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Abstract In this work, a computational intelligence (CI)

technique named flexible neural tree (FNT) was devel-

oped to predict die filling performance of pharmaceutical

granules and to identify significant die filling process

variables. FNT resembles feedforward neural network,

which creates a tree-like structure by using genetic pro-

gramming. To improve accuracy, FNT parameters were

optimized by using differential evolution algorithm. The

performance of the FNT-based CI model was evaluated

and compared with other CI techniques: multilayer per-

ceptron, Gaussian process regression, and reduced error

pruning tree. The accuracy of the CI model was evalu-

ated experimentally using die filling as a case study. The

die filling experiments were performed using a model

shoe system and three different grades of microcrystalline

cellulose (MCC) powders (MCC PH 101, MCC PH 102,

and MCC DG). The feed powders were roll-compacted

and milled into granules. The granules were then sieved

into samples of various size classes. The mass of gran-

ules deposited into the die at different shoe speeds was

measured. From these experiments, a dataset consisting

true density, mean diameter (d50), granule size, and shoe

speed as the inputs and the deposited mass as the output

was generated. Cross-validation (CV) methods such as

10FCV and 5x2FCV were applied to develop and to

validate the predictive models. It was found that the

FNT-based CI model (for both CV methods) performed

much better than other CI models. Additionally, it was

observed that process variables such as the granule size

and the shoe speed had a higher impact on the pre-

dictability than that of the powder property such as d50.

Furthermore, validation of model prediction with exper-

imental data showed that the die filling behavior of

coarse granules could be better predicted than that of fine

granules.

Keywords Predictive modeling � Die filling � Flowability �
Pharmaceutical granules � Flexible neural tree � Feature
selection

1 Introduction

In pharmaceutical industries, it is well recognized that the

variation in composition and the quality of tablets are

determined by material properties and process conditions.

One of the greatest challenges in pharmaceutical devel-

opment is to identify the causal relationship between

material properties, intermediate properties, final product

properties, and process variables, which is crucial to obtain

high-quality products. However, it is a challenging multi-

factorial problem.

Tablets are manufactured by compressing dry powders

or granules in a die, i.e., the so-called die compaction.

The die compaction process consists of three primary

stages: die filling, compaction, and ejection [1]. Simple

gravity effect can play a role during die filling of powders

into the die. However, flow behavior during die filling

process controls the tablet composition, the tablet prop-

erties as well as its segregation tendency [2–4]. Therefore,
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the study of die filling process parameters has a signifi-

cant role in controlling tablet (drug) manufacturing

industry.

Previous studies on die filling have been focused on

such factors influencing the flow behavior as powder

characteristics, apparatus features, and operating vari-

ables. For instance, the effect of density and particle size

on gravity and suction filling of several grades of

microcrystalline cellulose powders were explored in [5].

It was shown that fine particles present intermittent flow

behavior due to their cohesive property, while larger

particles are free flowing. The suction effect during die

filling on a rotary press system was studied in [6], where

the strong influence on the flow behavior of powders was

observed due to air pressure build-up into an open

cavity. Moreover, it was found that the lower punch has

to be withdrawn at a higher speed by increasing the

turret speed in order to improve the suction feed

efficiency.

In [7], authors studied powder segregation behavior

during die filling process for a mixture of fine and coarse

powders from a stationary hopper. Segregation was found

due to the movement of the fine particles on the powder

bed during the process. Moreover, the reduction of segre-

gation was possible with the decrease in fill time or

enhancing the drop height.

Several studies reported in the literature are on apparatus

features such as die width and feed frame design. For

example, a study on die width proved that the filling den-

sity decreases proportionally with the die width [8]. In

another study, the filling density was found correlated with

the shoe speed, i.e., the filling density was observed to be

increasing as the shoe speed was decreasing [9]. Addi-

tionally, in [10], authors studied the influence of different

feed frames of powder blends and found that the feed frame

had a significantly high impact on powder hydrophobicity

due to over lubrication of the powders caused by the shear.

This will lead to an increase in flowability and a decrease

in tablet tensile strength.

Similarly, different process conditions such as die filling

in the air or in the vacuum were studied [2], where it was

shown that nose flow and bulk flow are two possible

classifications of die filling depending on the shoe speed,

the powder flow patterns. Moreover, a faster filling rate

was observed in the vacuum than the filling rate in the air.

Furthermore, in [11], authors proposed a new methodology

based on the concept of critical shoe velocity to charac-

terize powder flow, where a critical fill speed that suggests

the minimum filling speed at which the die can be filled,

completely. The die will not be full if the velocity is higher

than the critical velocity. Hence, it was possible to deter-

mine the fill ratio at these higher speeds using the following

equation:

d ¼ vc

vs

� �m

ð1Þ

where vc is the critical velocity, vs is the shoe speed, and m

is a coefficient of value between 1.0 and 1.6.

Guo et al. [12] used a coupled discrete element method

with computational fluid dynamics (DEM-CFD) to mod-

eled die filling process, in which they explored the influ-

ence of powder properties (i.e., particle size and density)

on die filling in the air and in the vacuum. They charac-

terized flow in terms of mass flow rate and found that the

mass flow rate is constant in the vacuum, whereas for light

and small particles in the air-sensitive regime, it was found

that the mass flow rate increases as the particle size and

density increase, and for coarse and dense particles in the

air-inert regime, a negligible effect on airflow was

observed. Guo et al. [13] then investigated segregation

induced by air during die filling, where DEM-CFD was

used to simulate monodispersed mixtures. For die filling

using a stationary shoe, segregation was induced due to the

air presence and a lower concentration of light particles

was found in the lower region of the die, whereas for die

filling using a moving shoe, lighter particles predominantly

gather in the leading edge of the flow stream.

