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Abstract. Population based metaheuristics are commonly used for global optimization problems.
These techniques depend largely on the generation of initial population. A good initial population
may not only result in a better fitness function value but may also help in faster convergence. Al-
though these techniques have been popular since more than three decades very little research has
been done on the initialization of the population. In this paper, we propose a modified Particle
Swarm Optimization (PSO) called Improved Constraint Particle Swarm Optimization (ICPSO) al-
gorithm for solving constrained optimization. The proposed ICPSO algorithm is initialized using
quasi random Vander Corput sequence and differs from unconstrained PSO algorithm in the phase
of updating the position vectors and sorting every generation solutions. The performance of ICPSO
algorithm is validated on eighteen constrained benchmark problems. The numerical results show
that the proposed algorithm is a quite promising for solvingconstraint optimization problems.
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1. Introduction

Most of the problems occurring in the field technology and engineering can be formulated as global
optimization problems. Mathematical models of such problems is often complex. The objective function
may be multimodal having several local and global optima. Many real-world optimization problems are
solved subject to sets of constraints. Such problems are called constrained optimization problems (COP).
The search space in COPs consists of two kinds of solutions: feasible and infeasible. Feasible points
satisfy all the constraints, while infeasible points violate at least one of them. Therefore, the final solution
of an optimization problem must satisfy all constraints. A constrained optimization problem may be
distinguished as a Linear Programming Problem (LPP) and Nonlinear Programming Problem (NLP). In
this paper we have considered NLP problems where either the objective function or the constraints or both
are nonlinear in nature. There are many traditional methodsin the literature for solving NLP. However,
most of the traditional methods require certain auxiliary properties (like convexity, continuity etc.) of the
problem and also most of the traditional techniques are suitable for only a particular type of problem (for
example Quadratic Programming Problems, Geometric Programming Problems etc). Keeping in view
the limitations of traditional techniques researchers have proposed the use of stochastic optimization
methods and intelligent algorithms for solving NLP which may be constrained or unconstrained. Based
on the research efforts in literature, constraint handlingmethods have been categorized in a number of
classes [2, 3, 4, 5].

In the past few decades researchers have shown significant interest in population based stochas-
tic search techniques for dealing with global optimizationproblems. Some popular population based
metaheuristics include Genetic Algorithms [6, 7, 8], Ant Colony Optimization [9], Particle Swarm Opti-
mization [10], Differential Evolution [11] etcetera. The first step in all these algorithms is“generate an
initial population”; but how the population is to be generated finds little or no mention.

The initial generation of random numbers plays an importantrole in the population based search
techniques for optimization. The uniform distribution of points in the search domain is very likely to
improve the performance of a search technique that depends largely on the generation of random number
numbers. Now the question arises which method should be usedto generate random numbers which will
result in faster convergence of the algorithm without compromising with the quality of solution. The most
commonly used method for generating the initial populationis the use of an inbuilt subroutine available in
most of the programming languages for generating random numbers. Though this method is very simple
from the programming point of view, it is not very efficient because the computer generated numbers do
not cover the search space uniformly. Despite the relevanceof distribution of initial population this topic
has not gained much attention in the EA community.

In the present study we have made use of quasi random Vander Corput sequence to initialize the
population. Some previous instances where low discrepancysequences have been used to improve the
performance of optimization algorithms include [12, 13, 14, 15, 16]. Kimura and Matsumura [12] have
used Halton sequence for initializing the Genetic Algorithms (GA) population and have shown that a
real coded GA performs much better when initialized with a quasi random sequence in comparison to a
GA which initialized with a population having uniform probability distribution. Instances where quasi
random sequences have been used for initializing the swarm in PSO can be found in [13, 14, 15, 16]. In
[14, 15, 16] authors have made use of Sobol and Faure sequences. Similarly, Nguyen et al. [13] have
shown a detailed comparison of Halton Faure and Sobol sequences for initializing the swarm. In the pre-
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vious studies, it has already been shown that the performance of Sobol sequence dominates the perfor-
mance of Halton and Faure sequences.

