
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 1

Multiobjective Programming for Type-2
Hierarchical Fuzzy Inference Trees

Varun Kumar Ojha, Member, IEEE, Václav Snášel, Senior Member, IEEE, and Ajith Abraham, Senior
Member, IEEE

Abstract—This paper proposes a design of hierarchical fuzzy
inference tree (HFIT). An HFIT produces an optimum tree-like
structure, i.e., a natural hierarchical structure that accommodates
simplicity by combining several low-dimensional fuzzy inference
systems (FISs). Such a natural hierarchical structure provides
a high degree of approximation accuracy. The construction of
HFIT takes place in two phases. Firstly, a nondominated sorting
based multiobjective genetic programming (MOGP) is applied to
obtain a simple tree structure (a low complexity model) with a
high accuracy. Secondly, the differential evolution algorithm is
applied to optimize the obtained tree’s parameters. In the derived
tree, each node acquires a different input’s combination, where
the evolutionary process governs the input’s combination. Hence,
HFIT nodes are heterogeneous in nature, which leads to a high
diversity among the rules generated by the HFIT. Additionally,
the HFIT provides an automatic feature selection because it uses
MOGP for the tree’s structural optimization that accepts inputs
only relevant to the knowledge contained in data. The HFIT was
studied in the context of both type-1 and type-2 FISs, and its
performance was evaluated through six application problems.
Moreover, the proposed multiobjective HFIT was compared
both theoretically and empirically with recently proposed FISs
methods from the literature, such as McIT2FIS, TSCIT2FNN,
SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR,
etc. From the obtained results, it was found that the HFIT
provided less complex and highly accurate models compared to
the models produced by the most of other methods. Hence, the
proposed HFIT is an efficient and competitive alternative to the
other FISs for function approximation and feature selection.

Index Terms—Hierarchical fuzzy inference system, multiobjec-
tive genetic programming, differential evolution, approximation,
feature selection

I. INTRODUCTION

A fuzzy inference system (FIS)—composed of a fuzzifier
to fuzzify input information, an inference engine to infer

information from a rule base (RB), and a defuzzifier to return
crisp information—solves a wide range of problems that are
ambiguous, uncertain, inaccurate, and noisy. An RB of an FIS
is a set of rules of the form IF-THEN, i.e., the antecedent
and the consequent form. The Takagi–Sugeno–Kang (TSK)

V K Ojha is with the Chair of Information Architecture, Swiss Fed-
eral Institute of Technology (ETH) Zurich, Zurich, Switzerland e-mail:
ojha@arch.ethz.ch

V Snášel is with the Dept. of Computer Science, Technical University of
Ostrava, Czech Republic, e-mail: vaclav.snasel@vsb.cz

A Abraham is with Machine Intelligence Research Labs (MIR Labs),
Washington, USA, e-mail: ajith.abraham@ieee.org

This work was supported by the IPROCOM Marie Curie initial training
network, funded through the People Programme (Marie Curie Actions) of
the European Union’s Seventh Framework Programme FP7/2007-2013/ under
REA Grant Agreement No. 316555.

Manuscript received Month xx, yyyy; revised Month xx, yyyy.

is a widely used FIS model [1]. It embraces the IF-THEN
form, where the antecedent part consists of type-1 fuzzy sets
(T1FS) and/or type-2 fuzzy sets (T2FS), and the consequent
part consists of a real value or a linear/nonlinear function.

Type-1 FIS (T1FIS) and type-2 FIS (T2FIS) differ when
it comes to the representation of the antecedent part and
the consequent part of a rule, and T1FS and T2FS differ
in the definitions of their membership functions. Unlike the
crisp output of a T1FS membership function (MF) [2], the
output of a T2FS MF is fuzzy in nature [3]. Such nature
of the T2FS MFs is advantageous in processing uncertain
information more effectively than with T1FS MFs [4], because
a T2FIS can overcome the inability of a T1FIS to fully handle
or accommodate the linguistic and numerical uncertainties
associated with a changing and dynamic environment [5].

However, a T2FIS is computationally expensive, because
it has a larger number of parameters than a T1FIS and it
requires a type-reduction mechanism in its defuzzification part.
The interval T2FIS (IT2FIS) reduces the computational cost
by employing a simplified T2FS, known as interval T2FS
(IT2FS) [4]. An IT2FS MF is bounded by a lower MF (LMF)
and an upper MF (UMF), and the area between the LMF and
UMF is called the footprint of uncertainty [4]. Then, a type-
reducer reduces IT2FS to interval-valued T1FS. Subsequently,
the output of IT2FIS is produced by averaging the intervals.

The construction and tuning of the rules are among the
vital tasks in the optimization of an FIS, where the rule’s
construction is met by combining the fuzzy sets and the
rule’s tuning is met by adjusting the MF’s parameters and the
consequent part’s parameters. Such a form of rule optimization
is often achieved by mapping the rule’s parameters onto a
real-valued genetic vector, and it is known as the Michigan
Approach [6]. Similarly, the construction/optimization of the
RB is met by the genetic selection of the rules at the RB. Such
a form of RB optimization is often achieved by mapping the
rules onto a binary-valued genetic vector [7], and it is known
as the Pittsburgh Approach [8].

However, FIS optimization is not limited to only its map-
ping onto a genetic vector, rather a structural/network-like
implementation of FIS is often performed [9]. Addition-
ally, TSK-based hierarchical self-organizing learning dynamics
have also been proposed [10]. Moreover, several researchers
have focused on the FIS and neural network (NN) inte-
gration and its parameter optimization using various learn-
ing methods including gradient-decent and the metaheuristic
algorithms [11], [12], [13], [14]. The summaries of such
optimization paradigms are described as follows:

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 2

A self-constructing neural fuzzy inference network (SON-
FIN), proposed by Juang et al. [15], is a six layered network
structure whose optimization begins with no rule and then
rules are incrementally added during the learning process.
SONFIN uses a clustering method to partition the input space
that governs the number of rules extracted from the data, then
the parameters (MF’s arguments) of the determined SONFIN
structure are tuned by the backpropagation algorithm. Later,
in [16], SONFIN’s concept was extended for the construction
of T2FIS, where a self-evolving IT2FIS (SEIT2FNN) that
implements a TSK-type FIS model was proposed, and the
parameters of the evolved structure were tuned by using the
Kalman-filtering algorithm. Additionally, a simplified type-
reduction process for SEIT2FNN was proposed in [17]. Like
SONFIN, in [18], a TSK-type FIS model, called a dynamic
evolving neural-fuzzy inference system (DENFIS), was pro-
posed, which evolved incrementally by choosing active rules
from a set of rules and employed an evolving clustering
method to partition the input space and the least-square
estimator to optimize its parameters.

To overcome some limitations of the self-organizing fuzzy
NN paradigm, Tung et al. [19] proposed a self-adaptive fuzzy
inference network (SaFIN) that applied a categorical learning
induced partitioning algorithm to eliminate two limitations:
1) the need for predefined numbers of fuzzy clusters and 2)
the stability–plasticity trade-off that addresses the difficulty
in finding a balance between past knowledge and current
knowledge during the learning process. SaFIN also employed a
rule consistency checking mechanism to avoid inconsistent RB
construction. Additionally, the Levenberg-Marquardt method
was applied for RB’s parameters tuning. In [20], to improve
the efficiency of IT2FIS, a mutually recurrent interval type-2
neural fuzzy system (MRIT2NFS) was proposed which used
weighted feedback loops in the antecedent parts of the formed
rules and applied gradient-decent learning and the Kalman-
filter algorithm to tune the recurrent weights and the rules’
parameters, respectively. In [21], a self-evolving T2FIS model
was proposed that employed a compensatory operator in the
type-2 inference mechanism and a variable-expansive Kalman-
filter algorithm for parameter tuning.

Further, a simplified interval type-2 fuzzy NN with a
simplified type-reduction process (SIT2FIS) was proposed
in [22], and a growing online self-learning IT2FIS that used the
dynamics of a growing Gaussian mixture model was proposed
in [23]. Recently, in [24], a meta-cognitive interval type-2
neuro FIS (McIT2FIS) was proposed, which employed a self-
regulatory meta-cognitive system that extracts the knowledge
contained in minimal samples by accepting or discarding data
samples based on sample’s contribution to knowledge. For the
parameters tuning, McIT2FIS employed the Kalman-filtering
algorithm.

The self-organizing fuzzy NN paradigm discussed above
has to employ a clustering method to partition the input
space during the FIS structure’s design. Contrary to this,
a hierarchical FIS (HFIS) constructs an FIS by using a
hierarchical arrangement of several low-dimensional fuzzy
subsystems [25]. Initially, the input variables selection, the
levels of hierarchy, and the number of parameters was fully up

to the experts to determine. Moreover, HFIS design overcomes
the curse of dimensionality [26], and it possesses a universal
approximation ability [27], [28], [29], [30].

Torra et al. [31] summarized the contributions where
the expert’s role in the HFIS design process was mini-
mized/eliminated. For example, in [32], HFIS was realized as
a feedforward network like structure in which the output of the
previous layer’s subsystem was only fed to the consequent part
of the next layer, and so on. Similarly, in [33], a two-layered
HFIS was developed, where, for each layer, the knowledge
bases (KB) were generated by linguistics rule generation
method and the KB rules were selected by genetic algorithm
(GA). In [34], an adaptive fuzzy hierarchical sliding-mode
control method was proposed, which was an arrangement of
many subsystems, and the top layer accommodated all the
subsystems’ outputs. Moreover, in [35], to optimize the struc-
ture of a hierarchical arrangement of low-dimensional TSK-
type FISs, probabilistic incremental program evolution [36]
was employed. Similarly, the importance of the hierarchical ar-
rangements of the low-dimensional T2FSs is explained in [37].

For FIS models that have a structural representation (e.g.,
self-organizing fuzzy NN and HFIS models), multiobjective
optimization is inherent since accuracy maximization and
complexity minimization are two desirable objectives [38].
Hence, to make trade-offs between interpretability and ac-
curacy, or, in other words, to make trade-offs between ap-
proximation error minimization and complexity minimiza-
tion, a multiobjective orientation of FIS optimization can be
used [39], [40], [41]. Complexity minimization can be defined
in many ways, such as a reduced number of rules, reduced
number of parameters, etc., [42], [41].

Since a single solution may not satisfy both objectives
simultaneously, a Pareto-based multiobjective optimization al-
gorithm can be used in FIS optimization, the scope of which
spans from the rule selection, to rule mining, rule learning,
etc., [43], [44], [45], [46]. Similarly, in [47], [48], [49], [50],
simultaneous learning of KB was proposed, which included
feature selection, rule complexity minimization together with
approximation error minimization, etc.

Moreover, in [51], a co-evolutionary approach that aimed at
combining a multiobjective approach with a single objective
approach was presented where, at first, a multiobjective GA
determined a Pareto-optimal solution by finding a trade-off
between accuracy and rule complexity. Then, a single objective
GA was applied to reduce training instances. Such a process
was then repeated until a satisfactory solution was obtained.
A summary of research works focused on multiobjective
optimization of FIS is provided in [52].

In conclusion, the following are the necessary practices
for an FIS model design: 1) input space partitioning; 2) rule
formation; 3) rule tuning; 4) FIS structural representation; 5)
improving accuracy and minimizing a model’s complexity. In
this work, a multiobjective optimization of HFIS, called a
hierarchical fuzzy inference tree (HFIT), was proposed, which
accommodates all these necessary FIS model design practices.

The proposed HFIT is analogous to a multi-layered network
and automatically partitions input space during the structure
optimization phase by using the dynamics of the evolution-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 3

ary algorithm [53]. The parameter tuning of the HFIT was
performed by the differential evolution (DE) algorithm [54],
which is a metaheuristic algorithm inspired by the dynamics
of the evolutionary process. Metaheuristic algorithms, being
independent of the problems, solve complex optimization
problems. Hence, they are useful in finding the appropriate
parameter values for an FIS [13].

In this work, the proposed HFIT implements a TSK-type
FIS for both T1FIS and T2FIS, and HFIT was studied under
both single objective and multiobjective optimization orienta-
tions. Hence, a total of four versions of HFIT algorithms were
proposed: type-1 single objective HFIT (T1HFITS), type-1
multiobjective objective HFIT (T1HFITM), type-2 single ob-
jective HFIT (T2HFITS), and type-2 multiobjective objective
HFIT (T2HFITM). In the construction of type-2 HFITs, the
type-reduction algorithm of the Karnik-Mendel method de-
scribed in [4] was used with an improvement in its termination
criteria. In summary, the following are the main and novel
contributions of this work:

1) The proposed hierarchical tree-like design (HFIT) forms
a natural hierarchical structure by combining several
low-dimensional fuzzy subsystems.

2) MOGP driven optimization provided a trade-off between
model’s accuracy and complexity. Moreover, each node
in the tree acquires a different input’s combination,
where the MOGP governs the input’s combination.
Hence, HFIT nodes are heterogeneous in nature, which
lead to a high diversity among the rules generated by
the HFIT. Such a diverse rule generation methods is a
distinguished aspect of the proposed HFIT.

3) A comprehensive theoretical study of HFIT shows that,
when it comes to the partitioning of input space, mem-
bership function design, and even rule formation, it
has advantages over network-like layered architecture
models, which have to use clustering methods when they
do input space partitioning. Clustering methods generate
overlapping MFs in fuzzy sets, whereas HFIT’s MOGP
driven MFs selection avoid such an overlapping of MFs.

4) Unlike many models in the literature, HFIT performed
an inclusive and automatic feature selection, which led
to the simplification of the RB in fuzzy subsystems and
incorporated only relevant knowledge contained in the
dataset into HFIT’s structural representation.

5) A comprehensive performance comparison of the pro-
posed four versions of the HFIT algorithms both in the-
oretical and empirical sense with the recently proposed
FIS algorithms suggests that the HFIT design offers
models with a high accuracy and low complexity.

The structure of this paper is as follows: Section II provides
an introduction to T1FIS and T2FIS; Section III describes the
proposed multiobjective strategy for developing HFIT and its
parameter optimization; Section IV provides a comprehensive
theoretical evaluation of HFIT; Section V provides a detailed
description of HFIT’s training parameters settings and its com-
prehensive empirical evaluation compared with the algorithms
reported in the literature; finally, the results are discussed in
Section VI followed by the conclusions in Section VII.

II. TSK FUZZY INFERENCE SYSTEMS

A. Type-1 Fuzzy Inference Systems
A TSK-type FIS is governed by the IF–THEN rules of the

form [1]:

Ri : IF x1 is Ai1 AND . . . AND xdi is Aidi THEN y is Bi

(1)
where Ri is the i-th rule in an FIS, Ai1, . . . , Aidi are
the T1FSs, Bi is a function of an input vector x =
hx1, x2, . . . , xdii that returns a crisp output y, and di is the
total number of the inputs presented to the i-th rule. Note that
the number of inputs may vary from rule-to-rule. Hence, the
dimension of inputs in a rule is denoted as di. In TSK, the
function Bi is usually expressed as:

Bi = c0i +
diX

j=1

cjixj (2)

where cji for j = 0 to di is the free parameters in the consequent
part of a rule. The defuzzified crisp output of FIS is computed
as follows: First, the inference engine fires up the RB rules.
The firing strength fi of the i-th rule is computed as:

fi =
diY

j=1

µAij (xj) (3)

where µAij is the value of j-th T1FS MF at the i-th rule.
Then, the defuzzified output y of an FIS is computed as:

y =

PM
i=1 BifiPM
i=1 fi

(4)

where M is the total rules in the RB. In this work, as shown
in Fig. 1(a), the T1FS A was of the form:

µA(x) =
1

1 +
�
x�m
�

�2 (5)

where m and � are the center and the width of MF µA(x),
respectively.