Although several investigations on die filling have been

proposed both experimentally and numerically, the influ-

ence of the granule property on die filling behavior and

how this is correlated with the raw material properties and

process variables are not fully understood. Moreover, it is

of commercial benefit for pharmaceutical companies to

reduce the development time and costs with the contem-

porary improvement of the pharmaceutical process design

[14]. To achieve these goals, the use of the multilayer

perceptron (MLP) on a limited set of experiment data for

predictive modeling can be of great benefit [15]. Addi-

tionally, use of computational intelligence techniques is

advantageous for various pharmaceutical processes

[16, 17]. Hence, the objective of this work is to develop a

predictive model that can accurately describe the die filling

behavior of pharmaceutical granules. For this purpose, a

computational intelligent (CI) technique, named flexible

neural tree (FNT), is used for predicting die filling per-

formance of pharmaceutical granules

2 Computational intelligence techniques

Computational intelligence techniques discover knowledge

from data and create predictive models. Moreover, in a

predictive modeling, a causal relationship between the

independent variable X ¼ ðx1; x2; . . .; xNÞ and the depen-

dent variable d ¼ hd1; d2; . . .; dNi is discovered. Specifi-

cally, the unknown parameter w, which represents the
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learning component of a CI technique, is determined by

minimizing the root mean square error e (RMSE) between

the desired output d and the predicted output

y ¼ hy1; y2; . . .; yNi. Hence, the training of a CI technique

is a process of searching the optimum parameter w. In this

work, the RMSE e was computed as:

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

yi � dið Þ2
vuut ; ð2Þ

where N is total samples in a training set. An additional

performance measure used in this work was correlation

coefficient r that quantifies the correlation between two the

variables: the desired output d and the predicted output y.

The correlation coefficient value r was computed as:

r ¼
PN

i¼1ððyi �meanðyÞÞðdi �meanðdÞÞÞPN
i¼1ðyi �meanðyÞÞ2

PN
i¼1ðdi �meanðdÞÞ2

ð3Þ

where function meanð�Þ returns the average of the elements

of a vector. The correlation coefficient r equal to 1 indi-

cates the best performance and the correlation coefficient

r equal to �1 indicates the worst performance.

The common CI techniques such as multilayer percep-

tron (MLP), Gaussian process regression (GPR), and

reduced error pruning tree (REP-Tree) solves several

industrial and real-world problems [18]. The concise defi-

nitions of these CI techniques are as follows:

• The MLP is a mathematical form of human-like

learning, where a network of computational nodes

arranged in a layered architecture is trained using a

dataset [19].

• In REP-Tree, based on the dataset, a tree-like structure

is created, where the tree’s internal nodes are binary

decision nodes and the leaf nodes are the output nodes

[20].

• The GPR is a Gaussian distribution-based extension of

linear regression technique [21].

These CI techniques are implemented as an open source

library, i.e., as a software tool named WEKA [22]. A

detailed description of these models is available in [23].

In comparison with the models above, the flexible neural

tree (FNT) produces a tree-like model, where the nodes of

the tree are similar to the MLP nodes. Hence, FNT differs

from MLP in its structural configuration, and it differs from

REP-Tree in its node type. Moreover, the tree-like structure

in the FNT is created using genetic programming (GP)

[24, 25]. Therefore, the basic advantage of using FNT over

MLP and REP-Tree lies in its ability of automatic adap-

tation into the tree structure and the input feature selection

with the help of GP [26]. Such an ability is necessary and

has been used in several successful applications. Examples

of such applications are cement decomposing-furnace

production-process modeling [27]; exchange rate fore-

casting [28]; gene regulatory network reconstruction and

time-series prediction from gene expression [29]; Internet

traffic identification [30]; and protein desolation rate pre-

diction [31].

It is known that for a good quality data, the predictive

capability of MLP lies in its learning components, such as

connection weights, network-architecture, activation func-

tion, input features, and learning rules [32]. The design of

FNT includes all these MLP-like learning components and

offers an automatic adaptation of these components by

using GP [24, 25]. The descriptions of the CI models are

given below.

2.1 Multilayer perceptron (MLP)

Usually, an MLP structure has three layers: an input layer,

a hidden layer, and an output layer. Each layer of an MLP

consists of several nodes, and each node receives real-

valued inputs and produces outputs based on the weighted

linear combination of inputs. Then, the magnitude of the

node’s output is computed by using a nonlinear activation

function. In this work, resilient propagator algorithm was

used to train an MLP [33].

2.2 Gaussian process for regression (GPR)

GPR is a statistical technique that extends multivariate

Gaussian distribution. Let ŷ ¼ f ðxÞ ¼ /ðxÞTw be a

regression model, where an input vector x ¼
hx1; x2; . . .; xdi 2 X is mapped onto an N-dimensional fea-

ture space /ð�Þ, and w is the learning component. Then, a

mean function m(x) and a covariance function kðx; x0 Þ
define a Gaussian process gpð�Þ. The mean and covariance

functions are written as:

mðxÞ ¼ E½f ðxÞ�;

kðx; x0 Þ ¼ E f ðxÞ � mðxÞð Þ; f x
0

� �
� m x

0
� �� ih �i

:

and Gaussian process gpð�Þ may be written as:

f ðxÞ� gp mðxÞ; k x; x
0

� �� �
:

The mean function m(x) and the covariance function

kðx; x0 Þ are described in [21].

2.3 Reduced error pruning tree (REP-Tree)

Reduced error pruning tree depends on the creation of a

decision tree. A decision tree resembles a tree-like struc-

ture whose non-leaf nodes are decision nodes. A decision

node is tested (a binary decision) against an input feature
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and the leaf nodes are the outcomes of the test. In REP-

Tree, a decision tree is created using the information

available in a training data and then the leaves and bran-

ches of the tree are pruned using the reduced-error pruning

method to avoid over-fitting. In the reduced error pruning

method, the nodes of the tree are pruned until the accuracy

of the prediction is not affected. A detailed study of this

algorithm is available in [20].

2.4 Flexible neural tree (FNT)

To minimize RMSE e so that it converges to zero, an FNT

adapts its parameter by using learning algorithms (such as

genetic programming and differential evolution). Such

adaptation is performed by optimizing the components of

tree-like structure: internal nodes (computational nodes),

branches (connection weights), and leaf nodes (terminal

nodes).