The authors suggested the use of quasi random sequences for the initial generation of population
in PSO and recoded its performance for unconstrained optimization. In [17], the authors used Vander
Corput sequence and Sobol sequence for the initial generation of random numbers in the basic PSO and
compared its performance with the PSO in which computer generated random numbers were used for
initial population. The numerical results showed that the proposed quasi random sequences significantly
improve the performance of basic PSO. Encouraged by the versions made for solving unconstrained
optimization problems in [17], in this paper the authors propose the use of quasi random Vander Corput
sequence for solving constrained optimization problems.

This paper presents an Improved Constraint Particle Swarm Optimization (ICPSO) algorithm for
solving constrained optimization problems. Its initial population is generated using Vander Corput se-
quence and its constraint solving approach is similar to theapproach used by K. Zielinski et al. [18]
where a personal or neighborhood best solutionḡ is substituted by a new solution̄x if:

• Both vectors are feasible, butx̄ yield the smaller objective function value.

• x̄ is feasible and̄g is not.

• Both vectors are infeasible, butx̄ results in the lower sum of constraint violations.

The proposed ICPSO is different from the algorithm proposedin [18], as the swarm is initialized by
Low discrepancy Vander Corput Sequence and above rules are applied during the updating of position
vectors. In the present study we have concentrated our work on PSO which is relatively a new member to
a class of population based search technique. To the best of our knowledge, no results are available on the
performance of low discrepancy sequence for solving constrained optimization problems. Moreover, the
proposed concept may be applied to any of the population based search technique for solving constrained
optimization problems.

The structure of the paper is as follows: in Section 2, we givea brief definition of low discrepancy
sequences and Vander Corput sequence. In Section 3, we explain the Particle Swarm Optimization
Algorithm, in Section 4, the proposed ICPSO algorithm is given. Section 5 deals with experimental
settings and test problems, Section 6 gives the numerical results and discussion and finally the paper
conclude with Section 7.

2. Quasi Random Vander Corput Sequence

2.1. Low discrepancy or Quasi Random Sequences

The most common practice of generating random numbers is theone using an inbuilt subroutine (avail-
able in most of the programming languages), which uses a uniform probability distribution to generate
random numbers. This method is not very proficient as it has been shown that uniform pseudorandom
number sequences have discrepancy of order(log(log N))1/2 and thus do not achieve the lowest possible
discrepancy. Subsequently, researchers have proposed an alternative way of generating ‘quasirandom’
numbers through the use of low discrepancy sequences. Theirdiscrepancies have been shown to be op-
timal, of order(log N)s/N [19], [20]. Quasirandom sequences, on the other hand are more useful for
global optimization, because of the variation of random numbers that are produced in each iteration.
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Many of the relevant low discrepancy sequences are linked tothe Van der Corput sequence introduced
initially for dimensions = 1 and baseb = 2 [21]. The Van der Corput discovery inspired other quasi
random sequences like Halton [22], Faure, Sobol [23, 24], etc. However, it has been reported that Halton
and Faure sequences do not work too well when the search spacehas large dimensions. Keeping this
fact in mind we decided to scrutinize the performance of PSO using Van der Corput sequence along
with Sobol sequence (which is said be superior than other lowdiscrepancy sequences according to the
previous studies) for swarm initialization and tested themfor solving global optimization problems in
large dimension search spaces.

2.2. Van der Corput Sequence

A Van der Corput sequence is a low-discrepancy sequence overthe unit interval first published in 1935
by the Dutch mathematician J. G. Van der Corput. It is a digital (0, 1)-sequence, which exists for all
basesb ≥ 2. It is defined by theradical inverse functionϕb : N0 → [0, 1). If n ∈ N0 has theb-adic
expansion

n =

T
∑

j=0

ajb
j−1 (1)

with aj ∈ {0, . . . , b − 1}, andT = ⌊logb n⌋ thenϕb is defined as

ϕb(n) =
T

∑

j=0

aj

bj
(2)

In other words, thejth b-adic digit of n becomes thejth b-adic digit of ϕb(n) behind the decimal
point. The Van der Corput sequence in baseb is then defined as(ϕb(n))n≥0.