B. Type-2 Fuzzy Inference Systems
A T2FS Ã is characterized by a 3-dimensional (3-D)

MF [55]. The three axes of T2FS are defined as follows. The
x-axis is called the primary variable, the y-axis is called the
secondary variable (or primary MF, which is denoted by u),
and the z-axis is called the MF value (or secondary MF value),
which is denoted by µ. Hence, in a universal set X , a T2FS
Ã has the form:

Ã = {((x, u) , µÃ (x, u)) |8x 2 X, 8u 2 [0, 1]} (6)

where the MF value µ has a 2-dimensional support called the
footprint of uncertainty of Ã, which is bounded by an LMF
µ
Ã
(x) and a UMF µ̄Ã(x) (Fig. 1(b)). A Gaussian function,

with an uncertain mean within [m1,m2] and standard deviation
�, is an IT2FS MF (Fig. 1(b)), which is written as:

µÃ(x,m,�) = exp

�1

2

✓
x�m

�

◆2
!
,m 2 [m1,m2]. (7)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 4

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

primary axis (x)

m
em

b
er
sh
ip

va
lu
e
(µ
)

µA(x)

(a) Type-1 Fuzzy MF

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

primary axis (x)

m
em

b
er
sh
ip

va
lu
e
(µ
)

µA(x)

(b) Type-2 Fuzzy MF

Fig. 1. Membership functions. (a) Type-1 MF (5) with mean m = 5.0 and
� = 2.0 (b) Type-2 Fuzzy MF with fixed � = 2.0 and means m1 = 4.5 and
m2 = 5.5. LMF µ

Ã
(x) as per (8) is on the dotted line and UMF µ̄Ã(x) as

per (9) is on the solid line.

In this work, the LMF was defined as [4]:

µ
Ã
(x) =

⇢
µÃ(x,m2,�), x (m1 +m2)/2
µÃ(x,m1,�), x > (m1 +m2)/2

(8)

and the UMF was defined as [4]:

µ̄Ã(x) =

8
<

:

µÃ(x,m1,�), x < m1

1, m1 x m2

µÃ(x,m2,�), x > m2

. (9)

In Fig. 1(b), the point xp along the x-axis of 3-D IT2FS
MF cuts the LMF and UMF along the y-axis, and the value
of the IT2FS is considered to be along the z-axis (not shown in
Fig. 1(b)) are µ̄Ã(x

p) and µ
Ã
(xp). Considering IT2FS MFs,

i-th IF–THEN rule of type-2 TSK-FIS for an input vector
x = hx1, x2, . . . , xdii takes the following form:

Ri : IF x1 is Ãi1 AND . . . AND xdi is Ãidi THEN y is B̃i

(10)
where Ãi1, . . . , Ãidi are the T2FSs, B̃i is a function of x that
returns a pair [bi, b̄i], called the left and right weights of the
consequent part of the i-th rule. In TSK, B̃i is usually written
as:

B̃i = [c0i � s0i , c
0
i + s0i] +

diX

j=1

[cji � sji , c
j
i + sji]xj (11)

where cji for j = 0 to di is the free parameter in the consequent
part of a rule and sij for j = 0 to di are the deviation factors of
the free parameters. The firing strength of IT2FS Fi = [f

i
, f̄i]

is computed as:

f
i
=

diY

j=1

µ
Ãij

(xj) and f̄i =
diY

j=1

µ̄Ãij
(xj) (12)

At this stage, inference engine fires up the rules and the
type-reducer reduces the IT2FS to T1FS. In this work, the
center of set type-reducer ycos, prescribed in [4], was used:

ycos =
[

fi2F i, bi2B̃i

PM
i=1 f

ibi
PM

i=1 f
i

= [yl, yr] (13)

where yl and yr are the left and the right end of the interval.
For the ascending order of bi and b̄i, yl and yr are computed
as:

yl =

PL
i=1 f̄

ibi +
PM

i=L+1 f
ibi

PL
i=1 f̄

i +
PM

i=L+1 f
i

(14)

yr =

PR
i=1 f

ib̄i +
PM

i=R+1 f̄
ib̄i

PR
i=1 f

i +
PM

i=R+1 f̄
i

(15)

where L and R are the switch point, determined by

bL yl bL+1 and b̄R yr b̄R+1,

respectively. The defuzzified crisp output is then computed as:

y =
yl + yr

2
. (16)

III. MULTIOBJECTIVE OPTIMIZATION OF HIERARCHICAL
FUZZY INFERENCE TREES

A. Hierarchical Tree Formation
A hierarchical fuzzy inference tree (HFIT) is a tree-based

system. Its hierarchical structure is analogous to a multilayer
feedforward NN, where the nodes (the low-dimensional FISs)
are connected using weighted links. The concept of forming a
hierarchical fuzzy inference tree is inherited from the flexible
neural tree proposed by Chen et al. [56], which has two
learning phases. Firstly, in the tree construction phase, an
evolutionary algorithm is employed to construct/optimize a
tree-like structure. Secondly, in the parameter tuning phase,
a genotype representing the underlying parameters of the
tree structure is optimized by using parameter optimization
algorithms.

To create an optimum tree based model, firstly, a population
of randomly generated trees is formed. Once a satisfactory tree
structure (a tree with a small approximation error and low
complexity) is obtained using an evolutionary algorithm, the
parameter tuning phase optimizes its parameters. The phases
are repeated until a satisfactory solution is obtained. Fig. 2 is
a clear representation of HFIT’s two-phase construction.

B. Tree Encoding
An HFIT G is a collection of functions V and terminals T :

G = V [T = {v2, v3, . . . , vtn} [{x1, x2, . . . , xd} (17)

where vj (j = 2, 3, . . . , tn) denotes non-leaf instruction and
has 2 j tn arguments. The leaf node’s instruction
x1, x2, . . . , xd takes no argument and represents the input
variable/instruction. A typical HFIT is shown in Fig. 3(a) and
Fig. 3(b) illustrates an HFIT’s node Ni that takes ni inputs.
The inputs zij 2 {x1, x2, . . . , xd} for j = 1 to ni to a node
Ni is either come from the input layer or from other nodes in
HFIT. Each node in an HFIT receives a weighted input xiwi,
where wi is the weight. In this work however, the weights in
HFIT were set to 1 because the objective of this work was
also to reduce the complexity of the produced tree along with
approximation error. Setting weights to 1 also allow raw input
to be fed to the fuzzy sets.

C. Rule Formation at the Nodes
1) Rules for Type-1 FIS Node: Each node in an HFIT is

an FIS of either type-1 or type-2. Hence, the rules at a node
were created as follows: Considering a reference to the node
N1 from Fig. 3(a) that has two arguments/inputs x1 and x2 and

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 5

Input: data and parameter
settings

MOGP/SOGP: initialization of HFIT
Population and objective function setting

If MOGP ?

NSGA-II-based
nondominated sorting

Fitness based sorting

New population using selection,
crossover, and mutation

Fitness evaluation

max
iteration?

Yes

No

Yes No

DE: initialization of the population for parameter
tuning for a selected fixed HFIT structure

max
iteration?

Yes

No

New population using selection,
crossover, and mutation

Best solution
found ?

Yes
No

STOP

Fig. 2. Two-phase construction of a hierarchical fuzzy inference tree.

x1

x2

x3

x4

x5

v2

v2

v3 y3

w1

w2

w3

w4

w5

w6

w7

N1

N2

N3

y1

y2

(a) Two-stage hierarchical tree.

zi1

vini yi

wi
1

wi
2

wi
ni

zi2

zini

Ni

(b) Node structure.

Fig. 3. Hierarchical fuzzy inference system. (a) Complete tree with three
nodes N1, N2, and N3 and with inputs x1, x2, x3, x4, and x5. (b) Illustration
of the i-th node Ni that has ni inputs zij 2 {x1, . . . , xn} for j = 1 to ni

and output yi.

assuming that each input x1 and x2 has two T1FSs A1
11, A

1
12

and A1
21, A

1
22, respectively, the rules for T1FIS are generated

as:
R1

ij : IF x1 is A1
1i AND x2 is A1

2j

THEN y1ij = c0ij + c1ijx1 + c2ijx2,
for i = 1, 2 and j = 1, 2.

The consequent part B1
ij of the rules at the node N1 is

computed by using (2). Finally, the output y1 of node N1 is
computed as:

y1 =

P2
i=1

P2
j=1 f

1
ijB

1
ijP2

i=1

P2
j=1 f

1
ij

(18)

where the firing strength f1
ij is computed as:

f1
ij = µA1

1i
(x1)µA1

2j
(x2), for i = 1, 2 and j = 1, 2. (19)

Similar to node N1, node N2 has two inputs and, if each
input at node N2 is partitioned into two T1FSs, then the output
y2 of node N2 is computed in a similar way to how the output
of the node N1 is computed.

The output y3 of the HFIT shown in Fig. 3(a) is computed
from node N3, which revives inputs y1 and y2 and x3, where
y1 and y2 are the outputs of nodes N1 and N2, respectively.
Therefore, the rules at node N3, considering each input y1,
y2, and x3 has two T1FSs A3

11, A
3
12, A3

21, A
3
22, and A3

31, A
3
32

respectively, is represented as:

R3
ijk : IF y1 is A3

1i AND y2 is A3
2j AND x3 is A3

3k

THEN y3ijk = c0ijk + c1ijky1 + c2ijky2 + c3ijkx3,
for i = 1, 2 and j = 1, 2 and k = 1, 2.

Output y3 of node N3, which is also the output of the tree
(Fig. 3(a)), is computed as:

y3 =

P2
i=1

P2
j=1

P2
k=1 f

3
ijkB

3
ijkP2

i=1

P2
j=1

P2
j=1 f

3
ijk

(20)

where the consequent part B3
ij is computed using (2) and the

firing strength f3
ijk is computed as:

f3
ij = µA3

1i
(y1)µA3

2j
(y2)µA3

3k
(x3),

for i = 1, 2 and j = 1, 2 and k = 1, 2.
(21)

2) Rules for Type-2 FIS Node: If the nodes of the HFIT in
Fig. 3(a) are type-2 nodes, then, assuming that node N1 has
two T2FSs Ã1

11, Ã
1
12 and Ã1

21, Ã
1
22, respectively, the rules for

T2FIS at node N1 are generated as:

R1
ij : IF x1 is Ã1

1i AND x2 is Ã1
2j

THEN y1ij = [c0ij � s0ij] + [c1ij � s1ij]x1 + [c2ij � s2ij]x2,
for i = 1, 2 and j = 1, 2

and the lower and upper firing strengths f1
ij

and f̄1
ij at node

N1 are computed as:

f1
ij
= µÃ1

1i
(x1)µÃ1

2j
(x2), for i = 1, 2 and j = 1, 2 (22)

f̄1
ij = µÃ1

1i
(x1)µÃ1

2j
(x2), for i = 1, 2 and j = 1, 2. (23)

Then, the left and right weights b1ij and b̄1ij of the consequent
part of the rules are produced by using (11). After that, the
type-reduction of the node is performed as described in [4],
where the left and right intervals y1l and y1r are computed as
per (14) and (15). During type-reduction [4], an early stopping
mechanism was adopted to reduce computation time. Finally,
output y1 of node N1 is computed as y1 = (y1l + y1r)/2.

The output computation at node N2 of the tree in Fig. 3(a)
is similar to that of the output computation of node N1

because, at node N2, there are two inputs and each of these
are partitioned into two T2FSs.

The output of the type-2 HFIT shown in Fig. 3(a) is
computed from node N3, which receives inputs y1 and y2
and x3, where y1 and y2 are the outputs of nodes N1 and N2,
respectively. Therefore, the rules at node N3, considering each

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 6

input y1, y2, and x3 has two T2FSs Ã3
11, Ã

3
12, Ã3

21, Ã
3
22, and

Ã3
31, Ã

3
32 respectively, are represented as:

R3
ijk : IF y1 is Ã3

1i AND y2 is Ã3
2j AND x3 is Ã3

3k

THEN y3ijk = [c0ijk � s0ijk] + [c1ijk � s1ijk]y1
+ [c2ijk � s2ijk]y2 + [c3ijk � s3ijk]x3,

for i = 1, 2 and j = 1, 2 and k = 1, 2.

The lower and upper firing strengths f3
ijk

and f̄3
ijk at node N3

are computed as:

f3
ijk

= µÃ3
1i
(y1)µÃ3

2j
(y2)µÃ3

3j
(x3),

for i = 1, 2 and j = 1, 2 and k = 1, 2
(24)

f̄3
ijk = µÃ3

1i
(y1)µÃ3

2j
(y2)µÃ3

3j
(x3),

for i = 1, 2 and j = 1, 2 and k = 1, 2.
(25)

After computing the firing strengths and the left and right
weights b3ij and b̄3ij of the rules, the type-reduction at the node
is performed by using (13), where the left and right intervals
y3l and y3r are computed as per (14) and (15). Output y3 of
node N3, which is also the output of the tree, is computed by
averaging y3l and y3r as y3 = (y3l + y3r)/2.

D. Structure Tuning
Usually, a learning algorithm owns a single objective (ap-

proximation error minimization) that is often achieved by
minimizing the root mean squared error (RMSE) on the
learning data:

E =

vuut 1

N

NX

i=1

(di � yi)2 (26)

where d and y are the desired and the model’s outputs,
respectively, and N is the number of data pairs in the training
set. However, a single objective comes at the expense of
a model’s complexity or the generalization ability on un-
seen data. The generalization ability broadly depends on the
model’s complexity (e.g., the number of parameters c(w) in
the model) [57]. The minimization of the approximation error
E and the number of free parameters c(w) are conflicting
objectives (Fig. 4). Hence, a Pareto-based multiobjective opti-
mization can be applied to obtained a Pareto set of nondom-
inated solutions, in which no one objective function can be
improved without a simultaneous detriment to at least one
of the other objectives of the solution [58]. Therefore, an
HFIT that offers the lowest approximation error and simplest
structure is the most desirable one. To obtain such a set
of Pareto-optimal (nondominated) solutions, a nondominated
sorting based MOGP was applied.

The proposed MOGP acquires the nondominated sorting
algorithm [58] for computing Pareto-optimal solutions from
an initial population of fuzzy inference trees. The individu-
als in MOGP were sorted according to their dominance in
population. Moreover, individuals were sorted according to
the rank/Pareto-front/line. MOGP is an elitist algorithm that
allows the best individuals to propagate into the next genera-
tion. Diversity in population was maintained by measuring the
crowding distance among the individuals [58].

A detailed description of MOGP algorithm is as follows:

ErrorSmall Large

C
om

p
le
xi
ty

H
ig
h

L
ow

Complex, but
accurate models

Simple, but
inaccurate models

Fig. 4. Non-dominated fuzzy inference system.

1) Initial Population: Two fitness measures were consid-
ered: approximation error minimization and parameter count
minimization. To simultaneously optimize these objectives
during the structure-tuning phase, an initial population W0 of
randomly generated HFITs was formed and sorted according
to their nondominance.

2) Selection: In selection operation, a mating pool Wp of
size(W0)/2 was obtained using binary tournament selection
that selects two candidates randomly at a time from a pop-
ulation Wt, and the best solution (according to its rank and
crowding distance) is copied into the mating pool Wp. This
process is continued until the mating pool becomes full.

3) Generation: An offspring population Wc was generated
using the individuals of the mating pool Wp. Two distinct
individuals (parents) were randomly selected from the mating
pool to create new individuals using the genetic operators
crossover and mutation.

4) Crossover: In crossover operation, randomly selected
sub-trees of two parent trees are swapped (Fig. 5(a)). The
swapping includes the exchange of nodes. A detailed descrip-
tion of the crossover operation in genetic programming is
available in [59], [60]. The crossover operation is selected with
the crossover probability pc.

5) Mutation: The mutation operators used in HFIT are as
follows [59], [60]:

a) Replacing a randomly selected terminal xi 2 T with a
newly generated terminal xj 2 T for j 6= i.

b) Replacing all terminal nodes of an HFIT with a new set
of terminal nodes derived from T .

c) Replacing a randomly selected FIS node Ni 2 V with
a newly generated FIS node Nj 2 V for j 6= i.

d) Replacing a randomly selected terminal node xi 2 T
with a newly created FIS node Ni 2 V .

e) Deleting a randomly selected terminal node xi 2 T or
deleting a randomly selected FIS node Ni 2 V .

The mutation operation was selected with the probability pm,
and the type of mutation operator (a, or b, or c, or d, or e) was
chosen randomly during the mutation operation (Fig. 5(b)).