Mathematically, a union of computational node F and

the terminal node T describes an FNT denoted as S , where

a computational node represents an activation function, and

a terminal node represents an input. Hence, an FNT can be

represented as:

S ¼ F [ T ¼ fþ2;þ3; . . .;þNg [ fx1; x2; . . .; xdg ð4Þ

where þn (n ¼ 2 or 3 or . . . or N ) indicates that a com-

putational node that takes two or more arguments, whereas,

the terminal node takes zero arguments. Figure 1 is an

illustration of FNT model.

The shaded circle in Fig. 1 represents a computational

node (the root node is among the computational nodes), the

branches of the tree indicate the weights of the model, and

the leaf nodes (shown in square) of the tree indicate the

selected input features. The root node of the tree represents

the output of the model. The output of an FNT at the root

node is computed using a bottom-up approach (as indicated

by arrows in Fig. 1). The i-th computational node (shown

in Fig. 2) of the tree (Fig. 1) receives ni input through ni

connection weights (branches) and two adjustable

parameters ai and bi, which represent the arguments of the

i-th computational node’s activation function. The purpose

of using an activation function at the computational node is

to limit computational node’s output within a certain range.

For example, output of i-th node that contains a Gaussian

function is computed as:

yi ¼ fiðai; bi; oiÞ ¼ exp � ðoi � aiÞ
bi

� �� �
ð5Þ

where oi is the weighted summation of the inputs to the i-th

computational node (see Fig. 1), which is computed as:

oi ¼
Xni
j¼1

wi
jx
i
j ð6Þ

where zij 2 fx1; x2; . . .; xdg or zij 2 fy1; y2; . . .; ykg, i.e., zij
can be either an input feature (leaf node value) or the

output of another node (computational node value). The

weight wi
j is the connection weight of real value in the

range ½wl;wh�. Now, two aspects are involved in the

training of an FNT: tree structure optimization and

parameter optimization. The optimization of these two

aspects of FNT took place in two phases:

1. Structure optimization using genetic programming

(GP)

2. Parameter optimization using differential evolution

(DE).

2.4.1 Structure optimization phase

GP is a population-based evolutionary-inspired algorithm

that makes use of genetic operators such as crossover and

mutation and iteratively constructs an optimal tree-like
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Fig. 1 A typical FNT S with computational set F ¼ fþ2;þ3g and

terminal set T ¼ x1; x2; x3
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Fig. 2 Illustration of an FNT’s computational node. The variables zij
and wi

j in the figure indicate the input and the weight. The variable yi

is the output of the node
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structure (the structure that gives the lowest approximation

error) through a vast topological search space [26]. In a

crossover operation, the randomly selected subtrees of two

trees are exchanged between each other’s and in a mutation

operation a randomly selected subtree is either deleted

entirely or replaced by a randomly generated subtree. In

this work, the mutation operators were designed as follows:

1. Replacing one terminal node with a new terminal

node;

2. Replacing all terminal nodes with new terminal nodes;

3. Growing a new subtree and replacing a randomly

selected function node;

4. Replacing a computational node with a terminal node.

Since GP is an evolutionary-inspired algorithm, only the

best input features (regarding the predictability) are

selected during the structure optimization phase.

2.4.2 Parameter optimization phase

DE is a population-based parameter optimization algorithm

that makes use of crossover operator and iteratively sear-

ches through a search space to optimize a vector that rep-

resents the parameters of a model [34]. Let assume that H

is the population of the tree parameter vectors. Hence, DE

tries to find an optimal tree parameter h� by using opera-

tors, such as selection, crossover, mutation, and recombi-

nation. At each iteration, the selection operator selects

three random vectors from the population H : r1, r2, and r3
such that r1 6¼ r2 6¼ r3 and the vector g that denotes the

best solution in the population. Therefore, a new tree

parameter vector hnew is computed as:

hnew
r1 þ F � ðr1 � gÞ þ F � ðr2 � r3Þ; if u\C

r1; if u�C

�
ð7Þ

where u, is a vector of random values taken from a uniform

distribution between 0 and 1, C is a vector of crossover

probability, and F is a vector of mutation factor. This

process is repeated until h� is found. Hence, by combining

structure optimization phase and parameter optimization

phase, a general optimization procedure of FNT can be

summarized in Fig. 3.

2.4.3 Limitations of FNT

The fundamental limitation of the FNN in comparison to

MLP is at its output node, i.e., the root node of the FNT

(tree-like structure). Since the tree can have only one root

node, one has to produce multiple models for multiple

output prediction problems. Moreover, FNT can only offer

multi-input–single-output models, whereas MLP can pro-

vide multi-input–multi-output models. Additionally, the

proposed improvement in FNT in comparison with other CI

techniques is its structure optimization. However, during

cross-validation (CV) methods such as k-fold CV, the

structure is determined only once (for only first fold) and

for the rest of the (k � 1) folds only parameters were

optimized. However, if the structure is determined for all

the k folds. Then, k different FNT models should be

obtained.

3 Experimental study

3.1 Materials and methods

Microcrystalline cellulose (MCC) of three different grades

was chosen as the raw materials, including Avicel PH-101,

Avicel PH 102, and DG. A custom-made gravity-fed roll

compactor with two counter rotating smooth rolls of

200 mm in diameter and 46 mm in width was used for

ribbon production [35, 36]. The roll gap was set at 1.2 mm

and the roll speed at 1 rpm roll speed. Ribbons were milled

using a milling system (SM100, Retsch, Germany) equip-

ped with a mesh size of 4 mm at a constant speed of 1500

rpm. The granules were sieved into different size classes

(0–90, 90–250, 250–500, 500–1000, 1000–1400, 1400–

2360 lm) that were used for the die filling experiments.

The corresponding upper size limit was used as the granule

size in the current study (i.e., granules in the size range

Initialize FNT optimization
parameters and an initial FNT.

Phase-I: Apply GP: crossover
and mutation for tree structure

optimization

Phase-II: By keeping the structure of the best tree (FNT
model) fixed, apply DE for its parameter optimization. The

weights and the arguments activation functions are the
parameters that has to be optimized

Optimal result: the best tree (FNT model).

Is better structure found?

Is maximum local search
reached?

Is satisfactory solution
found?