The elements of the Van der Corput sequence (in any base) forma dense set in the unit interval:
for any real number in[0, 1] there exists a sub sequence of the Van der Corput sequence that converges
towards that number. They are also uniformly distributed over the unit interval. Figures 2 and 3 depict
the initial 500 points generated by using the inbuilt subroutine and by using Vander Corput sequence
respectively. The figures clearly show that the initial points generated by using quasi random sequences
cover the search space more evenly in comparison to the pseudo random numbers generated by using
computer subroutine. The distribution of sample points in space using computer generated pseudo ran-
dom numbers and sample points generated using quasi random Vander Corput sequence are shown in Fig
1 and 2 respectively. From these figures it can be easily seen that the sample points generated by quasi
random sequence are far more uniformly distributed in comparison to the computer generated pseudo
random sample points generated by using inbuilt subroutine.

3. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a relatively newer addition to a class of population based search
technique for solving numerical optimization problems. Its mechanism is inspired from the complex
social behavior shown by the natural species like flock of birds, school of fish and even crowd of human
beings. The particles or members of the swarm fly through a multidimensional search space looking for
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Figure 1. Sample points generated using: Fig.1 a pseudo random sequence, Fig.2 Vander Corput sequence

Figure 2. Sample points generated using a pseudo random sequence

Figure 3. Sample points generated using Vander Corput sequence
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a potential solution. Each particle adjusts its position inthe search space from time to time as per its own
experience and also as per the position of its neighbors (or colleagues).

For aD-dimensional search space the position of theith particle is represented asXi = (xi1, xi2, . . .,
xiD). Each particle maintains a memory of its previous best position Pi = (pi1, pi2, . . . , piD) and a
velocity Vi = (vi1, vi2, . . . , viD) along each dimension. At each iteration, theP vector of the particle
with best fitness in the local neighborhood, designatedg, and theP vector of the current particle are
combined to adjust the velocity along each dimension and a new position of the particle is determined
using that velocity. The two basic equations which govern the working of PSO are that of velocity vector
and position vector are given by:

vid = ωvid + c1r1(pid − xid) + c2r2(pgd − xid) (3)

xid = xid + vid (4)

The first part of equation (3) represents the inertia of the previous velocity, the second part is the
cognition part and it tells us about the personal thinking ofthe particle, the third part represents the
cooperation among particles and is therefore named as the social component [25]. Acceleration constants
c1, c2 [26] and inertia weightω [27] are predefined by the user andr1, r2 are the uniformly generated
random numbers in the range of[0, 1].

4. Proposed ICPSO Algorithm

The proposed algorithm ICPSO is a simple algorithm for solving constraint optimization problems, it
is easy to implement. It is initialized using Vander Corput sequence and it differs from unconstrained
PSO in the phase of updating the position vectors and sortingevery generation solutions. The proposed
ICPSO algorithm uses the low discrepancy Vander Corput Sequence for initializing the population and
uses the following three selection criteria after calculating the new particle

1. If the new particle and the previous particle are feasiblethen select the best one

2. If both the particles are infeasible then select the one having smaller constraint violation

3. If one is feasible and the other one is infeasible then select the feasible one.

Also at the end of every iteration, the particles are sorted by using the three criteria:

1. Sort feasible solutions in front of infeasible solutions

2. Sort feasible solutions according to their fitness function values

3. Sort infeasible solutions according to their constraintviolations.

The computational steps of ICPSO algorithm is given Algorithm 4:

5. Benchmark problems, Experimental Settings

5.1. Benchmark problems

The general NLP is given by nonlinear objective functionf , which is to be minimized/maximized with
respect to the design variablesx̄ = (x1, x2, . . . , xn) and the nonlinear inequality and equality constraints.
The mathematical models of the problems considered in the paper are of the type:
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Algorithm 1 ICPSO Algorithm
Step 1 Initialize the population (Xi) using low discrepancy Vander

Corput Sequence

Step 2 For all particles

Evaluate the objective function

Calculate the constraint violation

End for

Step 3 While stopping criterion is not satisfied

Do

w linearly decreases from 0.9 to 0.4

For all particles

Calculate velocity vector using eqn (3)