6) Recombination: The offspring population Wc and the
main population Wt were mixed together to make a combined
population Wg .

7) Elitism: In this work, elitism was decided according to
the rank (based on both RMSE and the model’s complexity)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 7

x1

x2

x3

x4

x4

Na
1

Na
2

Na
3

x1

x3

x4

N b
1

N b
2

N b
4

x3

x1 N b
3

Parent tree: a Parent tree: b
x3

N b
2

Na
3

x3

x1 N b
3

Child tree: c Child tree: d

x4

x3

x4

Na
2

x1

x4

N b
1

N b
4

x2

x1

Na
1

Subtree of a

Subtree of b

(a) Crossover operation

x1

x2

x3

x4

x4

Na
1

Na
2

Na
3

Parent tree

x5

x2

x3

x4

x4

Na
1

Na
2

Na
3 x1

x2

x3

x4

x4

Na
1

Na
2

Na
3

x5

x2

x3

x4

x4

Na
4

Na
2

Na
3

x2

x3

x4

x4

Na
1

Na
2

Na
3

x1

x2

x3

x4

Na
1

Na
2

Na
3

x5

x2

Na
4

Mutation type: a Mutation type: b

Mutation type: c Mutation type: d Mutation type: e

(b) Mutation operation

Fig. 5. MOGP Operations: (a) Crossover between two parent trees a and b.
(b) A total five types of mutation of the parent tree.

of the individuals (HFITs) in the population. Therefore, in
this step, size(Wc) worst (poorer rank) individuals were
weeded out from the combined population Wg . In other
words, size(Wt) best individuals are propagated into the new
generation t+ 1 as the main population Wt+1.

E. Parameter Tuning
In the structure tuning phase, an optimum phenotype (HFIT)

was derived with the parameters being initially fixed by a
random guesswork. Hence, the obtained phenotype was further
tuned in the parameter tuning phase by using a parameter
optimization algorithm. To tune the parameters of the derived
phenotype, its parameters were mapped onto a genotype, i.e.,
onto a real vector, called a solution vector. The selection of
the best phenotype in a single objective training was solely
based on a comparison of the RMSEs. However, selecting a
solution in a multiobjective training is a difficult choice.

In this work, after the multiobjective training of HFIT, the
best solution for parameter tuning was picked from the Pareto
front. Strictly, the solution that gave the best RMSE among
the solutions marked rank-one in the Pareto-optimal set was
chosen. Fig. 6 is an illustration of the solutions that belong to
the Pareto-front.

The genotype mapping of a T1FIS and a T2FIS differ only
in regard to their number of parameters. In HFIT, a T1FIS
node uses the MF mentioned in (5), which has two arguments
m and � and each rule in T1FIS has di + 1 variables in the
consequent part as referred to in (2), where di is the number
of inputs to the i-th rule. On the other hand, a type-2 HFIT’s
node uses IT2FSs, which are bounded by LMFs and UMFs
(Fig. 1(b)) and have two Gaussian means m1 and m2 and a
variance � to be optimized. The Gaussian means m1 and m2

for type-2 Gaussian MF (7) were defined as:

m1 = m+ �� and m2 = m� ��,

where � 2 [0, 1] is a random variable taken from uniform
distribution and m is the center of the Gaussian means m1

and m2 taken from [0, 1]. Similarly, the variance � of type-2
Gaussian MF (7) was taken from [0, 1]. The consequent part
of the T2FIS was computed according to (11), which led to
2(di + 1) variables.

Assume that an HFIT (a tree like Fig. 3(a)) has k many
nodes and each node in the phenotype takes 2 di tn

0.336 0.337 0.338 0.339 0.34 0.341 0.342
40

50

60

70

80

90

100

110

120

130

140

fitness

increasing

pa
ra

m
et

er
s

in
cr

ea
si

ng

Pareto-front

Fig. 6. FIS fitness versus FIS parameter mapping across the Pareto-front.
This graph was created during a multiobjective training of the example–2
mentioned in Section V-B.

inputs, where each input is partitioned into two fuzzy sets
(MFs). Then, the number of the fuzzy sets at a node is 2di.
Since the number of inputs at a node is di and each input is
partitioned into two fuzzy sets, the number of rules at a node
is 2d

i

. Hence, the number of parameters at a T1FIS node is
[2(2di)+2d

i

(di+1)] and the number of parameters at a T2FIS
node is [3(2di) + 2d

i

(2(di +1))]. Therefore, the total number
of parameters in an HFIT is the summation of the number
of parameters at all k nodes in the tree. For example, the
number of parameters in the type-1 HFIT and type-2 HFIT, if
represented as per Fig. 3(a), are 84 and 154 respectively.

Assuming n is the total number of parameters in a tree, the
genotype or the solution vector w corresponding to the tree
(phenotype) is expressed as:

w = hw1, w2, . . . , wni (27)

Now, to optimize parameter vector w, a parameter optimizer
can be used: genetic algorithms [59], evolution strategy [59],
artificial bee colony [61], PSO [62], DE [63], gradient-based
algorithms [64], backpropagation [65], Klaman-filter [66], etc.

In this work, the differential evolution (DE) version
“DE/rand-to-best/1/bin” [54] was used, which is a metaheuris-
tic algorithm that uses a crossover operator inspired by the
dynamics of “natural selection.” The basic principle of the
DE is as follows: Firstly, an initial population matrix Wt =
(w1,w2, . . . ,wP) at the iteration t = 0 is randomly initialized.
The population Wt contains P many solution vectors. A
solution vector w in the population is an n-dimensional vector
representing the free parameters of an HFIT. Secondly, the
population Wt+1 is created using binomial trials. Hence, to
create a new solution vector for the population Wt+1, three
distinct solution vectors wa, wb, and wc and the best solution
vector wg are selected from the population Wt. Then, for
a random index k 2 [1, n] and for the selected trial vector
wa = hwa

1 , w
a
2 , . . . , w

a
ni, the j-th variable of the modified trial

vector wa0
are created as:

wa0

j =

8
><

>:

wa
j + F (wg

j � wa
j)

+F (wb
j � wc

j),
rj < cr k j = k

wa
j , rj � cr

(28)

where rj 2 [0, 1] is a uniform random sample, cr 2 [0, 1] is
the crossover rate, and F 2 [0, 2] is the differential weight.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 8

Similarly, all the variables j = 1 to n of the trial vector wa is
created using (28). After creation of the modified trial vector
wa0

, it is recombined as:

wa =

⇢
wa0

, E(wa0
) < E(wa)

wa, E(wa0
) � E(wa)

(29)

where E(.) is the function that returns the fitness of a solution
vector using (26).

In DE, operators, such as selection, crossover, and recom-
bination were repeated until a satisfactory solution vector w⇤

was found or no improvement was observed compared to an
obtained solution over a fixed period (100 DE iterations).

IV. THEORETICAL EVALUATION

Efficiency of the proposed HFIT comes from a combined
influence of three basic operations involved in the model’s
development: tree construction through MOGP, combining
several low-dimensional fuzzy systems in a hierarchical man-
ner, and parameters tuning through differential evolution (DE).
Hence, HFIT bears many distinguished properties that define
its approximation efficiency compared to many models in-
voked from literature for the comparison. Following are the
HFIT’s properties: 1) Convergence ability of the evolutionary
class algorithms (EA) in tree design, or for that matter of
MOGP. 2) Approximation ability of the evolved hierarchical
fuzzy system (tree model). 3) Convergence ability of DE in
tree’s parameters tuning. Subsequent discussions theoretically
analyze each of these properties one-by-one.

A. Optimal tree structure through MOGP convergence
Evaluating the convergence of evolutionary class algorithms

has been a challenging task because of their stochastic nature.
Theoretical studies of EAs performed through various perspec-
tives show that indeed an optimal solution is possible in a finite
time. Initially, Goldberg and Sergret [67] showed convergence
property of GA using a finite Markov chain analysis, where
they considered GA with a finite population and recombination
and mutation operators.

A different viewpoint of MOGP convergence (EAs in gen-
eral) can be referred to as by using Banach fixed-point theorem
described in [68]. Banach fixed-point theorem [69] states that,
on a metric space, a contractive mapping f has a unique
fixed-point, i.e., for an element x⇤, f(x⇤) = x⇤. Therefore,
Banach fixed-point theorem can explain MOGP convergence
with only assumption that there should be an improvement of
the population (not necessarily of the optimal solution) from
one generation to another. Banach fixed-point theorem also
indicates that if MOGP semantics is to be considered as a
transformation between one population to another and if it is
possible to obtain a metric space in which transformation is
contractive, then MOGP converges to an optimal population
W⇤, i.e., to a population containing optimal solution.

As mentioned in [68], a mapping f defined on elements of
ordered pair set S is contractive if the distance between f(x)
and f(y) is less than x and y for any x, y 2 S. Now, distance
mapping � : S⇥S ! R is a metric space iff for any x, y 2 S
the following condition satisfy:

• �(x, y) � 0 and �(x, y) = 0 if x = y
• �(x, y) = �(y, x)
• �(x, y) + �(y, z) � �(x, z)

Let hS, �i be a metric space and f : S ! S be a mapping,
then f is contractive iff there is a constant ✏ 2 [0, 1) such that
for all x, y 2 S

�(f(x), f(y)) ✏�(x, y) (30)

Therefore, for Banach theorem’s formulation, the complete-
ness of the metric space needs to be defined. Now, metric
space elements p0, p1, . . . are a Cauchy sequence iff for any
✏ > 0, there exist k such that for all m,n > k, �(pm, pn) < ✏.
It also follows that, if such Cauchy sequence p0, p1, . . . has a
limit p = limn!1 pn, then metric space is complete.

Theorem 1. For a complete metric space hS, �i and contrac-
tive mapping f : S ! S, mapping f has a unique fixed-point
x 2 S such that for any x0 2 S

x = lim
i!1

f i(x0)

where f0(x0) = x0 and f i+1(x0) = f(f i(x0))

Proof. Proof of Banach Theorem 1 can be found in [70, p.
60] described as a method of successive approximation.

In this paper, it is necessary to show that if a metric space
S for MOGP population can be obtained, then any contractive
mapping f in MOGP will contain a unique fixed-point. The
proposed MOGP has a fixed population size (say n), i.e., each
population contain n individuals, and in each generation, the
total fitness of the population is expected to increase.

Let ✓ be a function that computes the fitness of a population,
which is expressed as:

✓(W) =
1

n

X

wi2W

P
wi2W E(wi)

E(wi)
(31)

where function E(wi) evaluates RMSE of each wi. Now,
distance mapping � : S ⇥ S ! R, where S is a set of MOGP
populations, can be defined as:

�(W1,W2) =

⇢
0, W1 = W2

|✓(W1)|+ |✓(W2)|, W1 6= W2
(32)

It follows that
• �(W1,W2) � 0 and �(W1,W2) = 0 if W1 = W2 holds

for any population W1 and W2 in MOGP.
• �(W1,W2) = �(W2,W1) is obvious and
• �(W1,W2)+�(W2,W3) = |✓(W1)|+|✓(W2)|+|✓(W2)|+

|✓(W3)| � |✓(W1)|+ |✓(W3)| = �(W1,W3)

Therefore, MOGP has a metric space hS, �i.
Now, it only remains to show that the MOGP follows a

contractive mapping f : S ! S, i.e., in each subsequent gen-
eration of MOGP, an improvement is possible. Altenberg [71]
showed that, by maintaining genetic operators, such as se-
lection, crossover, and mutation, the evolvability of genetic
programming can be increased. Additionally, Altenberg [71]
analyzed the probability of a population containing fitter
individuals than the previous population and offered the subse-
quent proof. It was observed that, even for a random crossover

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 9

operation, genetic programming evolvability can be ensured.
It is then necessary to say that, indeed an MOGP can produce
fitter population than the previous ones.

Let’s depart from the descriptions of MOGP operations and
continue with Banach fixed-point theorem since it is now
known that MOGP can offer contractive mapping f : S ! S,
for which t-th iteration population’s fitness improves. In other
words, ✓(Wt) < ✓(Wt+1), i.e., mapping f(Wt) = Wt+1 holds.
It follows that

�(f(Wt
1), f(W

t
2)) < �(Wt

1,Wt
2)

Moreover, it satisfies Banach fixed-point theorem. Hence,

W⇤ = lim
i!1

f i(W0) (33)

It indicates that MOGP converges to a population W⇤, which
is a unique fixed-point in a population space.

Remark 1. It is evident from MOGP operation that it pro-
duces an optimal tree structure from a population space.
Although obtaining optimality in the tree design using MOGP
is sufficient to claim the formation of a function that can
approximate to a high degree of accuracy, it is necessary to
investigate the approximation capability of the hierarchical
fuzzy system developed in the form of a tree structure.

B. Approximation ability of hierarchical fuzzy inference tree
This Section describes the approximation capability of an

HFIT, which is a result of MOGP operation. Theoretical
studies of special cases of the hierarchical fuzzy systems are
provided in [27], [32]. Whereas, the proposed HFIT produces
a general hierarchical fuzzy system. In HFIT, not only a
cascaded hierarchy of fuzzy system (a fuzzy subsystem takes
input only from its previous fuzzy subsystem [27]) can be
produced, but a general hierarchical fuzzy system, in which a
fuzzy subsystem takes inputs from any previous layer fuzzy
subsystem, can be produced. A hierarchical fuzzy system
described in [30] resembles the hierarchical fuzzy system
produced by HFIT. To show the approximation capability
of the proposed HFIT, it requires coming to the conclusion
that the proposed HFIT is analogous to the hierarchical fuzzy
system described by Zeng and Keane [30].

Let’s perform an analogy between the proposed HFIT and
the concept of a natural hierarchical fuzzy system described
by Zeng and Keane [30]. To show such an analogy, at first,
it needs to establish the definition of the natural hierarchical
structure of a continuous function, then it will be necessary
to show that, for any such continuous function, a hierarchical
fuzzy system exists.

Let’s take the example of the HFIT shown in Fig. 3(a),
which can be represented as a natural hierarchical structure of
a continuous function. The tree in Fig. 3(a) gives the output
y3 from node N3. Moreover, the tree in Fig. 3(a) gives the
following functions:

y3 = N3(y1, y2, x3) y1 = N1(x1, x2) y2 = N2(x4, x5)

It can also be expressed as:

N(x1, . . . , x5) = N3[N1(x1, x2), N2(x4, x5), x3] (34)

It follows that, for a given function y = N(x1, x2, x3, x4, x5),
if there exist functions N3, N2, N1 such that function (34)
can be obtained, then function N(x1, x2, x3, x4, x5) can be
represented as a natural hierarchical structure.

For simplicity’s sake, let’s take the case of a two-stage tree,
where the top layer node is denoted by N1 and its output is
by y. Similarly, second layer nodes are denoted by N2

i and
their outputs are by y2j , for 1 � j m. Therefore, a natural
hierarchical structure can be defined as [30]:

Definition 1 (Natural Hierarchical Structure). Let y =
N(x1, . . . , xn) be a multi-input-single-output continuous func-
tion with n input variables x = hx1, . . . , xni defined on input
space U =

Qn
i=1 Ui ⇢ Rn and the output y defined on the

output space V ⇢ R. If there exist m+1 continuous functions

y = N1(y21 , . . . , y
2
m, x1

i , . . . , x
1
di
1
)

y2j = N2
j (x

2j
i , . . . , x2j

di
2j
)

(35)

and the functions have inputs x1
di
1

and x2
di
2j

, where d1 < n

and d2j < n are input dimensions at the top and second stage
of hierarchy, respectively, such that

N(x1, . . . , xn) =N1[N2
1 (x

21
i , . . . , x21

di
21
), . . . ,

N2
m(x2m

i , . . . , x2m
di
2m

), x1
i , . . . , x

1
di
1
]

(36)

then N(x1, . . . , xn) is a continuous function with natural
hierarchical structure.