No

No

No

Yes: propagate the
best tree to next phase

Yes

Yes

Fig. 3 General FNT optimization procedure
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0–90 lm were regarded as granules with a size of 90 lm),

as commonly adopted in particle technology.

3.2 Data collection

True densities of the three MCC powders were determined

using a Helium Pycnometer (AccuPyc II 1340,

Micromeritics, UK). Particle size analysis was performed

using a size analyzer (Camsizer XT, Retsch, UK). The

experiments were run for 2–3 min, and the data were

collected. The mean diameter (d50) defined as the size

value below which 50 % of the particles lies was then

determined. Die filling experiments were performed using

a model die filling system that consists of a shoe driven by

a pneumatic driving unit, a positioning controller, and a

displacement transducer [2]. For each granule size class,

experiments were performed using seven different shoe

speeds in the range of 10–400mm s�1. For each die filling

experiment, the powder mass deposited into the die was

weighted, and the value was recorded. Each experiment

was repeated three times. In total, 389 experiments (3

powders, 6 granule sizes, 7 speeds, 3 repeats) were per-

formed, and 389 datasets were generated.

From the collected experimental data, four parameters

were chosen as inputs for the modeling: true density and

mean diameter (d50) of raw powders, granule size ( lm),

and shoe speed (mm s�1) and the deposited mass was the

only output. Table 1 shows a selection of few samples

(taken from 389 samples) of the generated dataset.

3.3 Predictive modeling

Predictive modeling with the CI techniques discussed in

Sect. 2 was performed in the following manner. Two dif-

ferent cases, i.e., tenfold cross-validation (10FCV) and

5-cross-2-fold cross-validation (5x2FCV) methods, were

considered. In 10FCV, a dataset is first randomized

(shuffled). Then, 90 % of data samples are used for training

of a model and the rest of 10 % data samples are used for

testing. This process is repeated for 10 times and each time

a distinct set of 10 % dataset is picked for testing of the

model and hence called 10FCV. In the 5x2FCV, the dataset

is randomly divided into two sets, where each set is 50 %

in size of the entire dataset. When the first set is used for

the training of a model, then the second set is used for the

testing of the same model, and the vice-versa. This process

is repeated for five times and hence referred to as 5x2FCV

validation. In each case, the four CI techniques discussed

above (i.e., FNT, MLP, GPR, and REP-Tree) were used to

develop the models, and their performance was evaluated.

Figure 4 illustrates the predictive modeling process adop-

ted in this work.

The collected dataset was pre-processed by normalizing

the features of dataset between zero and one using a min–

max normalization method. Table 2 lists the underlying

parameters for the FNT, whereas Table 3 describes the

basic parameter set-up for other three CI techniques: MLP,

GPR, and REP-Tree. The model accuracy was assessed

using RMSE e defined in (2) and correlation coefficient

r defined in (3).

To obtain the best model, the training and test perfor-

mances of the models were observed using five perfor-

mance indicators:

1. The RMSE e as per (2).

2. The correlation coefficient r as per (3).

3. The standard deviation (std) of correlation coefficient

values of each fold.

4. The model’s complexity. In the case of tree-based

models (FNT and REP-Tree), it is the total number of

nodes in the tree including computational node and

leaf nodes (e.g., the complexity of the model shown in

Table 1 Example of few data

samples generated for modeling
Samples Input Output

# Name True density d50 ( lm) Granules size Shoe speed Mass (g)

Feature #1 Feature #2 Feature #3 Feature #4

1 MCC PH 101 1581 59.83 90 10 12.81

2 MCC PH 101 1581 59.83 90 10 12.78

: : : : : : :

5 MCC PH 101 1581 59.83 90 20 12.3

6 MCC PH 101 1581 59.83 90 30 9.55

: : : : : : :

135 MCC PH 102 1570.3 94.7 250 50 13.45

136 MCC PH 102 1570.3 94.7 250 60 13.5

: : : : : : :

388 MCC DG 1785.6 52.33 2360 400 9.51

389 MCC DG 1785.6 52.33 2360 400 9.3
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Fig. 1 is 12). In the case of MLP, it is the number of

total computational nodes. Since GPR is an extension

of the linear regression model, the complexity in the

case of GPR was not commuted.

5. The number of selected input features.

3.4 Input feature analysis of die filling experiments

Feature analysis was conducted to understand the signifi-

cance of the input features in the die filling experiments.

For this purpose, at first, M many FNT models were cre-

ated. Second, two performance dimensions were used:

feature selection rate R and predictability score P. Feature

selection rate R describes the total number of times a

particular input feature set appeared in the list, which

is prepared out of all the M models. The feature selection

rate is defined as:

Rj ¼
1

M

XM
i¼1

IðAjÞ ð8Þ

where Rj is the selection rate of j-th input feature set Aj 2 A

which is a power set Pftrue density, d50, granule size, shoe
speedg, M is the total number of models in the list, and

function IðAjÞ is an identity function that returned ‘‘1’’ if j-

Dataset Inputs:
1. True density
2. d50
3. Granules size
4. Shoe speed
Output: mass

Use a data
partitioner:

10FCV or 5x2FCV

A CI technique to
be used (FNT or
NN or REP-Tree

or GPR)

Is it the last fold?

Save the
training and
test results
(e.g. RMSE)

Stop

Fold:
Training
and
Test data

No:
Go to next fold

Yes

Fig. 4 Flow chart illustrating

the data flow during a predictive

modeling

Table 2 Parameters settings

and the values are chosen during

FNT optimization

# Parameter name Definition/purpose Value

1 Tree height The maximum levels of a tree 5

2 Tree arity Maximum siblings of a node in a tree 4

3 Tree node type Type of activation function used at nodes Gaussian

4 GP population Total candidates in a GP population 30

5 Mutation probability The frequency of mutation operation 0.2

6 Crossover probability The frequency of crossover operation 0.8

8 Tournament size Total candidates for a tournament 15

9 DE population The initial size of the DE population 50

10 Range of node search The lower and upper bound of activation function arguments [0.0,1.0]

11 Range of edge search The lower and upper bound of tree edges. [-1.0,1.0]

13 Structure training Maximum generations of GP training. 100,000

14 Parameter training Maximum evaluations of parameter training. 10,000

Table 3 Parameters settings and the values are chosen during MLP, GPR, and REP-Tree training