Calculate a new particle (NX) using eqn (4)

i.e. NX = Xi
t + Vi

t+1

If (NX and Xi
t are feasible) Then

If (f(NX) < f(Xi
t) Then Xi

t+1 = NX

Else Xi
t+1 = Xi

t

End if

End if

If (NX and Xi
t are infeasible) Then

If (constraint violate(NX) < constraint violate(Xi
t)

Then Xi
t+1 = NX

Else Xi
t+1 = Xi

t

End if

End if

If (NX is feasible and Xi
t is infeasible)

Then Xi
t+1 = NX

Else Xi
t+1 = Xi

t

End if

If (f(Xi
t+1) < f(Pit)) Pi

t+1 = Xi
t+1

If (f(Pi
t+1) < f(Pgt)) Pgt+1 = Pi

t+1

End if

End if

End for

Sort the particles using the three sorting rules

Go to next generation

Step 4 End while
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Minimize/Maximizef(x̄)
Subject to:

gj(x̄) ≤ 0, j = 1, . . . , p (5)

hk(x̄) = 0, k = 1, . . . , q (6)

xi min ≤ xi ≤ xi max (i = 1, . . . , n), wherep and q are the number of inequality and equality
constraints respectively.

A set of18 constrained benchmark problems is considered to evaluate the performance of the pro-
posed ICPSO. All the problems are nonlinear in nature i.e. either the objective function or the constraints
or both have a nonlinear term in it. The mathematical models of the problems along with the optimal
solution are given in Appendix A.

5.2. Experimental settings

A total of 25 runs for each experimental setting are conducted and the average fitness of the best solutions
throughout the run is recorded. The population size is takenas50. A linearly decreasing inertia weight
is used which starts at0.9 and ends at0.4, with the user defined parametersc1 = c2 = 2.0 andr1, r2

as uniformly distributed random numbers between0 and1. The proposed ICPSO algorithm is compared
with two more variations of PSO.

6. Comparison Criteria, Results and Discussion

6.1. Comparison Criteria

We used several criteria to measure the performance of the proposed ICPSO algorithm and to compare it
with other versions of PSO. In Tables 1 – 4, we recorded the performance the proposed ICPSO in terms
of best worst and average fitness function value along with the standard deviation (Std) while increasing
the NFE (number of function evaluations) to three differentvalues5 × 103, 5 × 104, 5 × 105.

In Tables 5 and 6, the performance of ICPSO is compared with two other variants of PSO for solving
constrained optimization problems. The comparison criteria for all the algorithms taken in the present
study are given as:

Feasible Run: A run during which at least one feasible solution is found inMax NFE.
Successful Run: A run during which the algorithm finds a feasible solutionx satisfying
(f(x) − f(x∗)) ≤ 0.0001.
Feasible Rate = (# of feasible runs) / total runs
Success Rate = (# of successful runs) / total runs
Success Performance = mean (FEs for successful runs)×x (# of total runs) / (# of successful runs)

6.2. Results and Discussion

From Tables 1 – 4, we can see that the performance of the proposed ICPSO improves with the increase
in the number of function evaluations. This is quite an expected out come. However it can be seen
that5× 104 NFE is sufficient for reaching a good optimum solution which lies in the vicinity of the true
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Table 1. Fitness function values achieved whenNFE = 5 × 103, NFE = 5 × 104 andNFE = 5 × 105 for
problems f01 – f05

FES f01 f02 f03 f04 f05

5 x 103

Best -12.7810 0.412234 -0.5123 -30665.5314 5126.2298

Worst -10.3994 0.354648 -0.2144 -30665.3480 5189.3433

Mean -11.3257 0.363072 -0.4231 -30665.3712 5165.7069

Std 0.77603 0.021727 0.0393 0.228162 56.177

5 x 104

Best -15 0.803138 -0.7181 -30665.5386 5126.4967

Worst -15 0.784856 -0.3990 -30665.5386 5126.4967

Mean -15 0.793258 -0.6495 -30665.5386 5126.4967

Std 9.3e-09 0.00976 0.1294 1.02e-12 5.53e-05

5 x 105

Best -15 0.803618 -0.8324 -30665.5386 5126.4967

Worst -15 0.794661 -0.4751 -30665.5386 5126.4967

Mean -15 0.803113 -0.7563 -30665.5386 5126.4967

Std 1.5e-11 0.009781 0.0245 0.0000 2.40e-12

Table 2. Fitness function values achieved whenNFE = 5 × 103, NFE = 5 × 104 andNFE = 5 × 105 for
problems f06 – f10