Such a form of natural hierarchical structure also pos-
sesses separable or arbitrarily separable hierarchical structural
property, i.e., the individual functions Nj(x) can be decom-
posed [30]. Now, from Kolmogorov’s Theorem [72], the fol-
lowing can be stated: Any continuous function N(x1, . . . , xn)
on U =

Qn
i=1[↵1,�i] (↵i and �i define the input range) can

be represented as a sum of 2n+ 1 continuous functions with
an arbitrarily separable hierarchical structure. This statement
concludes to the following theorem.

Theorem 2. Let N(x) be any continuous function on U =Qn
i=1[↵i,�i] and its hierarchical structure representation be

N(x) = N0[N1(x), . . . , Nm(x)], in which Nj(x) (j =
0, 1, . . . ,m) are continuous functions with natural hierarchical
structure, then for any given ✏ > 0, there exists a hierarchical
fuzzy system

G(x) = G0[G1(x), . . . , Gm(x)]

which has the same natural hierarchical structure as N(x)
such that

kN �Gk1 < ✏ (37)

kNj �Gjk1 < ✏ j = 0, 1, . . . ,m (38)

and the same holds between the sub-functions of Nj(x) and
the fuzzy subsystems of Gj(x)(j = 0, 1, . . . ,m).

Proof. Proof of Theorem 2 can be found in [30].

Remark 2. It is to note that Theorem 2 shows that hierarchical
structure of fuzzy systems is universal approximators. There-
fore, they can approximate any continuous function N(x) to
any degree of accuracy, as-well-as they can approximate each

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 10

component of that function [30]. Hence, the proposed HFIT
that can form a natural hierarchical structure can achieve
universal function approximation.

Another property of the proposed HFIT is the parameter
tuning, which is performed by a global optimizer (e.g., DE was
applied in this research). Hence, it is required to investigate the
convergence ability of the DE algorithm in parameter tuning
of HFIT.

C. Optimal parameter through differential evolution
Convergence property and efficiency of DE is well stud-

ied [73], [74]. A probabilistic viewpoint of DE convergence
followed by a description of global convergence condition for
DE is described in [75]. They show that indeed DE converges
to an optimal solution. Similarly, Zhang and Sanderson [74]
studied various properties of DE, such as mutation, crossover
and recombination operators that influence the DE conver-
gence. DE follows a similar property as of EA class algorithms
described in Section IV-A. Hence, its global convergence
ability is not different than the one described for MOGP, and
indeed it finds an optimal parameter vector for HFIT.

D. Comparative study of HFIT with other models
The proposed HFIT learns knowledge contained in the

training data through adaptation in its structure and the rules
generated at its nodes. Such a process of learning/acquiring
knowledge from data is somehow similar to the models having
network-like layered architecture, i.e., ANFIS-like approaches,
which usually have 4, or 5, or 6 layered network structure.
However, HFIT’s strength comes from its adaptive structure
formation, whereas most of the network-like models have fixed
layer structure.

1) Flexible structure formation: Specifically, the models
depending on layered structure (e.g., HyFIS, DENFIS, D-
FNN, EFuNN, FALCON, GNN, SaFIN, SONFIN, SuPFuNIS,
eT2FIS, IT2FNN-SVR-N/F, McIT2FIS-UM/US, RIT2FNS-
WB, SEIT2FNN, SIT2FNN, TSCIT2FNN, etc.) can only
provide adaptation in the number of generated rules in their
hidden layer by keeping the input (first) and output (last) layer
fixed. Network-like model’s fixed layered architecture in some
sense limits their representational flexibility as compared to
HFIT.

In Section IV-B, it was shown that HFIT has the capability
of representing any continuous function in any natural and
arbitrarily separable hierarchical form. Therefore, it can be
said that the network-like models that grow rules only by
adding a node in hidden layer have a shortfall in structural
representation compared to HFIT, which grows both layer-
wise as-well-as breadth-wise.

2) Diverse fuzzy rules formation: Additionally, the interac-
tion of one RB to another through the structural representation
is what sets HFIT apart from the other algorithms that generate
only a single RB and do not have the interaction as it is in
HFIT. Moreover, nodes in HFIT take different input’s com-
bination governed by MOGP. Therefore, HFIT nodes exhibit
heterogeneity, which drives the formation of diverse rules in

the nodes of HFIT. Whereas, rules in network-like models use
same combination of inputs while adding rules in the hidden
layer during their training process.

3) Automatic fuzzy set selection: Adaptation in the most of
the network-like models is due to the input space partitioning
(usually, for choosing the number of membership function at
the second layer) into two or three fixed fuzzy sets or by using
some clustering method, which directly influences the number
of rules to form in the third layer (usually, called rule layer).

The necessity of predefining the number of clusters is basic
disadvantage with the clustering based partitioning. Some
practices in the clustering based partitioning, like the one in
SaFIS, are devoted to improving the clustering algorithms to
avoid the requirements of such predefinition. However, the
overlapping of the MFs of the fuzzy sets is another common
problem with clustering based input space partitioning [19].
In [76], authors pointed out four different cases of MF’s
overlapping and proposed subsethood method to transmit the
overlapping information to the rules layer.

On the other hand, HFIT does not use clustering to deter-
mine input space partitions. Instead, each input, at each HFIT’s
node, is partitioned into two fuzzy sets, which is eventually
determined by MOGP through evolution. Section IV-A shows
that MOGP finds an optimum solution through its iterations
by applying genetic operators. Hence, MOGP at it best avoids
the overlapping of the MFs of the fuzzy sets and also elim-
inates the requirement of an external agent for input space
partitioning.

4) Minimal feature set selection: Feature selection is an-
other important aspect of HFIT. The network-like models such
as EFuNN and DENFIS also does feature selection externally
(say by external agents). However, in a sense, feature selection
in such kind of models do not have direct participation in
the structural representation of knowledge contained in the
training data. Whereas, feature selection is an integral part
HFIT’s learning process. Hence, feature selection performed
by HFIT incorporates knowledge contained in the training
data into its structural representation in explicit way com-
pared to other network-like models. Since an external agent
performs feature selection in the network-like models. Many
other models do not even perform feature selection, therefore,
they are disadvantageous compared to HFIT in solving high-
dimensional problems.

5) Parameter tuning: Finally, most of the models such as
HyFIS, DENFIS, SaFIN, SONFIN, SEIT2FNN, McIT2FIS-
UM/US, etc. employ gradient-based methods (e.g., backprop-
agation) for the parameter tuning. The gradient-based tech-
niques are known as local optimizers, which lacks exploration
capability compared to global optimizers (e.g., DE) [77]. HFIT
employs DE for its parameter optimization. When it comes
to comparing models theoretically, it is not necessary to go
deep in parameter tuning debate since such parameter tuning
method like DE can also be applied to other models and
backpropagation can be applied to HFIT. However, at present
scenario, a combined effort of the proposed HFIT, in this work,
has edge over other algorithms.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 11

V. EMPIRICAL EVALUATION

This Section describes the evaluated results of the proposed
algorithms T1HFITS, T1HFITM, T2HFITS, and T2HFITM

on six example problems. Assume that the datasets in the
examples are of the form: (X, d), where X = (x1, x2, . . . , xN)
is the set of the input vectors and d = hd1, d2, . . . , dN i is the
desired output. Here, the dataset has N input–output patterns
(pairs) and if y = hy1, y2, . . . , yN i is the predicted output, then
the performance of an algorithm for the dataset (X, d) can be
measured using RMSE E as defined in (26) and correlation
coefficient r between the desired output d and predicted output
y as:

r =

PN
i=1

�
di � d̄

�
(yi � ȳ)

qPN
i=1

�
di � d̄

�2PN
i=1 (yi � ȳ)2

(39)

where d̄ and ȳ are the means of the outputs d and y.
For simplicity’s sake, the training and the test RMSEs were

represented as En and Et, respectively. Similarly, the training
and the test correlation coefficients were represented as rn
and rt, respectively. Additionally, the model’s complexity c(w)
and training time (in minutes) were reported. The reported
training time included the time taken to create a tree structure,
tune the tree parameters, partition the dataset (file input–output
operations), write the developed model to a file, display the
tree on a GUI, and compute RMSE and correlation coefficient.

The parameter setting mentioned in Table I was used to
train the proposed algorithms, which were developed as a
software tool and is available at http://dap.vsb.cz/sw/hfit/. The
experiments were conducted on a Windows Server R2 that had
a 20-core and 700 GB RAM. Each run of experiments was
conducted with the random seeds generated from the system.
The proposed algorithms were compared with the algorithms
collected from the literature (Table II).

TABLE I
PARAMETER SETTING FOR THE EXPERIMENTS

Algorithm training parameter Value
Maximum depth (layers) of a tree 4
Maximum inputs to an FIS node 4
Membership function search range [0,1]
GP population 50
CP mutation probability pm 0.2
GP crossover probability pc = 1� pm 0.8
GP mating pool size 25
GP tournaments selection size 2
GP iterations 500
DE population 50
DE mutation factor F 0.7
DE crossover factor cr 0.9
DE iterations 5000

A. Example 1—System Identification

Online identification of the nonlinear system is a widely
studied problem. The significance of this problem is evident
from its usage in the literature for the validation of the
approximation algorithms [90], [16], [86], [21], [24]. The

nonlinear system identification of the plant is described by
the following nonlinear difference equation:

yp(k + 1) =
yp(k)

1 + yp(k)2
+ u3(k) (40)

where [u(k), yp(k)] is the input–output pair of the single input
and the single output plant at the time k and yp(k+ 1) is the
one step ahead prediction. Hence, the objective is to predict
yp(k+1) of the system based on the sinusoidal input u(k) =
sin(2⇡k/100) and the current output yp(k). Let us assign the
input x1 = u(k) and the input x2 = y(k).

The training patterns were generated with k = 1, . . . , 200
and yp(1) = 0. Similarly, the test patterns were generated
for k = 201, . . . , 400 as mentioned in [17]. Therefore, for
the training, the inputs were u(k) and yp(k), and the desired
output was yp(k+1). The training and test were repeated ten
times. Such repetitions were performed mainly for assessing
an average performance of the proposed algorithms, which is
shown in Table III(a). Since the experiments were repeated ten
times, ten different models were obtained for each algorithm.
The results of the best models (regarding their RMSEs) were
compared with the best results available in the literature
(Table III(b)).

The performance statistics, shown in Table III(a), are evi-
dence of the efficiency of the proposed algorithms. They show
that the mean correlation coefficients rn and rt of training and
test sets are 1.00 and 1.00, respectively, which indicate that
the algorithm consistently performed with a high accuracy.
Moreover, such consistency of high accuracy is evident from
the obtained small standard deviations (STD) of the training
and test RMSEs and correlation coefficients (Table III(a)).

Interestingly, the Pareto-based multiobjective training of-
fered less complex models (the mean parameter count c(w) of
T1HFITM was 34.4 compared to 57.2 of T1HFITS and c(w) of
T2HFITM was 90.4 compared to 152.0 of T1HFITS) with high
accuracies (Table III(a)). Additionally, the training time taken
by T1HFITM and T2HFITM was much less than by T1HFITS

and T2HFITS. Hence, the Pareto-based multiobjective was
advantageous to use, which provided the option of choosing
the best solution from a Pareto-front. An example of a Pareto-
front is shown in Fig. 6.

For the performance comparisons, the SaFIN result was
collected from [19], and FALCON and SONFIN from [16].
The results of T2FLS (singleton) and T2FLS (TSK) were
obtained from [16]; FT2FNN, TSCIT2FNN, T2TSKFNS, and
T2FNN from [21]; SEIT2FNN, MRI2NFS, RIT2NFS-WB,
and T2FLS-G from [17]; and SIT2FNN from [22]. Table II
contains a detailed description of these algorithms.

Two parameters may be used for comparing the algo-
rithms: 1) the training and test RMSEs and 2) the parameter
count c(w). From the performance comparisons shown in Ta-
ble III(b), it was found that the proposed algorithms T1HFITS

and T1HFITM were better than the T1FIS algorithms FAL-
CON, SaFIN, and SONFIN. SONFIN offered the test RMSE
Et = 0.0085 with the smallest parameter count c(w) = 36;
whereas, the proposed algorithm T1HFITM offered the better
test RMSE Et = 0.0041 with a slightly larger parameter count
c(w) = 40.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 12

TABLE II
DESCRIPTIONS OF THE EXISTING FIS ALGORITHMS ACQUIRED FOR THE PERFORMANCE COMPARISONS

FIS Algorithm Ref. Description Type Parameter tuning

Ty
pe

–1

DENFIS [18] Dynamic evolving neural-fuzzy inference system TSK Least-square estimator
D-FNN [10] Dynamic fuzzy neural networks TSK Backpropagation algorithm
EFuNN [78] Evolving fuzzy neural networks Mamdani Widrow–Hoff least square
FALCON [79] ART-based fuzzy adaptive learning control network �� Backpropagation algorithm
GNN [80] Granular neural networks �� Genetic algorithm
H-TS-FS [35] Hierarchical Tukagi–Sugno fuzzy system TSK Evolutionary programming
HyFIS [81] Hybrid neural fuzzy inference system �� Gradient descent learning
IFRS and AFRS [82] Incremental and aggregated fuzzy relational systems Mamdani Backpropagation algorithm
RBF-AFA [83] Radial basis function based adaptive fuzzy systems TSK Gradient descent learning
SaFIN [19] Self-adaptive fuzzy inference network Mamdani Levenberg-Marquardt method
SONFIN [15] Self-constructing neural fuzzy inference network TSK Backpropagation algorithm
SuPFuNIS [76] Subsethood-product fuzzy neural inference system �� Gradient descent learning
SVR-FM [84] Support-vector regression fuzzy model TSK Support vector regression

Ty
pe

–2

eT2FIS [85] Evolving type-2 neural fuzzy inference system Mamdani Gradient descent learning
IT2FNN-SVR-N/F [86] IT2fuzzy-NN-support-vector regression-fuzzy and numeric TSK Support vector regression
McIT2FIS-UM/US [24] Metacognitive interval type-2 neuro-fuzzy inference system TSK Gradient descent learning
NNT1FW and NNT2FW [87] Type-1 and type-2 fuzzy backpropagation neural networks TSK Backpropagation algorithm
RIT2FNS-WB [17] Reduced IT2NFS-weighted bound-set TSK Gradient descent learning
MRIT2NFS [17] Reduced IT2NFS-weighted bound-set Mamdani Gradient descent learning
SEIT2FNN [16] Self-evolving IT2FIS TSK Kalman filtering algorithm
SIT2FNN [22] Simplified Interval Type-2 Fuzzy Neural Networks TSK gradient descent learning
T2FLS [88] Interval type-2 fuzzy logic system (TSK and singleton) TSK ��
T2FLS-G [89] Gradient-descent based IT2FIS tuning TSK Derivation-based learning
TSCIT2FNN [21] Compensatory interval type-2 fuzzy neural network TSK Kalman filter algorithm

TABLE III
PERFORMANCE EVALUATION ON SYSTEM IDENTIFICATION (EXAMPLE-1)

(a) Performance Statistics (10 repetitions)

T1HFITS T1HFITM T2HFITS T2HFITM

En Best 0.0043 0.0041 0.0033 0.0028
Mean 0.0181 0.0257 0.0123 0.0184
STD 0.0167 0.0164 0.0074 0.0105

rn Best 1.00 1.00 1.00 1.00
Mean 1.000 0.999 1.000 1.000
STD 0.0006 0.0007 0.0001 0.0002

Et Best 0.0020 0.0041 0.0034 0.0028
Mean 0.0169 0.0262 0.0125 0.0187
STD 0.0173 0.0171 0.0076 0.0109

rt Best 1.00 1.00 1.00 1.00
Mean 1.000 0.999 1.000 1.000
STD 0.0006 0.0007 0.0001 0.0002

c(w) Best 20 20 72 36
Mean 57.2 34.4 152 90.4

Time Best 3.21 1.52 7.82 3.23
Mean 6.27 2.91 8.91 5.14

(b) Performance Comparison

Algorithm En Et c(w)

Ty
pe

–1

FALCON 0.0200 54
SaFIN 0.0120
SONFIN 0.0080 0.0085 36
T1HFITS 0.0043 0.0043 60
T1HFITM 0.0041 0.0041 40

Ty
pe

–2

T2FLS (singleton) 0.0306 � 120
FT2FNN 0.0388 � 36
T2FLS (TSK) 0.0217 � 120
TSCIT2FNN 0.0080 � 34
T2TSKFNS � 0.0324 24
T2FNN � 0.0281 36
SIT2FNN � 0.0241 36
RIT2NFS-WB 0.0073 0.0151 24
MRI2NFS 0.0042 0.0051 36
T2FLS-G 0.0214 0.0379 36
SEIT2FNN 0.0022 0.0022 84
T2HFITS 0.0033 0.0034 118
T2HFITM 0.0028 0.0028 72

Similarly, the proposed T2FIS algorithms T2HFITS and
T2HFITM offered better performance compared to the al-
gorithms T2FLS (Singleton), T2FLS (TSK), TSCIT2FNN,
T2TSKFNS, T2FNN, SIT2FNN, RIT2NFS-WB, MRI2NFS.
The algorithm SEIT2FNN reported test RMSE Et = 0.0022
and the parameter count was 84; whereas, in comparison to
SEIT2FNN, the algorithm T2HFITM offered a slightly higher
test RMSE Et = 0.0028, but had a lower parameter count
c(w), i.e., 72.

