sent to
intermediate node.

• Reply the intermediate node to send message.
• Assign encrypted id_message to a container.
• Invoke the process TTP and send encrypted

id_message.
• Receive the signatures from the trusted third party

that buyer access the original message.
End sequence
Intermediate Process B:
The sequence of activities at intermediate process is::
Begin sequence
• Invoke the buyer process to send request of

purchase.
• Receive the information from supplier process.
• Invoke the buyer process to send that information.
End sequence
Buyer Process N
Begin sequence
• Receive the information from intermediate node.
• Assign the id_message to the container to be use in

the invoke activity.
• Invoke the process TTP and send the id_message.
• Receive the acknowledgement from the process TTP.
• Assign double encrypted key and signature1 to the

container.
• Reply to the process TTP and send double encrypted

key and signature1.
• Receive encrypted key from the process TTP.
• Reply the process TTP and send the signature2.
End sequence
Process TTP
TTP sequence of activities is as follow:
Begin sequence
• Receive id_message from the supplier process A.
• Receive id_message from the buyer process N.
• Invoke internal process to compare id_message for

identification.
• Reply with the acknowledgement to the buyer process N.
• Receive double encrypted key and signature1 from buyer

process.
• Reply with encrypted key to the buyer process.
• Receive the signature2 from the buyer process.
• Reply the supplier process to send the signatures of the

buyer process.
End sequence
3.2.2.1 Colored Petri Net Model for case 1 We model
the above protocol using colored Petri Nets. Such
modeling allows us to verify and reason about the
protocol. It is beyond the scope of this paper to provide
a detailed verification.
Definition 1: A colored Petri Net (CPN) is a tuple CPN
= (PN, ∑, CR, E) where [6]
• PN = (p, n, f, m) in an ordinary Petri net,

- p is a set of places {p1,p2,…pn}
- n is a set of transitions {t1,t2,…tm}

- f is set of functions from places to transitions and
from transitions to places

- m is the initial marking of the net
• ∑ = {σ1, σ2, …} is a finite set of colors,
• CR is color factor such that CR(p) ⊆ ∑, and

CR(m(p)) ⊆ CR(P)
• E, the arc function such that: ∀f (p, t), f(t, p) ∈ F, Ef

⊆ CR(p)MS
• m(p): denotes distinct color at a place p, e.g. m(p) = g

+ r represents place p containing a token of color g
and a token of color r, i.e., CR(m(p)) = {g, r}.

• CR(p)MS : Represents the set of multi set or bags over
CR(p) e.g. given a set CR(p) = {a, b, ….}, the multi
sets a, a+b, a+2b are members of CR(p).

Petri Nets allow verification of many properties of the
protocol including liveness and deadlock properties, of
the protocol. Each token color represents a web services
transaction. We outline a verification of the reliability
of the non-repudiation protocol for chain-linked
Transactions. We show that if any transaction does not
take place due to communication failures or node
misbehavior, the protocol will terminate.
Definition 2: Given a CPN, we define the number of
distinct colors associated with a place pi as ui = | C(pi) |.
Definition 3: Given a CPN, we define the number of
ways in which a transition ti can fire as vi = the number
of consistent substitutions of each arc function f(pj, ti)
(the condition to be satisfied for the transition to fire)
with the elements in C(pj), where pj є •ti. (•ti. is the set
of input places of ti.) We regard a colored Petri net as
continuous time homogeneous Markov process [7] and
we can analyze the system reliability..
Definition 4: System is reliable if and only if each input
and output function of all transitions are reliable.
Where, reliability of the system is denoted by
R(system)
R(system) = R (I(tj)) AND R (O(tj))
R(system) = R (f(pi, tj)) AND R(f(tj, pk))
Now first consider R (f(pi, tj)), where pi є •tj
We unfold the CPN as follows: For each place pi in
CPN, create as many places as ui and label them with
color σ1, σ2, σ3 ……, σu and for each transition tj in
CPN create as many transitions as vj and give them
distinct label to each.

Now draw the edges from every place derived from
pi to every transition tj with arc function Ef (pi, tj) and
substitute σk in Ef (pi, tj) with logical 1 which ensure a
correct execution of tj, so

∏
=

=
u

i
tjpifji EtpfR

1
),()),((

Now consider R(f(tj, pk)), where pk є tj• (set of output
places of tj). For each place pk in CPN, create as many
places as uk and label them with color σ1, σ2, σ3 ……, σk and for each transition tj in CPN create as many

transitions as vj and give them distinct label. Now draw
the edges from every transition derived from tj to every
transition pk with arc function Ef (tj, pk) and substitute σk
in Ef (tj, pk) with logical 1 which ensure a correct
execution of tj, so

∏
=

=
u

i
tjpifki EptfR

1
),()),((

 u
Hence; R(system) = R (f(pi, tj)) AND R(f(tj, pk))
This shows that in the colored Petri net a transition may
not fire properly (due to communication failure or
misbehaving nodes). We assume that the Petri Net is
live. If a transition does not fire, then the liveness
property is no longer true and this will terminate the
system.

4. Conclusions
In this paper we propose non-repudiation protocols for
2-party and chain linked web services transactions
where the trusted third party signature is not considered
as evidence; therefore TTP availability is not required
at the time of dispute resolution. Protocols were
analyzed so that they fulfill the security and non-
repudiation requirements in efficient manner. We
proposed Petri nets to validate the flow of protocols.
The secure web services flow is modeled using BPEL.

In multiple entity non-repudiation protocols the
number of originators and recipients may vary. As the
number increase this can affect performance and
availability. Performance improvement is one area for
further work. Modeling of attacks on web services is
another area for further research. Since the proposed

protocols are based on the assumption of reliable
communication channel, protocol independent of
reliable communication channels is needed.

References
[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J.
Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S.
Thatte, I. Trickovic, and S. Weerawarana. “Business
Process Execution Language for Web Services”,
Version 1.1, Pages 8-111, 2003.
http://www-128.ibm.com/developerworks/library/ws-
bpel/

[2] J. Zhou, Non-repudiation in Electronic Commerce,
Artech House, Computer Security Series, 2001.

[3] J. Zhou and D. Gollmann. “A Fair Non-repudiation
protocol”. Proceedings of 1996 IEEE Symposium on
Security and Privacy, pp. 55-61, 1996.

[4] S. Yang, Stanley Y. W. Su, and H. Lam, “A Non-
Repudiation Message Transfer Protocol for E-
commerce”. Proceedings of IEEE International
Conference on E-commerce, 2003.

[5] J. Onieva, J. Zhou, J. Lopez. “Non-repudiation
protocols for multiple entities”, Computer
Communications, 27(16):pp. 1608-1616, October 2004

 [6] V. Atluri, W. Huang, “A Petri net Based Safety
Analysis of Workflow Authorization”, Journal of
Computer Security, Vol. 8y 8, Pages 209-240, 2000.

[7] S. Hong, K. Kim. “ A Reliability Analysis of
Distributed Programs with Colored Petri Nets” ETRI
Journal, Vol. 16 No. 1, 1997.