NFE f06 f07 f08 f09 f10

5 x 103

Best -6961.8127 25.5805 -0.095826 680.6481 8207.3551

Worst -6939.9306 28.9778 -0.095826 681.1337 8399.2033

Mean -6958.7191 27.6499 -0.095826 680.7835 8344.4623

Std 10.1347 0.9488 2.77e-18 0.1498 2.734

5 x 104

Best -6961.8138 24.3062 -0.095826 680.6303 7049.2533

Worst -6961.8138 24.3118 -0.095826 681.0767 7049.2738

Mean -6961.8138 24.4006 -0.095826 680.6683 7049.2697

Std 9.09e-13 0.01911 4.80e-19 0.089227 0.01456

5 x 105

Best -6961.8138 24.3062 -0.095826 680.6301 7049.2480

Worst -6961.8138 24.3246 -0.095826 680.6435 7049.2480

Mean -6961.8138 24.3073 -0.095826 680.6329 7049.2480

Std 1.98e-15 0.00402 0.0000 0.0525 1.81e-13
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Table 3. Fitness function values achieved whenNFE = 5 × 103, NFE = 5 × 104 andNFE = 5 × 105 for
problems f11 – f15

NFE f11 f12 f13 f14 f15

5 x 103

Best 0.7499 -1 0.4923 -44.4379 961.7302

Worst 0.8539 -1 0.9997 -39.8987 962.0497

Mean 0.8102 -1 0.8807 -42.1293 961.7565

Std 0.0733 0.0000 0.1940 1.3022 1.9369

5 x 104

Best 0.7499 -1 0.3212 -47.6380 961.7150

Worst 0.7499 -1 0.6389 -45.7222 962.6006

Mean 0.7499 -1 0.4783 -46.2218 962.2491

Std 2.22e-16 0.0000 0.1067 1.0495 0.8847

5 x 105

Best 0.7499 -1 0.0531 -47.7648 961.7150

Worst 0.7499 -1 0.434 -47.7648 961.7150

Mean 0.7499 -1 0.32736 -47.7648 961.7150

Std 2.22e-16 0.0000 0.171017 4.71e-15 4.42e-13

Table 4. Fitness function values achieved whenNFE = 5 × 103, NFE = 5 × 104 andNFE = 5 × 105 for
problems f16 – f18

NFE f16 f17 f18

5 x 103

Best -1.9015 8967.5800 -0.6485

Worst -1.8991 11028.714 -0.4833

Mean -1.9001 9311.915 -0.5261

Std 0.00251 7.618 0.05928

5 x 104

Best -1.9051 8868.7455 -0.8657

Worst -1.9051 10903.986 -0.8644

Mean -1.9051 9070.5204 -0.8650

Std 7.90e-16 4.8995 0.00066

5 x 105

Best -1.9051 8853.5338 -0.8660

Worst -1.9051 8853.5338 -0.8660

Mean -1.9051 8853.5338 -0.8660

Std 8.05e-17 1.00e-12 1.06e-16
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Table 5. Comparison Results: NFE to achieve the fixed accuracy level ((f(x) − f(x∗)) ≤ 0.0001), success rate,
Feasible Rate and Success Performance for problems f01 – f10

Problem Algo Best Worst Mean Feasible Success Success

Rate (%) Rate (%) Perf.