The time comparison, however, is limited since the training
time depends on several factors: 1) the type of programming
language used; 2) the platform and its configurations on which
programs were executed; 3) the way data were fed for the
training; 3) the status of the cache memory (in the case
CPU time is observed); etc. It may be noted that, from the
available training time reported in the literature, the MRI2NFS,
RIT2NFS-W, T2FLS-G, SEIT2FNN approximately takes 0.15,
0.17, 2.41, and 2.24 minutes (CPU time only) respectively.
This is in comparison to T1HFITM and T2HFITM, which
take 1.52 and 3.23 minutes (including CPU time, other file
operations, etc.) respectively. Since the training times taken
by the algorithms were close to one another and the time
comparison has limitations, it may be concluded that the
proposed algorithms performed efficiently. This is also evident
from the performance statistics given in Table III(a) and the
performance comparison is provided in Table III(b).

The best models obtained using the proposed algorithms are
illustrated in Fig.7, which shows the hierarchical structure of
the derived models and the selected inputs are indicated by xi

in the models. The rectangular blocks in Fig 7 show the nodes
(a T1FIS or T2FIS) of the tree (hierarchical structure). For the
best performing proposed algorithm T2HFITM, the target and
predicted value plots of 200 samples are shown in Fig. 8.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 13

x1

x1

x2

x2

(a) T1HFITS

x1

x1

x2

(b) T1HFITM

x1

x1

x1

x2

(c) T2HFITS

x1

x1

x2

(d) T2HFITM

Fig. 7. Example–1: designed HFIT, where the shaded nodes indicate T2FIS.
The training RMSE of models (a), (b), (c) and (d) are 0.0043, 0.0041, 0.0034,
and 0.0028, respectively.

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

Target

samples

ou
tp
ut
s

Predicted

Fig. 8. Example–1: target versus predicted test values. The test outputs belong
to algorithm T2HFITM, which has the test RMSE Et = 0.0028.

B. Example 2—Noisy Chaotic Time Series Prediction
1) Case–Clean Set: A chaotic time series dataset, the

Mackey-Glass chaotic time series, was used in this example,
which was generated using the following delay differential
equation:

dx(k)

dk
=

0.2x(k � ⌧)

1 + x10(k � ⌧)
� 0.1x(k) (41)

where delay constant ⌧ > 17 and k is the time step. In this
example, the objective was to predict x(k) using the past
outputs of the time series as mentioned in [86]. Hence, the
input–output pattern was of the form:

[x(k � 24), x(k � 18), x(k � 12), x(k � 6);x(k)] .

Let us say that the inputs are x1 = x(k�24), x2 = x(k�18),
x3 = x(k � 12), and x4 = x(k � 6). For the training
of the proposed algorithms, a total of 1000 patterns were
generated from k = 124 to 1123, with the parameter ⌧
being set to 30 and x(0) being set to 1.2 [86]. This set of
training patterns were clean (no noise was added). From the
generated clean patterns, as mentioned in [86], the first 500
patterns (clean training set) were used for training purposes
and the second 500 patterns (clean test set) were used for test
purposes. Aiming to assess the average performance of the
proposed algorithms, ten repetitions of training and testing
were performed using clean training and test sets, and the
results were collected accordingly (Table IV(a)). Table IV(b)
shows the comparison of results of the proposed algorithms
(the best among ten models) with the best results reported by
the algorithms listed in Table II.

For this example (clean set), the performance statistics are
shown in Table IV(a). The obtained statistics illustrate that
the proposed algorithms T1HFITS, T1HFITM, T2HFITS, and
T2HFITM performed with high accuracies. It shows that the

TABLE IV
PERFORMANCE EVALUATION ON CLEAN SET OF NOISY CHAOTIC TIME

SERIES PREDICTION (EXAMPLE-2)

(a) Performance Statistics (10 repetitions)

T1HFITS T1HFITM T2HFITS T2HFITM

En Best 0.0115 0.0115 0.0108 0.0032
Mean 0.0345 0.0338 0.0413 0.0224
STD 0.0163 0.0207 0.0221 0.0203

rt Best 1.00 1.00 1.00 1.00
Mean 0.9858 0.9864 0.9783 0.9912
STD 0.0117 0.0107 0.0182 0.0154

Et Best 0.0122 0.0119 0.0086 0.0058
Mean 0.0414 0.0356 0.0427 0.0275
STD 0.0224 0.0173 0.0234 0.0207

rt Best 1.00 1.00 1.00 1.00
Mean 0.9786 0.9850 0.9769 0.9888
STD 0.0211 0.0120 0.0195 0.0158

c(w) Best 20 40 72 36
Mean 71.6 57.6 203.4 129.5

Time Best 8.42 5.51 21.33 7.91
Mean 71.6 11.03 31.83 16.58

(b) Performance Comparison

Algorithm En Et c(w)

Ty
pe

–1

NNT1FW � 0.0550 �
AFRS 0.0267 0.0256 78
IFRS 0.0240 0.0253 58
H-TS-FS1 0.0120 0.0129 148
H-TS-FS2 0.0145 0.0151 46
RBF-AFA � 0.0128 �
HyFIS � 0.0100 �
D-FNN � 0.0080 70⇤
SuPFuNIS � 0.0057 70⇤
T1HFITS 0.0115 0.0122 60
T1HFITM 0.0115 0.0119 40

Ty
pe

–2

T2FLS (singleton) � 0.0426 �
T2FLS (TSK) � 0.0431 �
NNT2FW � 0.0390 �
SEIT2FNN1 � 0.0034 126⇤
SEIT2FNN2 � 0.0053 90⇤
T2HFITS 0.0108 0.0086 108
T2HFITM 0.0032 0.0058 118

⇤This is approximately calculated. It may be larger.

mean correlation coefficient rn of the training set of all algo-
rithms is 1.00, and the mean correlation coefficient rt of the
test set of the algorithms T1HFITS, T1HFITM, T2HFITS, and
T2HFITM are 0.9858, 0.9864, 0.9783, and 0.9912 respectively.
That is, the test correlation coefficients are closer to 1.00 (a
high positive correlation between target and predicted outputs).
Such performance indicates that the algorithms consistently
performed with a high accuracy, and the obtained low values
of STDs are evidence of this fact (Table IV(a)).

Moreover, the Pareto-based multiobjective training offered
less complex models (the mean parameter count c(w) of
T1HFITM was 57.6 compared to 71.6 of T1HFITS and the
c(w) of T2HFITM was 129.5 compared to 203.4 of T2HFITS)
with high accuracies (Table IV(a)). Hence, like in example
1, in this example also the Pareto-based multiobjective was
advantageous to use, which provided the option to choose the
best solution from a Pareto-front. Fig. 6 illustrates a Pareto-
front created during the multiobjective training of HFIT.

Table IV(b) describes the comparison between several al-
gorithms on clean training and test set. The results of IFRS,
AFRS, H-TS-FS1, and H-TS-FS2 were collected from [35];

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 14

x3

x1

x3

x4

(a) T1HFITS

x3

x4

x1

(b) T1HFITM

x2

x1

x1

x3

(c) T2HFITS

x2

x3

x1

x3

x1

x3

(d) T2HFITM

Fig. 9. Example–2 Clean set: designed HFIT. The shaded nodes are T2FIS.
The training RMSE of models (a), (b), (c) and (d) are 0.0115, 0.0115, 0.0108,
and 0.0032, respectively.

RBF-AFA, HyFIS, D-FNN, and SuPFuNIS from [16];
NNT1FW and NNT2FW from [87]; and T2FLS (Singleton),
T2FLS (TSK), and SEIT2FN from [16].

The training and test RMSEs and the parameter count c(w)
were used for comparing the algorithms, which is shown in
Table IV(b). A training time comparison for this example
cannot be performed because of the unavailability of the
training time of other algorithms in the literature.

In T1FIS comparisons, it was found that the proposed
algorithms T1HFITS and T1HFITM performed better than
or were competitive with the algorithms NNT1FW, AFRS,
IFRS, H-TS-FS, RBF-AFA, and HyFIS. The algorithms D-
FNN and SuPFuNIS had better test RMESs Et = 0.008 and
Et = 0.005, but their parameter counts were larger since
the number of rules in each case was 10. Since each T1FS
MF has at least two parameters and each rule has three free
parameters at the consequent part, the number of parameter
count for two input variables stands to at least 70 (this is
an approximate calculation since D-FNN and SuPFuNIS may
have other parameters that may increase the parameter count
value). Whereas, the algorithms T1HFITS and T1HFITM had
parameter counts equal to 60 and 40, respectively. Therefore,
T1HFITS and T1HFITM are competitive with D-FNN and
SuPFuNIS.

In T2FIS, the proposed algorithms clearly performed bet-
ter than T2FLS (Singleton), T2FLS (TSK), and NNT2FW.
Whereas, the performance of the proposed algorithms were
competitive with SEIT2FNN1 (without fuzzy set reduction)
and SEIT2FNN2 (with fuzzy set reduction) whose test RM-
SEs were 0.0034 and 0.0058, respectively. The algorithm
SEIT2FNN1 had 28 fuzzy sets and SEIT2FNN2 had 16 fuzzy
sets (reduced), and each of these had seven rules. Hence,
the parameter count of these algorithms stands to at least
126 and 90, respectively. On the other hand, the proposed
algorithm T2HFITS had a test RMSE of Et = 0.0086
(slightly larger than SEIT2FNN1 and SEIT2FNN2), but the
parameter count was 108, which is smaller than SEIT2FNN1.
Similarly, the proposed algorithm T2HFITM had a test RMSE
of Et = 0.0058, which is close to SEIT2FNN2 and the
parameter count was smaller than SEIT2FNN1 and closer to
SEIT2FNN2. Therefore, in this case, the proposed T2HFITM

is as efficient as SEIT2FNN1 and SEIT2FNN2 are. Fig.9
illustrates the hierarchical structure of the best models obtained
by the proposed algorithms. Additionally, the target versus
prediction plot of test data samples is illustrated in Fig. 10.

2) Case–Noisy Set: The performances of the proposed al-
gorithms were further evaluated for noisy patterns. Therefore,

0 50 100 150 200 250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Target
Predicted

time steps (samples)

ou
tp

ut
s

Fig. 10. Example–2 Clean set: target versus predicted test values. The test
outputs belong to algorithm T2HFITM that has the test RMSE Et = 0.0058.

three training sets and three test sets were generated by adding
Gaussian noise with a mean of 0 and STDs of 0.1, 0.2, and
0.3 to the original data x(k) as described in [86]. These noisy
training sets (with STDs 0.1, 0.2, and 0.3) were presented for
the training of the proposed algorithms. With each training
set of STDs of 0.1, 0.2, and 0.3, three test sets were given for
testing: clean, STD 0.1, and STD 0.3. The obtained results
were compared with the results reported in the literature
(Table V).

Table V describes the comparisons between the results of
the algorithms, where the results of SONFIN and SVR-FM
were collected from [86], DENFIS and EFuNN from [85],
SEIT2FNN, T2FLS-G, IT2FNN-SVR(N), IT2FNN-SVR(F)
from [86], and eT2FIS from [22]. It is evident from the com-
parison of the results that the proposed algorithms performed
efficiently over the noisy datasets and the obtained models
were less complex than the other models listed in Table V,
particularly when T1FISs were compared. Moreover, for each
noisy data (STD 0.1, STD 0.2, and STD 0.3), the proposed
algorithms had a smaller parameter count and had a lower
or competitive training RMSE En compared to other listed
algorithms. In T1FIS comparisons, the SONFIN had a slightly
better RMSE, but the number of parameters counts was
larger than the proposed algorithms T1HFITS and T1HFITM.
Similarly, in T2FIS comparison, the algorithm eT2FIS had
a slightly better RMSE than the other listed algorithms, but
the models obtained using the proposed algorithms were less
complex, i.e., had a smaller parameter count.

C. Example 3—Miles-Per-Gallon Prediction Problem
To evaluate the performance of the proposed algorithms,

a real-world MPG problem was used. The objective of this
example was to predict or estimate the city-cycle fuel con-
sumption in MPG. The MPG dataset was collected from the
UCI machine learning repository [91]. This dataset has 392
samples, each of which has six input variables, but in this
example, as mentioned in [24], three variables (x1 = weight,
x2 = acceleration, and x3 = model year) were selected. In the
training process, 50% (196 patterns) of samples were randomly
selected for training and the rest of the 50% (196 patterns) of
samples were taken for testing. Such a process for the training
set and test set selection was repeated ten times. Accordingly,
the collected performance statistics are shown in Table VI(a).

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 15

TABLE V
EXAMPLE 2–NOISY SET: PERFORMANCE COMPARISON

Train Test Train Test Train Test
FIS Algorithm 0.1 clean 0.1 0.3 c(w) 0.2 clean 0.1 0.3 c(w) 0.3 clean 0.1 0.3 c(w)

Ty
pe

–1

SVR-FM 0.128 0.045 0.087 0.200 1127 0.229 0.089 0.109 0.189 1127 0.332 0.138 0.147 0.198 1127
EFuNN 0.126 � � � � 0.252 � � � � 0.366 � � � �
DENFIS 0.116 � � � � 0.214 � � � � 0.306 � � � �
SONFIN 0.113 0.054 0.108 0.256 130 0.226 0.116 0.138 0.280 130 0.302 0.195 0.208 0.305 130
T1HFITS 0.127 0.050 0.140 0.363 60 0.234 0.111 0.153 0.349 104 0.305 0.100 0.159 0.356 64
T1HFITM 0.128 0.042 0.138 0.357 40 0.225 0.085 0.145 0.360 84 0.307 0.119 0.162 0.351 60

Ty
pe

–2

T2FLS-G 0.133 0.074 0.103 0.220 110 0.238 0.125 0.132 0.200 110 0.357 0.232 0.234 0.264 110
IT2FNN-SVR(N) 0.128 0.048 0.087 0.193 103 0.234 0.085 0.105 0.186 103 0.349 0.127 0.138 0.188 103
IT2FNN-SVR(F) 0.127 0.046 0.088 0.215 103 0.233 0.083 0.103 0.180 103 0.347 0.121 0.131 0.184 103
SEIT2FNN 0.123 0.049 0.097 0.212 110 0.225 0.083 0.113 0.228 110 0.319 0.196 0.197 0.254 110
eT2FIS 0.120 0.059 0.107 0.214 � 0.225 0.083 0.132 0.247 � 0.327 0.102 0.152 0.278 �
T2HFITS 0.128 0.039 0.135 0.355 108 0.227 0.079 0.143 0.348 82 0.314 0.100 0.148 0.354 144
T2HFITM 0.123 0.042 0.135 0.365 72 0.233 0.087 0.144 0.348 72 0.311 0.097 0.148 0.356 108

TABLE VI
PERFORMANCE EVALUATION ON MILES-PER-GALLON PREDICTION

PROBLEM (EXAMPLE-3)

(a) Performance Statistics (10 repetitions)

T1HFITS T1HFITM T2HFITS T2HFITM

En Best 1.8931 2.2686 2.0881 1.9582
Mean 2.7115 2.6037 2.4699 2.4052
STD 0.5144 0.4071 0.4461 0.3774

rn Best 0.97 0.96 0.96 0.96
Mean 0.921 0.941 0.946 0.950
STD 0.1035 0.0218 0.0244 0.0160

Et Best 2.7550 2.7907 2.8383 2.6623
Mean 4.2333 3.3349 3.4006 3.3172
STD 0.5024 0.5720 0.7423 0.6855

rt Best 0.97 0.96 0.96 0.96
Mean 0.921 0.941 0.946 0.950
STD 0.1035 0.0218 0.0244 0.0160

c(w) Best 20 20 108 118
Mean 132 78.8 224 207.4

Time Best 1.89 1.75 8.75 8.53
Mean 12.04 6.75 14.91 12.33

(b) Performance Comparison

Algorithm Mean En STD Mean Et STD Samples
(train, test)

Ty
pe

–1 T1FLS � � 3.5960 � 196, 120
T1HFITS 2.7115 0.5144 4.2333 0.5024 196, 196
T1HFITM 2.6037 0.4071 3.3349 0.5720 196, 196

Ty
pe

–2

McIT2FIS-US 2.7358 � 2.6770 � 196, 120
SEIT2FNN 2.7161 � 2.7895 � 196, 120
McIT2FIS-UM 2.6524 � 2.6486 � 196, 120
RIT2NFS-WB 2.3685 � 2.7807 � 196, 120
T2HFITS 2.4699 0.4461 3.4006 0.7423 196, 196
T2HFITM 2.4052 0.3774 3.3172 0.6855 196, 196

The performances of the proposed algorithms were com-
pared with the literature’s algorithms (Table VI(a)). However,
the algorithms chosen from the literature were tested over
fewer test samples. Therefore, the comparison shown in Ta-
ble VI(a) is limited to the comparison of the training RMSEs
because all the mentioned algorithms were trained over the
same number of training samples. For the comparisons, the
T1FLS result was collected from [17] and the results of
SEIT2FNN, RIT2NFS-WB, McIT2FIS-UM, and McIT2FIS-
US were collected from [24].