# CI technique Parameter name Definition/purpose Values

1 MLP Learning rate Convergence speed 0.3

2 Momentum rate Magnitude of past iteration influence 0.2

3 Hidden layer Maximum nodes at hidden layer 350

4 Iterations Maximum number of evaluations of parameter optimization 500

5 GPR Kernel The function used for implementing covariance function RBF Kernel

6 REP-Tree No. leaf instances Minimum no. of children per node 2

8 Depth maximum limit of tree depth/level No limit

9 Pruning Pruning of tree nodes Allowed

The settings mentioned are those used in the software tool [22]
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th input feature set Aj is selected by the i-th model,

otherwise, returned ‘‘0.’’ Feature selection rate R equal to

one is the highest (100 % selection rate), and R equal to

zero is the lowest (0 % selection rate). In other words, the

value of selection rate R equal to one means an input

feature was selection by all the models in the prepared list

and the value of R equal to zero means an input feature was

selection by none of the models in the prepared list.

Since in the models in the list may not equal in their

performances, the predictability score P based on the

RMSEs of the models was computed. The predictability

score P describes the predictability of an input feature. To

compute predictability score P of j-th input feature set Aj,

at first, the fitness Fj of the corresponding input feature set

Aj was computed as:

Fj ¼
PM

i¼1 ei � IðAjÞ; if jAjj ¼ 1PM
i¼1 ei � IðAjÞ=

PM
i¼1 IðAjÞ; if jAjj � 1

(
ð9Þ

where ei is the RMSE of i-th model. The fitness Fj for jAjj
equal to one is the sum of RMSEs, and the Fj for jAjj
greater than one is the average RMSEs of all models that

selects subset Aj. Then, the predictability score Pj corre-

sponding to an input feature set Aj was computed by nor-

malizing the fitness of as:

Pj ¼
Fj

max
j¼1toz

ðFjÞ ð10Þ

where function maxð�Þ determines the maximum fitness

value from all Fj. Similar to the selection rate R , the

predictability score P equal to one indicates that the feature

set has the highest impact on the predictability of the model

and predictability score P equal to zero has the lowest.

4 Results and discussion

4.1 Model prediction

4.1.1 Predictions using the 10FCV method

Table 4 describes the performance of the best models

created by using FNT, MLP, GPR, and REP-Tree. In

Table 4, the generated models are arranged in descending

order (highest accuracy to lowest accuracy) of their test

correlation values. It may be observed that the performance

of the models created using FNT (when compared the test

accuracies, i.e., correlation values) was better than the

other CI techniques. Hence, the detail observation of the

model Nos. 1, 2, and 3, which were created using FNT are

provided.

The model No. 1 (see: row 1 of Table 4) produces a

high correlation coefficient (on test set), i.e., 0.95, which

indicates high predictability of this model over 10 % of

unknown samples. However, the model complexity was

also high since the total function nodes, and leaf nodes in

the created model amounted to 43. In addition, there was

no feature selection performed by this model. In com-

parison with model No. 1, the model Nos. 2 and 3 had

lower test correlation coefficient (performance was

slightly poor). However, their models complexity was

simpler, and they offered feature selection, which was

advantageous than the model No. 1. Figure 5 illustrates

the performance of the model using regression (scatter)

plot and target against predicted value plot. In Fig. 5,

each model Nos 1, 2, and 3, respectively, were tested over

10 % of test samples, i.e., 38 randomly chosen test

samples, and the scattered plot and the target against

predicted values plot were analyzed. It may be observed

that the prediction curve follows the target curve. How-

ever, the lower values and outliers were slightly out of the

reach in the prediction curve.

4.1.2 Predictions using the 5x2FCV method

In Table 5, a comparison of the best models created using

FNT, MLP, GPR, and REP-Tree is provided. The models

in Table 5 are arranged in descending order (the highest

accuracy to the lowest accuracy) of their test correlation

values. Similar to the modeling in 10FCV, the modeling in

5x2FCV and the performance of the models created using

FNT outperformed the models created using MLP, GP, and

REP-Tree. Hence, a detail observation on the model Nos.

7, and 8 is provided. Figure 6 illustrates the performance of

the model using regression (scatter) plot and target against

predicted value plot.
In Fig. 6, each model Nos. 7, and 8, respectively, was

tested over 50 % of test samples, i.e., 194 randomly chosen

test samples, and the scattered plot and the target versus

prediction plot were analyzed. Similar to the trend as

observed in Fig. 5, the trend observed in Fig. 6 says that

the prediction curve follows the target curve. However, the

lower values and the outliers were out of the reach of the

prediction curve. The outlier is clearly visible in Fig. 6d.

The outlier in our dataset was because of noise or bad value

observed during die filling process.

Figures 7 and 8 are the illustrations of the created

models, where the root node of the tree indicates the output

of the models and the leaf nodes (Square boxes with

numbers) indicate the input features. In Figs. 7 and 8, the

input feature x1, x2, x3, and x4 indicate the features true

density, d50, granule size, and shoe speed, respectively.
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4.1.3 Comparison between 10FCV and 5x2FCV methods

Each of 10FCV and 5x2FCV methods has their advantages.

This is the reason both methods were used for creation and

validation of in this work. In 10FCV, a model uses a large

sample for training. Thus, possess higher representative-

ness of real world (data samples) during learning, i.e., the

model is trained efficiently. Whereas, in 5x2FCV a model

used an equal proportion of data samples for training and

testing (smaller training samples than 10FCV, but larger

test samples than 10FCV). Thus, 5x2FCV possesses higher

generalization ability. Hence, at one hand, if a high test

correlation coefficient obtained using 10FCV, it indicates

that an effective predictive model can be created from the

given dataset. Whereas, if a high test correlation coefficient

obtained using 5x2FCV, it indicates that a general pre-

dictive model can be created from the given dataset.