f01
ICPSO 25250 55250 29796 100 100 29796

[17] 25273 346801 76195 100 52 146530

[27] 95100 106900 101532 100 100 101532

f02
ICPSO 81800 135750 115850 100 100 115850

[17] - - - 100 0 -

[27] 180000 327900 231193 100 56 412844.3878

f03
ICPSO - - - 100 0 -

[17] - - - 100 0 -

[27] 450100 454000 450644 100 100 450644

f04
ICPSO 7750 12650 9568 100 100 9568

[17] 15363 25776 20546 100 100 20546

[27] 74300 85000 79876 100 100 79876

f05
ICPSO 13350 65400 19286 100 100 19286

[17] 94156 482411 364218 100 16 2276363

[27] 450100 457200 452256 100 100 452256

f06
ICPSO 7300 9600 8252 100 100 8252

[17] 16794 22274 20043 100 100 20043

[27] 47800 61100 56508 100 100 56508

f07
ICPSO 29050 57800 40046 100 100 40046

[17] 315906 338659 327283 100 8 4091031

[27] 198600 444100 352592 100 96 367282.9861

f08

ICPSO 1050 1350 1158 100 100 1158

[17] 1395 3921 2360 100 100 2360

[27] 2800 8400 6124 100 100 6124

f09

ICPSO 10450 29550 16248 100 100 16248

[17] 45342 84152 58129 100 100 58129

[27] 77000 129000 97544 100 100 97544

f010

ICPSO 66050 84900 75920 100 100 75920

[17] 290367 486655 426560 100 32 1332999

[27] 398000 475600 452575 100 16 2828593.75



12 M. Pant et al. / Low Discrepancy Initialized PSO for Solving Constrained Optimization

Table 6. Comparison Results: NFE to achieve the fixed accuracy level ((f(x) − f(x∗)) ≤ 0.0001), success rate,
Feasible Rate and Success Performance for problems f11 – f18

Problem Algo Best Worst Mean Feasible Success Success

Problem Algo Best Worst Mean Rate (%) Rate (%) Perf.

f11
ICPSO 1650 24250 13630 100 100 13630

[17] 5475 21795 16386 100 100 16386

[27] 450100 450100 450100 100 100 450100

f12
ICPSO 850 1100 976 100 100 976

[17] 1409 9289 4893 100 100 4893

[27] 3300 10900 8088 100 100 8088

f13
ICPSO 88700 111100 102512 100 16 640700

[17] - - - 100 0 -

[27] 450100 453200 450420 100 100 450420

f14
ICPSO 21250 339550 50614 100 100 50614

[17] - - - 100 0 -

[27] - - - 100 0 -

f15
ICPSO 7400 128100 54306 100 100 54306

[17] 17857 348138 176827 100 80 221033

[27] 450100 450100 450100 100 100 450100

f16
ICPSO 7100 10650 8732 100 100 8732

[17] 24907 51924 33335 100 100 33335

[27] 43400 53900 49040 100 100 49040

f17
ICPSO 256800 463350 408506 96 72 567369

[17] - - - 100 0 -

[27] - - - 100 0 -

f18

ICPSO 53600 89900 71694 100 100 71694

[17] 85571 455907 191220 100 80 239026

[27] 120800 394900 214322 100 92 232958.4121

optimum value, under the present parameter settings. Also,we can see that except for problem number
5 (g05), where the standard deviation (std) is 56.177, the std for all the remaining problems is quite
low. This shows the consistency of the proposed ICPSO algorithm. The superior performance of ICPSO
is more visible from Tables 5 and 6 where the results are recorded after fixing the accuracy at 0.0001.
In these tables we can see that the proposed ICPSO gave a better or at par performance with the other
two algorithms. We will now take the comparison criteria one-by-one and discuss them briefly. The
first criterion is that of a feasible run. A run is said to be feasible if at least one feasible solution is
obtained in maximum number of function evaluations. According to this criterion all the algorithm
gave 100% feasible rate for all the test problems except ICPSO which gave 96% feasible rate for test
problem f17. However, if we observe the second criterion which is of successful run and is recorded
when the algorithm finds a feasible solution satisfying the given accuracy (=0.0001) it can be seen that
the proposed ICPSO outperforms the other algorithms in all the test cases including f17. In f17, the
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percentage of success rate for ICPSO is 72, whereas the otheralgorithms were not able to reach the
prescribed accuracy in any of the run. The third criterion isthat of the success performance which
depends on the feasibility rate and success rate, as described in the previous subsection. Here also
ICPSO gave a better performance in comparison to the other two algorithms taken for comparison.