The comparisons of the models in this example were based

on the mean training and test RMSEs En and Et obtained for
the ten repetitions. However, the comparison on test RMSEs
was limited since only 120 samples were used for testing
by the algorithms considered from literature. Whereas, the
algorithms proposed in this work used 196 samples for testing
(Table VI(b)). It was observed that the proposed algorithms
T2HFITS and T2HFITM outperformed all the other algorithms
except for RIT2NFS-WB, which had a slightly better training
RMSE En = 2.3685 in comparison to the training RMSEs
En = 2.4699 and En = 2.4052 of T2HFITS and T2HFITM,
respectively. Since the performance comparisons were based
on the average value of ten repetitions, the model’s hierarchical
structures are not presented for this example.

From the available training time reported in the literature, it
may be noted that the algorithms McIT2FIS-UM, McIT2FIS-
US, RIT2NFS-WB, and SEIT2FNN take 0.0025, 0.003, 0.16,
and 0.33 minutes (CPU time only) compared to T2HFITM,
which takes 8.23 minutes. However, it may be noted that
T2HFITM is a two-phase population-based learning algorithm,
whereas the other algorithms are single-solution based algo-
rithms.

D. Example 4—Abalone Age Prediction

In this example, a prediction problem was taken in which
a person’s age was predicted based on their physical mea-
surements. The Abalone dataset was collected from the UCI
machine learning repository [91]. It has 4177 data samples,
each of which has seven input variables (x1 = length, x2 =
diameter, x3 = height, x4 = whole weight, x5 = shucked
weight, x6 = viscera weight, and x7 = shell weight) and
one output variable (rings). To train the proposed algorithms,
80% (3342 patterns) of samples were randomly taken for
training and 20% (835 patterns) remaining samples were
taken for testing. Additionally, in this work, to assess average
performance of the proposed algorithms, training process was
repeated ten times, and the collected results are summarized
in Table VII(a).

The obtained results are compared with the results reported
in the literature (Table VII(b)). For the comparisons, the
results of General, HS, CCL, and Chen&Cheng were collected
from [17], and the results of SEIT2FNN, RIT2NFS-WB,

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 16

TABLE VII
PERFORMANCE EVALUATION ON ABALONE AGE PREDICTION PROBLEM

(EXAMPLE-4)

(a) Performance Statistics (10 Repetitions)

T1HFITS T1HFITM T2HFITS T2HFITM

En Best 2.1097 2.2857 2.1154 2.1275
Mean 2.3267 2.4284 2.2597 2.2404
STD 0.1534 0.1079 0.1478 0.0627

rn Best 0.76 0.71 0.76 0.75
Mean 0.688 0.655 0.710 0.716
STD 0.0490 0.0347 0.0481 0.0204

Et Best 2.1260 2.3480 2.1824 2.1428
Mean 2.3644 2.4843 2.3808 2.3533
STD 0.1448 0.1029 0.1676 0.1127

rt Best 0.76 0.71 0.76 0.75
Mean 0.688 0.655 0.710 0.716
STD 0.0490 0.0347 0.0481 0.0204

c(w) Best 20 20 144 72
Mean 77.6 46.4 188.4 152.9

Time Best 45.53 40.22 88.5 65.02
Mean 83.33 70.16 213.5 192

(b) Performance Comparison

Algorithm En Et c(w)

Ty
pe

–1

HS � 3.1600 �
General � 3.1500 �
CCL � 2.6500 �
Chen&Cheng � 2.5900 �
T1HFITS 2.1097 2.1260 124
T1HFITM 2.2857 2.3480 84

Ty
pe

–2

RIT2NFS-WB 2.4047 2.1346 131
McIT2FIS-UM 2.3481 1.8740 115
SEIT2FNN 2.3388 2.4330 140
McIT2FIS-US 2.3357 1.8387 115
T2HFITS 2.1154 2.1824 226
T2HFITM 2.1275 2.1428 108

McIT2FIS-UM, and McIT2FIS-US were collected from [24].
The algorithms General [92], CCL [93], HS [94], and WFRI-
GA [95] were fuzzy interpolate reasoning methods, where
WFRI-GA was based on the genetic algorithm and the al-
gorithm ‘General’ implemented the Mamdani-type FIS. It is
evident from the results in Table VII(b) that the proposed
algorithms (both T1FIS and T2FIS versions) outperformed the
algorithms considered for comparisons.

However, when comparing the test RMSEs, McIT2FIS-US,
McIT2FIS-UM, and RIT2NFS-WB had a slight edge over
T2HFITS and T2HFITM, but the parameter count of T2HFITM

was smallest among all the algorithms, and it had the lowest
training error. Hence, it may be concluded that T2HFITM

is the best performing algorithm for example 4. T2HFITM

performance falls behind only in training time comparison
because T2HFITM, being a population based algorithm, takes
longer training time than the other algorithms. The algo-
rithms McIT2FIS-US, McIT2FIS-UM, RIT2NFS-WB, and
SEIT2FNN take 1.81, 2.35, 5.48, and 17.33 minutes (CPU
time only) compared to T2HFITM, which takes 65.02 minutes.
It is important to note that the other algorithms are single
solution based algorithms. The best-performing models of
the proposed algorithms are illustrated in Fig. 11, where the
selected input feature is indicated by xi.

x3

x3

x1

x4

x5

x6

x6

(a) T1HFITS

x3

x3

x3

x7

x2

(b) T1HFITM

x5

x7

x7

x7

x3

x3

(c) T2HFITS

x3

x5

x7

x2

(d) T2HFITM

Fig. 11. Example–4: designed HFIT, where the shaded nodes are T2FIS. The
training RMSE of models (a), (b), (c) and (d) are 2.1097, 2.2857, 2.1154, and
2.1275, respectively.

x1

x2

x2

x2

x1

x1

x2

(a) T1HFITS

x2

x1

x2

(b) T1HFITM

x1

x2

x2

x1

x1

(c) T2HFITS

x1

x2

x2

x1

(d) T2HFITM

Fig. 12. Example–5: designed HFIT, where the shaded nodes are T2FIS. The
training RMSE of models (a), (b), (c) and (d) are 0.2455, 0.2838, 0.2767, and
0.2840, respectively.

E. Example 5—Box-Jenkins Gas Furnace Problem
In this example, the Box and Jenkins gas furnace dataset

that was taken from [96], which has 296 data samples. The
objective of this example was to predict the CO2 concentration
from the gas-flow rate. The gas furnace system is modeled us-
ing a series, which is of the form: y(k) = f(y(k�1), u(k�4).
For the training of the proposed models, as mentioned in [24],
100% (296 patterns) of the samples were used. To show an
average performance ability of the proposed algorithms, the
training process was also repeated ten times, and the collected
results are summarized in Table VIII(a). The performances
of the proposed algorithms (the best results) were compared
with the best performances of the algorithms reported in the
literature (Table VIII(b)).

To compare the performance of the algorithms, the results of
T1-NFS and GNN were collected from [17], and the results of
SEIT2FNN, RIT2NFS-WB, McIT2FIS-UM, and McIT2FIS-
US were collected from [24]. As reported in Table VIII(b),
the proposed algorithms clearly outperformed the algorithms
T1-NFS, GNN1, and GNN2 in the case of T1FIS comparisons
and algorithms SEIT2FNN, RIT2NFS-WB, McIT2FIS-UM,
and McIT2FIS-US in the case of T2FIS comparisons.

For T2FIS, the proposed algorithm T2HFITM provided a
training RMSE En = 0.284, which was slightly lower than
the training RMSE En = 0.269 of SEIT2FNN. However,
the parameter count of T2HFITM was 72 compared to 152
of SEIT2FNN. Additionally, despite being a population based
algorithm, T2HFITM takes 6.31 minutes for the training,
whereas SEIT2FNN takes 604.66 minutes for the training [17].
Therefore, it may be concluded that, for example 5, T2HFITM

performed the best. The best-performing models are illustrated
in Fig. 12.

F. Example 6—Poly (lactic-co-glycolic acid) (PLGA) micro-
and nanoparticle dissolution rate prediction

This example illustrates a pharmaceutical industry problem
related to PLGA dissolution profile prediction, which is a

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 17

TABLE VIII
PERFORMANCE EVALUATION ON BOX-JENKINS GAS CONCENTRATION

PROBLEM (EXAMPLE-5)

(a) Performance Statistics (10 Repetitions)

T1HFITS T1HFITM T2HFITS T2HFITM

En Best 0.246 0.280 0.256 0.275
Mean 0.303 0.344 0.291 0.301
STD 0.036 0.043 0.023 0.033

rn Best 0.97 0.97 0.97 0.97
Mean 0.959 0.947 0.963 0.960
STD 0.010 0.013 0.006 0.010

c(w) Best 40 40 72 72
Mean 132.8 58.4 286 167.4

Time Best 5.41 4.22 9.82 6.31
Mean 11.84 4.76 20.67 11.15

(b) Performance Comparison

Algorithm En c(w)

Ty
pe

–1

T1-NFS 0.4074 �
GNN1 0.3114 �
GNN2 0.2983 �
T1HFITS 0.2455 124
T1HFITM 0.2838 40

Ty
pe

–2

SEIT2FNN 0.2690 152
RIT2NFS-WB 0.3527 90
McIT2FIS-UM 0.3139 48
McIT2FIS-US 0.3181 48
T2HFITS 0.2767 154
T2HFITM 0.2840 72

complex problem since a vast number of factors govern its
dissolution rate profile and it has a high noise and redundancy
because the dataset was obtained from various experimental
measurements and instruments. As per the dataset provided
in [97], [98], this problem has 747 samples and a total of 300
input features, which influence the PLGA protein particle’s
dissolution rate [99]. The input features are categorized into
five groups: protein descriptor, formulation characteristics,
plasticizer, emulsifier, and time delay, which has 85, 17, 98,
99, and 1 features, respectively.

The description of each feature group is as follows: 1)
The protein descriptors (85 features) describe the type of
molecules and proteins used in the drug’s manufacturing.
2) The formulation characteristics (17 features) describe the
molecular properties, such as molecular weight, particle size,
etc., of the molecules and proteins. 3) The plasticizer (98
features) describes properties, such as fluidity of the material
used. 4) The emulsifier (99 features) describes the stabilizing
properties of the material used in the drug’s manufacturing.
5) The time delay (1 feature) represents the time taken to
dissolve/dissolute a sample drug.

The PLGA dissolution profile prediction is a significant
problem since it plays a crucial role in the medical appli-
cation and toxicity evaluation of PLGA-based microparticles
dosages [100]. Moreover, PLGA microparticles are important
diluents, which are used for producing drugs in their correct
dosage form. It is also used as a filler, as an excipient, and as
an active pharmaceutical ingredient because it acts as a cata-
lyst for drug absorption/dissolution/solubility [101]. Therefore,
PLGA dissolution is a widely studied research problem in
pharmaceutical manufacturing and powder technology.

TABLE IX
EXAMPLE 6: PERFORMANCE COMPARISON

Algorithm Ref. RMSE Et No. of features
MLP [97] 14.3 17
HFIT [102] 13.2 15
REP Tree [98] 13.3 15
GPR [98] 14.9 15
MLP [98] 15.2 15
MLP [97] 15.4 11
T1HFITM present work 18.6 7
T2HFITM present work 15.2 4

x204

x90

x218

x299

x192

x281

x122

(a) T1HFITM: Et = 18.66

x66

x88

x285

x299

(b) T2HFITM: Et = 15.25

Fig. 13. Example–6: Designed HFIT, where the shaded nodes are T2FIS.

Using the parameter setting mentioned in Table I and using
10-fold cross-validation, the proposed algorithm T1HFITM

was able to select seven input features and was able to
approximate a test RMSE of Et = 18.66. The selected features
were: phase polyvinyl alcohol Mw (x90), ASA (x122), pH 8
msdon (x192), aromatic bond count (x204), a(xx) (x218), pH
12 msacc (x281), time days (x299). Similarly, the proposed
algorithm T2HFITM was able to approximate a test RMSE
of Et = 15.259 with only four input features: aromatic atom
count (x66), phase polyvinyl alcohol concentration inner phase
(x88), pH 1 msdon (x285), time days (x299). Additionally,
T2HFITM provided a simple model (i.e., c(w) = 108) com-
pared to T1HFITM that had a model’s complexity c(w) = 156.
Moreover, T2HFITM takes 7.16 minutes of training time
compared to the 45.7 minutes of T1HFITM. This difference
in time is due to the difference between the number of input
features being selected by T2HFITM and T1HFITM.

Feature reduction is a significant task since it reduces drug’s
manufacturing cost. Table IX shows a comparison of the
proposed T1HFITM and T2HFITM with algorithms such as
multilayer perceptron (MLP), reduced error pruning tree (REP
Tree), heterogeneous flexible neural tree (HFIT), and Gaussian
process regression (GPR). It is evident from the results that the
proposed algorithm approximates the PLGA dissolution profile
with a lower number of features, and its approximation error
was competitive with the performance of other algorithms.
Fig. 13 illustrates the obtained models for the prediction of
the PLGA dissolution profile.

VI. DISCUSSION

The proposed HFIT algorithms T1HFITS, T1HFITM,
T2HFITS, and T2HFITM were evaluated through six examples,
including a real-world example from the pharmaceutical indus-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 18

try. Performance of the proposed algorithms was compared
with algorithms that offer fuzzy system’s structural optimiza-
tion (e.g., SEIT2FNN, SONFIN, SaFIN, TSCIT2FNN, etc.),
hierarchical fuzzy system design (e.g., IFRS, H-TS-FS, etc.),
dynamic fuzzy system design (e.g., DENFIS, D-FNN, etc.),
and so forth. The obtained results illustrate the efficiency
of the proposed algorithms in comparison to the algorithms
collected from the literature. Such performance was obtained
by using the parameter setting mentioned in Table I. Moreover,
a comparison using noisy data [example 2, case–Noisy Set
(Section V-B1)] has proved the approximation efficiency of
the proposed algorithms over other algorithms. The HFIT
algorithms not only offer solutions with high accuracy (low
approximation error), but they also provide the solutions with
low complexity.