The models 7 and 8 were created using 5x2FCV, and

their test correlation values were found competitive to the

model No. 1using 10FCV method. From our 5x2FCV

results, it was found that the model Nos. 7 and 8 were

simple in comparison with model Nos. 1, 2, and 3, but

their accuracies (correlation coefficient) were slightly

poorer in comparison. However, the model Nos. 7 and 8

were tested over 50 % test samples. Hence, it describes

that the deposited mass can be efficiently predicted by

using die filling process variables knowledge. Moreover,

choice of model is subjective. Since simple models pos-

sess higher generalization ability, the competitive accu-

racies of the model Nos. 7 and 8 to the model Nos. 1, 2,

and 3 tells that one had to choose between the accuracies

and the generalization ability of the models. Figures 5

and 6 present the graphical visualization of the 10FCV

and 5x2FCV models, respectively, where, the test per-

formance of the models over each test samples was

examined. The 5x2FCV models produced similar trend

when the models were tested over 50 % of samples.

However, the 5x2FCV models (see Fig. 6d) did not pre-

dict the outlier as close as 10FCV models (see Fig. 5d)

predicted it.

4.2 Feature analysis

A total 30 models were created using FNT for feature

analysis. Since the evolutionary process was used during

model creation, the created models selected the input fea-

tures set that had the highest predictability. Therefore, the

RMSEs and selected input feature set by the models were

placed into a list. Subsequently, a comprehensive feature

analysis was performed. For this purpose, two performance

measure dimensions were adopted: feature selection rate

R as defined in (8) and feature predictability score P as

defined in (10). The feature analysis was categorized into

two phases.

1. The identification of individual input features. Here,

for (8) and (9) the feature set jAjj was set to one, which
indicates that only one input feature was analyzed at a

time. Since there were four input features in our

dataset, in this phase, P � A, i.e., P was equal to

fA1;A2;A3;A4g (see Table 6 for the definition of

A1; . . .;A4), i.e., z in (10) was equal to four.

2. The identification of feature subset, i.e., identification

of the best combination of input feature. Here, for (8)

and (9) the feature set jAjj can be one or two or three or
four. After examining the selected feature by the

models in the list, six different input feature subsets

were found. Hence, in this phase, Q � A, i.e., Q was

equal to fA1;A2;A3;A4;A5;A6g (see Table 7 for the

definition of A1; . . .;A6), i.e., z in (10) was equal to six.

4.2.1 Identification of the significance of individual input

features

Table 6 describes the feature analysis results performed for

the individual input features. The significance of individual

features true density, d50, granule size, and shoe speed was

examined. The features true density and d50 represents the

powder properties. Whereas, the granule size and shoe

speed represents the die filling process variables. It can be

observed that the selection rate and predictability score of

Table 4 Performance of the

prediction models and

validation over 10FCV

Model Model Mean of RMSEs Mean of r Std over r Model Selected

No. Type Train Test Train Test Train Test Complexitya Featuresb

1 FNT 2.0206 2.0571 0.93 0.95 0.0087 0.0383 43 1, 2, 3, 4

2 FNT 2.3891 2.3934 0.91 0.91 0.0083 0.0617 34 2, 3, 4

3 FNT 2.5491 2.2618 0.88 0.91 0.0078 0.0563 32 3, 4

4 REP-Tree 2.5751 3.1637 0.88 0.82 – – 99 1, 2, 3, 4

5 GPR 2.9632 3.4023 0.86 0.79 – – – 1, 2, 3, 4

6 MLP 3.3687 3.4427 0.81 0.79 – – – 1, 2, 3, 4

a Complexity is the sum of total nodes in the created tree-model. b Features Nos. are assigned in Table 1
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Fig. 5 Models evaluation on unknown test samples: the regression

plots a, c, and e indicates a high correlation between actual and

predicted values. The plots b, d, and f show the one-to-one mapping

of target and prediction of the best models Nos. 1, 2, and 3 (see

Table 4). The R2 is the squared value of correlation coefficient r,

where R2 equal to one is the best performance and R2 equal to zero is

the worst performance

Table 5 Performance of the

prediction models and

validation over 5x2FCV

Model Model Mean of RMSEs Mean of r Std over r Model Selected

No. Type Train Test Train Test Train Test Complexity Features

7 FNT 2.5075 2.6481 0.88 0.88 0.0415 0.0403 16 1, 2, 3, 4

8 FNT 2.6030 2.6792 0.88 0.87 0.0213 0.0217 17 2, 3, 4

9 REP-Tree 2.4460 3.6691 0.89 0.77 – – 51 1, 2, 3, 4

10 MLP 2.7698 3.8730 0.86 0.76 – – – 1, 2, 3, 4

11 GP Reg. 2.7978 3.7869 0.87 0.75 – – – 1, 2, 3, 4

Model Nos. are continued from Table 4
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d50 (0.62069 and 0.58626) were higher than that of the

selection rate and predictability score of true density

(0.55173 and 0.54136). Therefore, d50 possess compara-

tively higher importance as a powder property than that of

the true density. Similarly, the process variable granule size

was more influential than that of shoe speed. However, the

difference of significance level was marginal, but when the

entire four input variables were compared, the process

variables were having significantly higher selection rate

and predictability score than that of the properties of the
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Fig. 6 Models evaluation on unknown test samples. The regression

plots a, c indicate a high correlation between actual and predicted

values, and plots b, d show the one-to-one mapping of target and

prediction of the best model Nos. 7 and 8 (Table 5). The R2 is the

squared value of correlation coefficient r, where R2 equal to one is the

best performance and R2 equal to zero is the worst performance
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Fig. 7 Tree-like structure of predictive model No. 7 created using

5x2FCV method: Complexity equal to 16 is the sum of the

computational nodes (node in circles) and the leaf nodes (node in

square)
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Fig. 8 Tree-like structure of predictive model No. 8 created using

5x2FCV method: complexity equal to 17 is the sum of the

computational nodes (node in circles) and the leaf nodes (node in

square)
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powder. This fact was also evident from feature subset

analysis.

4.2.2 Identification of the best set input features

Table 7 shows interesting findings, where it can also

observe that the predictability score of subset A4 (process

variable granule size and shoe speed) and the subsets A1,

A2 and A3 (with both process variables combined with one

or two powder properties) were higher compared to the

subsets A5 and A6 (subsets where one of the process vari-

ables was not used for prediction).