7. Conclusion

In the present study a low discrepancy Vander Corput sequence initialized particle swarm optimization
called ICPSO is proposed for solving constrained optimization. Besides the initialization process, the
proposed algorithm differs from the basic PSO in the updating of position vectors and sorting of every
generation solutions. The proposed technique for solving constrained optimization problems, though
used for PSO in this paper, can be applied to any other population based search technique with minor
modifications. The empirical analysis of the proposed ICPSOalgorithm on 18 constrained benchmark
problems and its comparison with other algorithms show thatthe proposed algorithm is quite promising
for solving constrained problems. In the present study we have used the Vander Corput sequence however
any other low discrepancy sequences like Sobol or Halton mayalso be used to initialize the population.
We are continuing the further study of the algorithm and are using it for solving constrained real life
problems taken from various fields of Science and Engineering.
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A. Appendix

1. F01:

Minimize f(x) = 5
4
∑

i=1
xi − 5

4
∑

i=1
x2

i −
13
∑

i=5
xi

Subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

0 ≤ xi ≤ 1 (i = 1, 2, . . . , 9), 0 ≤ xi ≤ 100, (i = 10, 11, 12) 0 ≤ x13 ≤ 1

The optimum value isf(x∗) = −15 atx∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)

Constraintsg1, g2, g3, g7, g8, g9 are active.

2. F02:

Maximize

f(x) =

∣

∣

∣

∣

∑n
i=1 cos4(xi) − 2

∏n
i=1 cos2(xi)

∑n
i=1 ix2

i

∣

∣

∣

∣

Subject to:

g1(x) = 0.75 −
n

∏

i=1

xi ≤ 0

g2(x) =

n
∑

i=1

xi − 7.5n ≤ 0

0 ≤ xi ≤ 10 (i = 1, 2, . . . , n), n = 20

The optimum value is unknown. The known best value isf(x∗) = 0.803619

Constraint g1 is active.

3. F03:

Minimize

f(x) = −(
√

n)n
n

∏

i=1

xi
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Subject to:

h1(x) =
n

∑

i=1

x2
i − 1 = 0

0 ≤ xi ≤ 10 (i = 1, 2, . . . , n)

The optimum value isf(x∗) = −1 atx∗ = (1/
√

n), n = 10.

4. F04

Minimize f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

Subject to:

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5

g2(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3

g3(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4

0 ≤ g1(x) ≤ 92

90 ≤ g2(x) ≤ 110

20 ≤ g3(x) ≤ 25

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5).

The optimum value isf(x∗) = −30665.539 at
x∗ = (78, 33, 29.995256025682, 45, 36.775812905788)

5. F05

Minimize f(x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2

Subject to:

g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0

h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0

h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

0 ≤ xi ≤ 1200 (i = 1, 2), −0.55 ≤ x2 ≤ 0.55 (i = 3, 4).

The optimum value isf(x∗) = 5126.4981 atx∗ = (679.9463, 1026.067, 0.1188764,−0.3962336).

6. F06

Minimize f(x) = (x1 − 10)3 + (x2 − 20)3



M. Pant et al. / Low Discrepancy Initialized PSO for Solving Constrained Optimization 17

Subject to:

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100

The optimum value isf(x∗) = −6961.81388 atx∗ = (14.095, 0.84296).

7. F07:

Minimize f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 5)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

Subject to:

g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0g3(x) =
−8x1+2x2+5x9−2x10−12 ≤ 0g4(x) = 3(x1−2)2+4(x2−3)2+2x2

3−7x4−120 ≤ 0g5(x) =
5x2

1 +8x2 +(x3−6)2−2x4−40 ≤ 0g6(x) = x2
1 +2(x2−2)2−2x1x2 +14x5−6x6 ≤ 0g7(x) =

0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤

0−10 ≤ xi ≤ 10(i = 1, 2, . . . , 10)

The optimum value isf(x∗) = 24.3062091 atx∗ = (2.171996, 2.363683, 8.773926, 5.095984,
0.9906548, 1.430574,1.321644, 9.828726, 8.280092, 8.375927)

Constraints g1, g2, g3, g4, g5 and g6 are active.