The algorithms that use a cluster-based partitioning of the
input space and to define fuzzy sets needs to be predetermined
the number of clusters. On the contrary, the proposed HFIT
uses only two partitions for each input and automatically
defines fuzzy sets by using the dynamics of the evolutionary
process. Such an ability is particularly significant for the pre-
dictive modeling of problem like example 6 (Section V-F) that
has a large number of input features. It would be a difficult task
for fuzzy-NN-based algorithms (e.g., SONFIN, SEIT2FNN,
McIT2FIS, etc.) to design a network-like structure to solve
a high-dimensional problem (e.g., example–6 that has 300
input features), whereas the proposed HFIT solves example–
6 with satisfactory accuracy and low model’s complexity.
Section IV-D shows that HFIT has several qualities that set
it apart from many algorithms mentioned in this work.

In Section V, a comprehensive study of the comparative
results of the proposed algorithms was presented. It was
observed that the proposed HFIT-based algorithms gave better
performance than the other algorithms collected from the
literature. For example, in the case of example–1, T1HFITM

provided a better RMSE with a lower parameter count. Addi-
tionally, T2HFITM offered an RMSE (i.e., 0.0028) with a low
complexity (i.e., 72) in comparison to SEIT2FNN that gave
an RMSE of 0.0022 with a model complexity of 84.

Similarly, for example-2, T2HFITM offered a competitive
RMSE (i.e., 0.0058) in comparison to SEIT2FNN2 that gave
an RMSE of 0.0053. Additionally, in the noisy dataset compar-
ison, the proposed T2HFITM provided better training RMSEs
with lower model’s complexities when compared to many of
the recently proposed T2FIS algorithms, such as SEIT2FNN,
IT2FNN-SVR, and T2FLS-G. Moreover, the models devel-
oped by the proposed algorithm adapted its structure in each
instance of noisy dataset experiments; whereas, the other mod-
els had a fixed structure in each instance of their experiments
(Table V). Therefore, the proposed algorithm was able to
accommodate the variance in noise more precisely than the
other models.

With example–3, example–4, and example–5, the proposed
type-1 HFIT surpassed all the other algorithms. Whereas,
type-2 HFIT performed competitively with algorithms such as
RIT2NFS-WB, McIT2FIS, and SEIT2FNN. It was observed
that the training RMSE of T2HFITM for example–3 was as
per with RIT2NFS-WB, but the complexity of the proposed

TABLE X
PERFORMANCE SUMMARY ON BENCHMARK EXAMPLES: SINGLE

OBJECTIVE VERSUS MULTIOBJECTIVE AND TYPE-1 VERSUS TYPE-2

Single Objective Multibjective
T1HFITS T2HFITS T1HFITM T2HFITM

Ex. En c(w) En c(w) En c(w) En c(w)

1 0.018 57.2 0.012 152.0 0.025 34.4 0.018 90.4
2 0.034 71.7 0.041 203.4 0.033 57.6 0.022 129.5
3 2.711 132.0 2.469 224.0 2.603 78.8 2.405 204.4
4 2.326 77.6 2.259 188.4 2.428 46.4 2.242 152.9
5 0.303 138.8 0.291 286.0 0.344 58.4 0.301 167.4
6 24.32 220.0 16.499 208.0 17.448 156.0 14.352 108.0

Avg. 4.952 116.2 3.595 210.3 3.814 71.9 3.223 142.1

T2HFITM was much less than RIT2NFS-WB. For example–
4, T2HFITM outperformed all its counterparts in both accu-
racy and complexity. For example–5, the training RMSE of
T2HFITM was close to SEIT2FNN, but on model’s complexity
and training time, T2HFITM outperformed SEIT2FNN by a
comfortable margin. Therefore, it may be concluded that the
proposed HFIT versions performed efficiently against other
algorithms found in the literature.

The proposed HFIT is a population-based algorithm. There-
fore, it should naturally take more training time than a single
solution based algorithm. In addition to that, the training time
depends on several factors, such as the programming language
used, the type of operating system, the hardware configuration
of the machine, the method of data feeding during the training,
etc. Therefore, training time comparison is limited. However,
by comparing the training time of the proposed algorithms
with the training times of some other algorithms (training
time of only a few algorithms is reported in the literature),
the following was observed: 1) in the case of example–1, the
proposed T2HFITM was found competitive with other algo-
rithms, 2) in the case of example–5, T2HFITM outperformed
SEIT2FNN, 3) in the case of example–6, which has 747
samples and 300 input features, the proposed T2HFITM takes
only about 7.16 minutes, which is remarkable.

For example–6, the proposed T2HFITM was more efficient
than T1HFITM because T2HFITM was capable of accommo-
dating noisy information more efficiently than T1HFITM. This
is evident from the fact that the average RMSE of T2HFITM

was 16.64, and the average RMSE of T1HFITM was 22.36.
Hence, the proposed type-2 HFIT, which is relied on interval
type-2 MFs, is worth considering in such high-dimensional
and noisy application problems.

A comparison between single objective and multiobjective
summarized in Table X suggests that the multiobjective ap-
proach has performance superiority over the single objective
because multiobjective gives a competitively better approxi-
mation accuracy (small error) with lower model complexity
in both type-1 and type2 cases compared to single objective.
Additionally, it can be observed that type-2 HFIT offers better
approximation accuracy against type-1 HFIT.

Since HFIT algorithms were developed using the evolu-
tionary process, the quality of their performance is subjected
to carefully setting of the parameters mentioned in Table I.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 19

Hence, the results of the algorithms mentioned in this work
may be further improved upon by choosing different sets
of parameters; however, this is a trial-and-error process. For
example, the feature selection, i.e., the number of inputs into
a node (a fuzzy subsystem) is proportional to the setting of
the maximum inputs into a node. Similarly, the hierarchy
(number of layers) in an HFIT is proportional to the setting of
the maximum depth of a tree. Therefore, HFIT’s complex-
ity can be controlled using these parameters. Additionally,
the parameters of MOGP and DE, such as their population
size, crossover probability, mutation probability, etc., influence
HFIT’s performance.

VII. CONCLUSIONS

Using a fuzzy inference system (FIS) for data mining
inherently requires a multiobjective solution and the proposed
multiobjective design for a hierarchical fuzzy inference tree
(HFIT) stands as a viable option that constructs a tree-like
model whose nodes are low-dimensional FISs. The proposed
HFIT was developed for both type-1 and type-2 FISs and
each node in HFIT implements a Takagi–Sugeno–Kang model.
Both type-1 and type-2 HFITs were studied in the scope of
single objective and multiobjective optimization using genetic
programming. Hence, four versions of HFIT were studied:
T1HFITS, T1HFITM, T2HFITS, and T2HFITM. The param-
eters of the membership functions and the consequent parts
of the rules were optimized using a differential evolution
algorithm. HFIT’s optimization procedure was a two-phase
evolutionary optimization approach, in which structure opti-
mization and parameter optimization were applied one-by-one
until a formidable solution was obtained. The approximation
ability of the proposed HFIT was theoretically examined.
As a result of that, four distinguish quality of HFIT was
described: adaptation in structure, diverse rule generation,
automatic fuzzy set selection, minimal feature driven structure
formation. A comprehensive performance comparison was
performed for evaluating the efficiency of the proposed HFIT.
The performance of the proposed HFIT algorithm was found
to be efficient and competitive compared to the algorithms
collected from the literature. HFITs provided competitive
approximations compared to other algorithms and simultane-
ously it produced less complex models. Additionally, HFIT
performs feature selection and automatic structure design,
which is necessary for solving high-dimensional problems.

REFERENCES

[1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Trans. Syst. Man Cybern.,
vol. 15, no. 1, pp. 116–132, 1985.

[2] L. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338 – 353, 1965.
[3] L. A. Zadeh, “The concept of a linguistic variable and its application

to approximate reasoning,” Inf. Sci., vol. 8, no. 3, pp. 199–249, 1975.
[4] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic

systems,” IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 643–658, 1999.
[5] H. A. Hagras, “A hierarchical type-2 fuzzy logic control architecture

for autonomous mobile robots,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4,
pp. 524–539, 2004.

[6] L. B. Booker, “Intelligent behavior as an adaptation to the task
environment,” Ph.D. dissertation, University of Michigan, Ann Arbor,
MI, USA, 1982.

[7] H. Ishibuchi, T. Nakashima, and T. Kuroda, “A hybrid fuzzy genetics-
based machine learning algorithm: hybridization of Michigan approach
and Pittsburgh approach,” in 1999 Int. Conf. Systems, Man, and
Cybernetics, 1999. IEEE SMC’99 Conf. Proc., vol. 1, pp. 296–301.

[8] S. F. Smith, “A learning system based on genetic adaptive algorithms,”
Ph.D. dissertation, University of Pittsburgh, Pittsburgh, PA, USA, 1980.

[9] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference sys-
tem,” IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685,
1993.

[10] S. Wu and M. J. Er, “Dynamic fuzzy neural networks–a novel approach
to function approximation,” IEEE Trans. Syst. Man Cybern. Part B
Cybern., vol. 30, no. 2, pp. 358–364, 2000.

[11] K. D. Sharma, A. Chatterjee, and A. Rakshit, “A hybrid approach for
design of stable adaptive fuzzy controllers employing lyapunov theory
and particle swarm optimization,” IEEE Trans. Fuzzy Syst., vol. 17,
no. 2, pp. 329–342, 2009.

[12] S.-C. Huang, M.-K. Jiau, and C.-H. Lin, “Optimization of the carpool
service problem via a fuzzy-controlled genetic algorithm,” IEEE Trans.
Fuzzy Syst., vol. 23, no. 5, pp. 1698–1712, 2015.

[13] O. Castillo and P. Melin, “Optimization of type-2 fuzzy systems based
on bio-inspired methods: a concise review,” Inf. Sci., vol. 205, pp. 1–19,
2012.

[14] A. Fernández, V. López, M. J. del Jesus, and F. Herrera, “Revisiting
evolutionary fuzzy systems: Taxonomy, applications, new trends and
challenges,” Knowledge-Based Syst., vol. 80, pp. 109–121, 2015.

[15] C.-F. Juang and C.-T. Lin, “An online self-constructing neural fuzzy
inference network and its applications,” IEEE Trans. Fuzzy Syst., vol. 6,
no. 1, pp. 12–32, 1998.

[16] C.-F. Juang and Y.-W. Tsao, “A self-evolving interval type-2 fuzzy
neural network with online structure and parameter learning,” IEEE
Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1411–1424, 2008.

[17] C.-F. Juang and K.-J. Juang, “Reduced interval type-2 neural fuzzy
system using weighted bound-set boundary operation for computation
speedup and chip implementation,” IEEE Trans. Fuzzy Syst., vol. 21,
no. 3, pp. 477–491, 2013.

[18] N. K. Kasabov and Q. Song, “DENFIS: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,” IEEE
Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, 2002.

[19] S. W. Tung, C. Quek, and C. Guan, “SaFIN: A self-adaptive fuzzy
inference network,” IEEE Trans. Neural Netw, vol. 22, no. 12, pp.
1928–1940, 2011.

[20] Y.-Y. Lin, J.-Y. Chang, N. R. Pal, and C.-T. Lin, “A mutually recurrent
interval type-2 neural fuzzy system (MRIT2NFS) with self-evolving
structure and parameters,” IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp.
492–509, 2013.

[21] Y.-Y. Lin, J.-Y. Chang, and C.-T. Lin, “A TSK-type-based self-evolving
compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and
its applications,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 447–
459, 2014.

[22] Y.-Y. Lin, S.-H. Liao, J.-Y. Chang, and C.-T. Lin, “Simplified interval
type-2 fuzzy neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 5, pp. 959–969, 2014.

[23] A. Bouchachia and C. Vanaret, “GT2FC: an online growing interval
type-2 self-learning fuzzy classifier,” IEEE Trans. Fuzzy Syst., vol. 22,
no. 4, pp. 999–1018, 2014.

[24] A. K. Das, K. Subramanian, and S. Sundaram, “An evolving interval
type-2 neurofuzzy inference system and its metacognitive sequential
learning algorithm,” IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 2080–
2093, 2015.

[25] G. Raju, J. Zhou, and R. A. Kisner, “Hierarchical fuzzy control,” Int.
J. Control, vol. 54, no. 5, pp. 1201–1216, 1991.

[26] M. Brown, K. Bossley, D. Mills, and C. Harris, “High dimensional
neurofuzzy systems: overcoming the curse of dimensionality,” in Proc.
1995 IEEE Int. Fuzzy Syst., 1995. Int. Jt. Conf. of the 4th Int. Conf.
Fuzzy Syst. and The 2nd Int. Fuzzy Eng. Symp., vol. 4, pp. 2139–2146.

[27] L.-X. Wang, “Analysis and design of hierarchical fuzzy systems,” IEEE
Trans. Fuzzy Syst., vol. 7, no. 5, pp. 617–624, 1999.

[28] M. R. Delgado, F. Von Zuben, and F. Gomide, “Hierarchical genetic
fuzzy systems,” Inf. Sci., vol. 136, no. 1, pp. 29–52, 2001.

[29] M.-L. Lee, H.-Y. Chung, and F.-M. Yu, “Modeling of hierarchical fuzzy
systems,” Fuzzy Sets Syst., vol. 138, no. 2, pp. 343–361, 2003.

[30] X.-J. Zeng and J. A. Keane, “Approximation capabilities of hierarchical
fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 13, no. 5, pp. 659–672,
2005.

[31] V. Torra, “A review of the construction of hierarchical fuzzy systems,”
Int. J. Intell. Syst., vol. 17, no. 5, pp. 531–543, 2002.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 20

[32] M. G. Joo and J. S. Lee, “A class of hierarchical fuzzy systems with
constraints on the fuzzy rules,” IEEE Trans. Fuzzy Syst., vol. 13, no. 2,
pp. 194–203, 2005.

[33] A. Fernández, M. J. del Jesus, and F. Herrera, “Hierarchical fuzzy rule
based classification systems with genetic rule selection for imbalanced
data-sets,” Int. J. Approximate Reasoning, vol. 50, no. 3, pp. 561–577,
2009.

[34] C.-L. Hwang, C.-C. Chiang, and Y.-W. Yeh, “Adaptive fuzzy hier-
archical sliding-mode control for the trajectory tracking of uncertain
underactuated nonlinear dynamic systems,” IEEE Trans. Fuzzy Syst.,
vol. 22, no. 2, pp. 286–299, 2014.

[35] Y. Chen, B. Yang, A. Abraham, and L. Peng, “Automatic design
of hierarchical takagi–sugeno type fuzzy systems using evolutionary
algorithms,” IEEE Trans. Fuzzy Syst., vol. 15, no. 3, pp. 385–397,
2007.

[36] R. Salustowicz and J. Schmidhuber, “Probabilistic incremental program
evolution,” Evol. Comput., vol. 5, no. 2, pp. 123–141, 1997.

[37] A. Mohammadzadeh, O. Kaynak, and M. Teshnehlab, “Two-mode
indirect adaptive control approach for the synchronization of uncertain
chaotic systems by the use of a hierarchical interval type-2 fuzzy neural
network,” IEEE Trans. Fuzzy Syst., vol. 22, no. 5, pp. 1301–1312, 2014.

[38] H. Ishibuchi, “Multiobjective genetic fuzzy systems: review and future
research directions,” in IEEE Int. Fuzzy Syst. Conf., 2007. FUZZ-IEEE
2007, pp. 1–6.

[39] H. Ishibuchi, T. Murata, and I. Türkşen, “Single-objective and two-
objective genetic algorithms for selecting linguistic rules for pattern
classification problems,” Fuzzy Sets Syst., vol. 89, no. 2, pp. 135–150,
1997.

[40] R. Alcalá, M. J. Gacto, F. Herrera, and J. Alcalá-Fdez, “A multi-
objective genetic algorithm for tuning and rule selection to obtain
accurate and compact linguistic fuzzy rule-based systems,” Int. J.
Uncertainty Fuzziness Knowledge Based Syst., vol. 15, no. 05, pp.
539–557, 2007.