The subset analysis produced a clear picture. It says that

although the predictability score of subset A3 was highest,

the selection rate of subset A1 was highest. This indicates

that the evolutionary process often preferred to use the

combination of entire features, i.e., the set A1. However,

among the subsets A1, A2, and A3, the selection rate of

subset A2 was higher, which indicates d50 had the higher

ability to represent powder properties than that of true

density, but again the difference was marginal (say

approximately higher by only four percent).

4.2.3 Accuracy of model predictions

Figures 9 and 10 show the comparison between die filling

experimental results and predicted results from the model

No. 1 of the 10FCV method using FNT. This model was

chosen because it has the highest value of R2, which leads

to a better fitting between experimental and predicted data.

More specifically, Figs. 9 and 10 present the mass col-

lected after each experiment as a function of the shoe

speed of the three different MCCs powders for six different

granule size ranges. It shows that there is a decrease in

mass deposited into the die with increasing shoe speed for

all the materials and granules size ranges investigated.

Moreover, a general increase in deposited mass at a con-

sistent shoe speed was found with the increasing granule

size. MCC DG tends to have higher mass deposited values

compare to MCC PH 102 and MCC PH 101 at all the shoe

speeds considered and for all the different size ranges

analyzed, exception for the granule size range 250–500 lm
(Fig. 9c). MCC PH 101 and MCC PH 102 show an iden-

tical trend in all the experiments performed. Interestingly,

results for finest granules (Fig. 9a, b) appear to have larger

variations (due to the lower experimental reproducibility)

compared to those for coarser granules (Fig. 10b, c). It is

clear that the models give better predictions for coarser

granules (Fig. 10b, c) than for finer granules (Fig. 9a, b)

for all the materials under investigation. In particular, the

model gives almost identical values to the measured ones

for coarser granules, which proves that the FNT method

used can predict die filling behavior for such materials

with high accuracy. The accuracy of the model appears to

rely on the consistency (or scattering) of the experimental

data.

5 Conclusions

Flexible neural tree (FNT) was used to predict die filling

behavior of MCCs granules of different size ranges. Two

main methods were investigated, tenfold cross-validation

(CV) and 5 9 2-fold CV. Computational intelligence (CI)

models were developed using FNT, multilayer perceptron,

reduced error pruning tree, and Gaussian process regres-

sion. It was observed that the flexible neural tree models

performed better than other CI techniques. Additionally, by

examining FNT models of each method, it was found that

tenfold CV was a more efficient method with a higher

Table 6 Significance of

individual input features
# Input features set Selection rate (R) Predictability score (P)

1 A1 = true density 0.55173 0.541356

2 A2 = d50 0.62069 0.586262

3 A3 = granule size 1 1

4 A4 = shoe speed 0.86207 0.92563

Table 7 Optimal subset of

input features
# Input feature set Selection rate (R) Predictability score (P)

1 A1 = true density, d50, granule size, shoe speed 0.31035 0.969497

2 A2 = d50, granule size, shoe speed 0.17242 0.941601

3 A3 = true density, granule size, shoe speed 0.13793 1

4 A4 = granule size, shoe speed 0.24138 0.979663

5 A5 = true density, d50, granule size 0.10345 0.493741

6 A6 = d50, granule size 0.03448 0.470451
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correlation coefficient than the 5 9 2 fold CV. The

experimental results were used as inputs and outputs of the

FNT models. The constructed model efficiently predicted

the deposited mass based on the knowledge gathered from

the experimental data. Similarly, the feature analysis dis-

covered that the shoe speed and the granule size are more

significant in terms of governing the deposited mass than

the raw powder properties (true density and d50).

(a)

(b)

(c)

Fig. 9 Comparison of

experimental results and model

predictions for 3 MCC granules

of different size ranges:

a 1–90 lm, b 90–250 lm,

c 250–500lm

Neural Comput & Applic (2018) 29:467–481 479

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Interestingly, die filling behavior of coarser granules are

easier to predict than fine granules for all the materials

considered. This is due to the higher reproducibility of the

experimental data for larger granules.

Acknowledgments This work was supported by the IPROCOM

Marie Curie Initial Training Network, funded through the People

Programme (Marie Curie Actions) of the European Unions Seventh

Framework Programme.

0

5

10

15

20

25

0 100 200 300 400 500 600
M

as
s 

(g
)

Shoe speed (mm/s)

MCC DG Experimental

MCC DG Predicted

MCC PH 101 Experimental

MCC PH 101 Predicted

MCC PH 102 Experimental

MCC PH 102 Predicted

(a)

0

5

10

15

20

25

0 100 200 300 400 500 600

M
as

s 
(g

)

Shoe speed (mm/s)

MCC DG Experimental

MCC DG Predicted

MCC PH 101 Experimental

MCC PH 101 Predicted

MCC PH 102 Experimental

MCC PH 102 Predicted

(b)

0

5

10

15

20

25

0 100 200 300 400 500 600

M
as

s 
(g

)

Shoe speed (mm/s)

MCC DG Experimental

MCC DG Predicted

MCC PH 101 Experimental

MCC PH 101 Predicted

MCC PH 102 Experimental

MCC PH 102 Predicted

(c)

Fig. 10 Comparison of

experimental results and model

predictions for 3 MCC granules

of different size ranges:

a 500–1000 lm,

b 1000–1400 lm, and

c 1400–2360 lm

480 Neural Comput & Applic (2018) 29:467–481

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



References

1. Coube O, Cocks A, Wu C-Y (2005) Experimental and numerical

study of die filling, powder transfer and die compaction. Powder

Metall 48(1):68–76

2. Wu C-Y, Dihoru L, Cocks AC (2003) The flow of powder into

simple and stepped dies. Powder Technol 134(1):24–39

3. Schneider L, Sinka I, Cocks A (2007) Characterisation of the flow

behaviour of pharmaceutical powders using a model die-shoe

filling system. Powder Technol 173(1):59–71

4. Wu C-Y (2008) Dem simulations of die filling during pharma-

ceutical tabletting. Particuology 6(6):412–418

5. Mills L, Sinka I (2013) Effect of particle size and density on the

die fill of powders. Eur J Pharm Biopharm 84(3):642–652

6. Jackson S, Sinka I, Cocks A (2007) The effect of suction during

die fill on a rotary tablet press. Eur J Pharm Biopharm

65(2):253–256

7. Lawrence L, Beddow J (1968) Some effects of vibration upon

powder segregation during die filling. Powder Technol

2(2):125–130

8. Bocchini G (1987) Influence of small die width on filling and

compacting densities. Powder Metall 30(4):261–266

9. Rice E, Tengzelius J (1986) Die filling characteristics of metal

powders. Powder Metall 29(3):183–194

10. Mendez R, Muzzio FJ, Velazquez C (2012) Powder hydropho-

bicity and flow properties: effect of feed frame design and

operating parameters. AIChE J 58(3):697–706

11. Wu C-Y, Cocks A (2004) Flow behaviour of powders during die

filling. Powder Metall 47(2):127–136

12. Guo Y, Kafui K, Wu C-Y, Thornton C, Seville JP (2009) A

coupled dem/cfd analysis of the effect of air on powder flow

during die filling. AIChE J 55(1):49–62

13. Guo Y, Wu C-Y, Thornton C (2011) The effects of air and par-

ticle density difference on segregation of powder mixtures during

die filling. Chem Eng Sci 66(4):661–673

14. Zhao C, Jain A, Hailemariam L, Suresh P, Akkisetty P, Joglekar

G, Venkatasubramanian V, Reklaitis GV, Morris K, Basu P

(2006) Toward intelligent decision support for pharmaceutical

product development. J Pharm Innov 1(1):23–35

15. Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H (1998)

Advantages of artificial neural networks (ANNs) as alternative

modelling technique for data sets showing non-linear relation-

ships using data from a galenical study on a solid dosage form.

Eur J Pharm Sci 7(1):5–16

16. Wu C-Y, Hsu Y-C (2002) Optimal shape design of an extrusion-

forging die using a polynomial network and a genetic algorithm.

Int J Adv Manuf Technol 20(2):128–137

17. Kim D, Kim B (2000) Application of neural network and fem for

metal forming processes. Int J Mach Tools Manuf 40(6):911–925

18. Lam H-K, Nguyen HT (2012) Computational intelligence and its

applications: evolutionary computation, fuzzy logic, neural net-

work and support vector machine techniques. World Scientific,

London

19. Haykin S (2009) Neural networks and learning machines, vol 3.

Pearson Education, Upper Saddle River

20. Kohavi R, Quinlan JR (2002) Data mining tasks and methods:

classification: decision-tree discovery. In: Klösgen W, Zytkow

JM (eds) Handbook of data mining and knowledge discovery.

Oxford University Press, Inc., pp 267–276

21. Rasmussen CE, Williams C (2006) Gaussian processes for

machine learning, vol 2. The MIT Press, New York no. 3

22. Weka (2016). http://www.cs.waikato.ac.nz/ml/weka/index.html

23. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten

IH (2009) The weka data mining software: an update. ACM

SIGKDD Explor Newsl 11(1):10–18

24. Chen Y, Yang B, Dong J (2004) Nonlinear system modelling via

optimal design of neural trees. Int J Neural Syst 14(02):125–137

25. Chen Y, Yang B, Dong J, Abraham A (2005) Time-series fore-

casting using flexible neural tree model. Inf Sci 174(3):219–235

26. Poli R, Langdon WB, McPhee NF, Koza JR (2008) A field guide

to genetic programming. Lulu.com

27. Shou-Ning Q, Zhao-lian L, Guang-qiang C, Bing Z, Su-juan W

(2008) Modeling of cement decomposing furnace production

process based on flexible neural tree. In: International conference

on information management, innovation management and

industrial engineering, 2008. ICIII’08, vol 3. IEEE, pp 128–133

28. ChenY,WuP,WuQ(2008)Foreign exchange rate forecastingusing

higher order flexible neural tree. Artificial higher order neural net-

works for economics and business. IGI Global Publisher, Hershey

29. Yang B, Chen Y, Jiang M (2013) Reverse engineering of gene

regulatory networks using flexible neural tree models. Neuro-

computing 99:458–466

30. Chen Z, Peng L, Gao C, Yang B, Chen Y, Li J (2015) Flexible

neural trees based early stage identification for ip traffic. Soft

Comput 1–12

31. Ojha VK, Abraham A, Snasel V (2016) Ensemble of heteroge-

neous flexible neural tree for the approximation and feature-se-

lection of poly (lactic-co-glycolic acid) micro-and nanoparticle.

In: Proceedings of the second international Afro-European con-

ference for industrial advancement AECIA 2015. Springer,

pp. 155–165

32. Yao X (1999) Evolving artificial neural networks. Proc IEEE

87(9):1423–1447

33. Riedmiller M, Braun H (1993) A direct adaptive method for

faster backpropagation learning: the rprop algorithm. In: IEEE

international conference on neural networks. IEEE, pp 586–591

34. Storn R, Price K (1997) Differential evolution—a simple and

efficient heuristic for global optimization over continuous spaces.

J Glob Optim 11(4):341–359

35. Zhang J, Pei C, Schiano S, Heaps D, Wu CY (2016) The appli-

cation of terahertz pulsed imaging in characterising density dis-

tribution of roll-compacted ribbons. Eur J Pharm Biopharm,

106(2016):20–25

36. Schiano S, Wu C-Y, Mirtic A, Reynolds G (2016) A novel use of

friability testing for characterising ribbon milling behaviour. Eur

J Pharm Biopharm 104:82–88

Neural Comput & Applic (2018) 29:467–481 481

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1.

2.

3.

4.

5.

6.

Terms and Conditions
 
Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”). 
Springer Nature supports a reasonable amount of sharing of  research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial. 
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply. 
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy. 
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not: 
 

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.
 
In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository. 
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved. 
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose. 
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties. 
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at 
 

onlineservice@springernature.com
 

mailto:onlineservice@springernature.com