[41] O. Cordón, “A historical review of evolutionary learning methods
for Mamdani-type fuzzy rule-based systems: Designing interpretable
genetic fuzzy systems,” Int. J. Approximate Reasoning, vol. 52, no. 6,
pp. 894–913, 2011.

[42] S. Guillaume, “Designing fuzzy inference systems from data: an
interpretability-oriented review,” IEEE Trans. Fuzzy Syst., vol. 9, no. 3,
pp. 426–443, 2001.

[43] H. Ishibuchi and Y. Nojima, “Analysis of interpretability-accuracy
trade-off of fuzzy systems by multiobjective fuzzy genetics-based
machine learning,” Int. J. Approximate Reasoning, vol. 44, no. 1, pp.
4–31, 2007.

[44] M. J. Gacto, R. Alcalá, and F. Herrera, “Adaptation and application of
multi-objective evolutionary algorithms for rule reduction and param-
eter tuning of fuzzy rule-based systems,” Soft Comput., vol. 13, no. 5,
pp. 419–436, 2009.

[45] C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera, “NMEEF-
SD: non-dominated multiobjective evolutionary algorithm for extract-
ing fuzzy rules in subgroup discovery,” IEEE Trans. Fuzzy Syst.,
vol. 18, no. 5, pp. 958–970, 2010.

[46] A. B. Cara, C. Wagner, H. Hagras, H. Pomares, and I. Rojas, “Mul-
tiobjective optimization and comparison of nonsingleton type-1 and
singleton interval type-2 fuzzy logic systems,” IEEE Trans. Fuzzy syst.,
vol. 21, no. 3, pp. 459–476, 2013.

[47] H. Wang, S. Kwong, Y. Jin, W. Wei, and K.-F. Man, “Multi-objective
hierarchical genetic algorithm for interpretable fuzzy rule-based knowl-
edge extraction,” Fuzzy Sets Syst., vol. 149, no. 1, pp. 149–186, 2005.

[48] R. Munoz-Salinas, E. Aguirre, O. Cordón, and M. Garcı́a-Silvente,
“Automatic tuning of a fuzzy visual system using evolutionary algo-
rithms: single-objective versus multiobjective approaches,” IEEE Trans.
Fuzzy Syst., vol. 16, no. 2, pp. 485–501, 2008.

[49] R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni,
“A multiobjective evolutionary approach to concurrently learn rule and
data bases of linguistic fuzzy-rule-based systems,” IEEE Trans. Fuzzy
Syst., vol. 17, no. 5, pp. 1106–1122, 2009.

[50] M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Learning
knowledge bases of multi-objective evolutionary fuzzy systems by si-
multaneously optimizing accuracy, complexity and partition integrity,”
Soft Comput., vol. 15, no. 12, pp. 2335–2354, 2011.

[51] M. Antonelli, P. Ducange, and F. Marcelloni, “Genetic training instance
selection in multiobjective evolutionary fuzzy systems: A coevolution-
ary approach,” IEEE Trans. Fuzzy Syst., vol. 20, no. 2, pp. 276–290,
2012.

[52] M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, and F. Herrera, “A
review of the application of multiobjective evolutionary fuzzy systems:

Current status and further directions,” IEEE Trans. Fuzzy Syst., vol. 21,
no. 1, pp. 45–65, 2013.

[53] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide
to genetic programming. Lulu. com, 2008.

[54] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, 2009.

[55] J. M. Mendel, “On KM algorithms for solving type-2 fuzzy set
problems,” IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 426–446, 2013.

[56] Y. Chen, B. Yang, J. Dong, and A. Abraham, “Time-series forecasting
using flexible neural tree model,” Inf. Sci., vol. 174, no. 3, pp. 219–235,
2005.

[57] Y. Jin, B. Sendhoff, and E. Körner, “Evolutionary multi-objective
optimization for simultaneous generation of signal-type and symbol-
type representations,” in Evolutionary Multi-Criterion Optimization,
ser. Lecture Notes in Computer Science, vol. 3410. Springer, 2005,
pp. 752–766.

[58] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II,” in Parallel Problem Solving from Nature PPSN VI, ser.
Lecture Notes in Computer Science. Springer, 2000, vol. 1917, pp.
849–858.

[59] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
2nd ed. Heidelberg: Springer, 2003.

[60] V. K. Ojha, A. Abraham, and V. Snášel, “Ensemble of heterogeneous
flexible neural trees using multiobjective genetic programming,” Appl.
Soft Comput., vol. 52, pp. 909–924, 2017.

[61] D. Karaboga and B. Basturk, “A powerful and efficient algorithm
for numerical function optimization: Artificial bee colony (ABC)
algorithm,” J. Global Optim., vol. 39, no. 3, pp. 459–471, 2007.

[62] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm Intell., vol. 1, no. 1, pp. 33–57, 2007.

[63] S. Das, S. S. Mullick, and P. Suganthan, “Recent advances in differ-
ential evolution–an updated survey,” Swarm and Evolutionary Compu-
tation, vol. 27, pp. 1–30, 2016.

[64] J. Snyman, Practical mathematical optimization: an introduction to
basic optimization theory and classical and new gradient-based algo-
rithms. Springer, 2005, vol. 97.

[65] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[66] S. S. Haykin, Kalman filtering and Neural Networks. Wiley Online
Library, 2001.

[67] D. E. Goldberg and P. Segrest, “Finite markov chain analysis of genetic
algorithms,” in Proc. of the 2nd Int. Conf. on Genetic Algorithms and
Their Appl. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1987,
pp. 1–8.

[68] A. Szalas and Z. Michalewicz, “Contractive mapping genetic algo-
rithms and their convergence,” Dept. of Computer Science, University
of North Carolina at Charlotte, Tech. Rep. Technical Report 006-1993,
1993.

[69] S. Banach, “Sur les opérations dans les ensembles abstraits et leur
application aux équations intégrales (in French),” Fund. Math., vol. 3,
no. 1, pp. 133–181, 1922.

[70] J. Dixmier, General Topology. Springer, 1984.
[71] L. Altenberg, “The evolution of evolvability in genetic programming,”

in Advances in Genetic Programming, K. E. Kinnear Jr., Ed., vol. 3.
MIT Press, 1994, pp. 47–74.

[72] A. N. Kolmogorov, “On the representation of continuous functions of
many variables by superposition of continuous functions of one variable
and addition,” Transl. Amer. Math. Soc., vol. 28, no. 2, pp. 55–59, 1963.

[73] F. Xue, A. C. Sanderson, and R. J. Graves, “Modeling and convergence
analysis of a continuous multi-objective differential evolution algo-
rithm,” in Evolutionary Computation, 2005. The 2005 IEEE Congress
on, vol. 1. IEEE, 2005, pp. 228–235.

[74] J. Zhang and A. C. Sanderson, “Theoretical analysis of differential
evolution,” in Adaptive Differential Evolution. Springer, 2009, pp.
15–38.

[75] Z. Hu, S. Xiong, Q. Su, and X. Zhang, “Sufficient conditions for global
convergence of differential evolution algorithm,” J. Appl. Math., vol.
2013, 2013.

[76] S. Paul and S. Kumar, “Subsethood-product fuzzy neural inference
system (SuPFuNIS),” IEEE Trans. Neural Netw, vol. 13, no. 3, pp.
578–599, 2002.

[77] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” J. Glob.
Optim., vol. 11, no. 4, pp. 341–359, Dec 1997.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MONTH YYYY 21

[78] N. Kasabov, “Evolving fuzzy neural networks for super-
vised/unsupervised online knowledge-based learning,” IEEE Trans.
Syst. Man Cybern. Part B Cybern., vol. 31, no. 6, pp. 902–918, 2001.

[79] C.-J. Lin and C.-T. Lin, “An ART-based fuzzy adaptive learning control
network,” IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477–496, 1997.

[80] Y.-Q. Zhang, B. Jin, and Y. Tang, “Granular neural networks with
evolutionary interval learning,” IEEE Trans. Fuzzy Syst., vol. 16, no. 2,
pp. 309–319, 2008.

[81] J. Kim and N. Kasabov, “HyFIS: adaptive neuro-fuzzy inference
systems and their application to nonlinear dynamical systems,” Neural
Netw., vol. 12, no. 9, pp. 1301–1319, 1999.

[82] J.-C. Duan and F.-L. Chung, “Multilevel fuzzy relational systems:
structure and identification,” Soft Comput., vol. 6, no. 2, pp. 71–86,
2002.

[83] K. B. Cho and B. H. Wang, “Radial basis function based adaptive fuzzy
systems and their applications to system identification and prediction,”
Fuzzy Sets Syst., vol. 83, no. 3, pp. 325–339, 1996.

[84] J.-H. Chiang and P.-Y. Hao, “Support vector learning mechanism for
fuzzy rule-based modeling: a new approach,” IEEE Trans. Fuzzy Syst.,
vol. 12, no. 1, pp. 1–12, 2004.

[85] S. W. Tung, C. Quek, and C. Guan, “eT2FIS: an evolving type-2 neural
fuzzy inference system,” Inf. Sci., vol. 220, pp. 124–148, 2013.

[86] C.-F. Juang, R.-B. Huang, and W.-Y. Cheng, “An interval type-2 fuzzy-
neural network with support-vector regression for noisy regression
problems,” IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 686–699, 2010.

[87] P. P. Angelov and D. P. Filev, “An approach to online identification of
Takagi-Sugeno fuzzy models,” IEEE Trans. Syst. Man Cybern. Part B
Cybern., vol. 34, no. 1, pp. 484–498, 2004.

[88] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions. Upper Saddle River, NJ: Prentice-Hall, 2001.

[89] ——, “Computing derivatives in interval type-2 fuzzy logic systems,”
IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84–98, 2004.

[90] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Trans. Neural Netw,
vol. 1, no. 1, pp. 4–27, 1990.

[91] M. Lichman, “UCI machine learning repository,” 2013, accessed on:
01.05.2016. [Online]. Available: http://archive.ics.uci.edu/ml

[92] P. Baranyi, L. T. Kóczy, and T. T. D. Gedeon, “A generalized concept
for fuzzy rule interpolation,” IEEE Trans. Fuzzy Syst., vol. 12, no. 6,
pp. 820–837, 2004.

[93] Y.-C. Chang, S.-M. Chen, and C.-J. Liau, “Fuzzy interpolative reason-
ing for sparse fuzzy-rule-based systems based on the areas of fuzzy
sets,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1285–1301, 2008.

[94] Z. Huang and Q. Shen, “Fuzzy interpolation and extrapolation: A
practical approach,” IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 13–28,
2008.

[95] S.-M. Chen and Y.-C. Chang, “Weighted fuzzy rule interpolation based
on GA-based weight-learning techniques,” IEEE Trans. Fuzzy Syst.,
vol. 19, no. 4, pp. 729–744, 2011.

[96] G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and
Control. San Francisco, CA, USA: Holden–Day, 1976.

[97] J. Szlek, A. Pacławski, R. Lau, R. Jachowicz, and A. Mendyk, “Heuris-
tic modeling of macromolecule release from PLGA microspheres,” Int.
J. Nanomed., vol. 8, no. 1, pp. 4601–4611, 2013.

[98] V. K. Ojha, K. Jackowski, A. Abraham, and V. Snášel, “Dimensionality
reduction, and function approximation of poly (lactic-co-glycolic acid)
micro-and nanoparticle dissolution rate,” Int. J. Nanomed., vol. 10, pp.
1119 – 1129, 2015.

[99] C. E. Astete and C. M. Sabliov, “Synthesis and characterization of
PLGA nanoparticles,” J. Biomater. Sci., Polym. Ed., vol. 17, no. 3, pp.
247–289, 2006.

[100] R. Langer and D. A. Tirrell, “Designing materials for biology and
medicine,” Nature, vol. 428, no. 6982, pp. 487–492, 2004.

[101] H. K. Makadia and S. J. Siegel, “Poly lactic-co-glycolic acid (PLGA)
as biodegradable controlled drug delivery carrier,” Polymers (Basel),
vol. 3, no. 3, pp. 1377–1397, 2011.

[102] V. K. Ojha, A. Abraham, and V. Snasel, “Ensemble of heterogeneous
flexible neural tree for the approximation and feature-selection of poly
(lactic-co-glycolic acid) micro-and nanoparticle,” in Proc. the 2nd Int.
Afro-European Conf. for Ind. Adv. AECIA 2015, 2016, pp. 155–165.

Varun Kumar Ojha Dr. Ojha is currently a Post-
doctoral Researcher at the Chair of Information
Architecture, Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland. He received Ph.D. De-
gree in Computer Science, Communication Tech-
nology and Applied Mathematics from Technical
University of Ostrava, Czech Republic (2016) and
M.Tech (2011) and B.Tech (2008) Degree in Com-
puter Science and Engineering from West Bengal
University of Technology, India. He focuses on
neural networks, fuzzy inference systems, and evo-

lutionary computation. His particular interests are in data analysis, computa-
tional modeling, approximation, feature analysis, dimensionality reduction,
clustering, and optimization. Dr. Ojha received Marie Curie Fellowship
award as a part European Union funded project in (2013-2016). He worked
as a research fellow in a project funded by Department of Science and
technology, Govt. of India (2011-2013). He participated in industrial and
multidisciplinary research projects and has several publication in refereed
journals and conferences. He is a member of IEEE and ACM.

Václav Snášel Prof. Snášel is Rector of Technical
University of Ostrava, Czech Republic. He also
served as a Dean of the Faculty of Electrical En-
gineering and Computer Science, Technical Univer-
sity of Ostrava, Czech Republic. His research and
development experience includes over 30 years in
the Industry and Academia. He works in a multi-
disciplinary environment involving artificial intelli-
gence, social network, conceptual lattice, informa-
tion retrieval, semantic web, knowledge manage-
ment, data compression, machine intelligence, nature

and Bio-inspired computing and applied to various real world problems. He
has authored/co-authored several refereed journal/conference papers, books,
and book chapters.

As an Investigator/Co-investigator, he has been involved in over 20+
research grants worth 35+ Million CZK. He is senior member of IEEE,
and he is the Chair of IEEE SMC Czechoslovak chapter. He also served
as a Editor/Guest Editor of a number of journals, e.g., EAAI, Elsevier,
Neurocomputing, Elsevier, Journal of Applied Logic, Elsevier, etc.

Prof. Snasel received Ph.D. degree (1991) in the field of algebra and number
theory from Masaryk University, Czech Republic and Master degrees (1981) in
the field numerical mathematics from Faculty of Science, Palacky University
in Olomouc, Czech Republic.

Ajith Abrahama Dr. Abraham is the Director of
Machine Intelligence Research Labs (MIR Labs),
a Not-for-Profit Scientific Network for Innovation
and Research Excellence connecting Industry and
Academia. The Network with Headquarters in Seat-
tle, USA has currently more than 1,000 scientific
members from over 100 countries.

As an Investigator/Co-Investigator, he has won
research grants worth over 100+ Million US$ from
Australia, USA, EU, Italy, Czech Republic, France,
Malaysia, and China. Dr. Abraham works in a multi-

disciplinary environment involving machine intelligence, cyber-physical sys-
tems, Internet of things, network security, sensor networks, Web intelligence,
Web services, data mining and applied to various real world problems. He
has authored/coauthored more than 1,000+ research publications out of which
there are 100+ books. Dr. Abraham has more than 25,000+ academic citations
(h-index of 78 as per Google scholar). He has given more than 100 plenary
lectures and conference tutorials (in 20+ countries).

Since 2008, Dr. Abraham is the Chair of IEEE SMC Society Technical
Committee on Soft Computing and served as a Distinguished Lecturer of IEEE
Computer Society representing Europe (2011-2013). Currently, Dr. Abraham
is the editor-in-chief of Engineering Applications of Artificial Intelligence and
serves/served the editorial board of over 15 International Journals indexed by
Thomson ISI. Dr. Abraham received Ph.D. degree in Computer Science from
Monash University, Melbourne, Australia (2001) and a M.Sc. Degree from
Nanyang Technological University, Singapore (1998).

View publication statsView publication stats

https://www.researchgate.net/publication/316530279