8. F08:

Maximizef(x) = sin3(2πx1) sin(2πx2)
x3

1
(x1+x2)

Subject to:

g1(x) = x2
1 − x2 + 1 ≤ 0g2(x) = 1 − x1 + (x2 − 4)2 ≤ 0

0 ≤ xi ≤ 10 (i = 1, 2).

The optimum value isf(x∗) = 0.095825at x∗ = (1.2279713, 4.2453733).

9. F09:

Minimize f(x) = (x1−10)2+5(x2−12)2+x4
3+3(x4−11)2+10x6

5+7x2
6+x4

7−4x6x7−10x6−8x7

Subject to:

g1(x) = −127+2x2
1 +3x4

2 +x3 +4x2
4 +5x5 ≤ 0g2(x) = −282+7x1 +3x2 +10x2

3 +x4−x5 ≤
0g3(x) = −196 + 23x1 + x2

2 + 6x2
6 − 8x7 ≤ 0g4(x) = 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤
0−10 ≤ xi ≤ 10 (i = 1, 2, . . . , 7)

The optimum value isf(x∗) = 680.6300573atx∗ = (2.330499, 1.951372,−0.4775414, 4.365726,
−0.624487, 1.038131, 1.5942270).
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10. F10:

Minimize f(x) = x1 + x2 + x3

Subject to:

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0g3(x) = −1 +
0.01(x8 − x5) ≤ 0g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0g5(x) = −x2x7 +
1250x5 + x2x4 − 1250x4 ≤ 0g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

−100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000(i = 2, 3), 10 ≤ xi ≤ 1000(i = 4, . . . , 8).

The optimum value isf(x∗) = 7049.25at

x∗ = (579.19, 1360.13, 5109.5979, 182.0174,295.5985, 217.9799, 286.40, 395.5979).

11. F11:

Minimize f(x) = x2
1 + (x2 − 1)2

Subject to:

h1(x) = x2 − x2
1 = 0−1 ≤ xi ≤ 1 (i = 1, 2)

The optimum value isf(x∗) = 0.75at x∗ = (±1/
√

2, 1/2).

12. F12:

Minimize f(x) = −(100 − (x1 − 5)2 − (x2 − 5)2 − (x
3
− 5)2)/100

Subject to:

g(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

0 ≤ xi ≤ 10, i = 1, 2, 3, p, q, r = 1, 2, . . . , 9

The optimum value isf(x∗) = −1atx∗ = (5, 5, 5).

13. F13:

Minimize f(x) = ex1x2x3x4x5

Subject to:

h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0h2(x) = x2x3 − 5x4x5 = 0h3(x) = x3

1 + x3
2 + 1 = 0

−2.3 ≤ xi ≤ 2.3, i = 1, 2

−3.2 ≤ xi ≤ 3.2, i = 3, 4, 5

The optimum value isf(x∗) = 0.0539at x∗ = (−1.7171, 1.5957, 1.8272,−0.7636,−0.7636).

14. F14:

Minimize f(x) =
10
∑

i=1
xi






ci + ln xi

10
∑

j=1

xj







Subject to:

h1(x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0h2(x) = x4 + 2x5 + x6 + x7 − 1 = 0h3(x) =
x3 + x7 + x8 + 2x9 + x10 − 1 = 0
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0 < xi ≤ 10, i = 1, . . . , 10

Wherec1 = −6.089, c2 = −17.164, c3 = −34.054, c4 = −5.914, c5 = −24.721, c6 = −14.986,
c7 = −24.1, c8 = −10.708, c9 = −26.662, c10 = −22.179

The optimum value isf(x∗) = −47.7648at x∗ = (0.04066, 0.14772, 0.78320, 0.00141, 0.48529,
0.00069, 0.02740, 0.017950, 0.03732, 0.09688)

15. F15:

Minimize f(x) = 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

Subject to:

h1(x) = x2
1 + x2

2 + x2
3 − 25 = 0h2(x) = 8x1 + 14x2 + 7x3 − 56 = 0

0 ≤ xi ≤ 10, i = 1, 2, 3

The optimum value isf(x∗) = 961.7150at x∗ = (3.5121, 0.2169, 3.5521)

16. F16:

Minimize f(x) = 0.00011y14 + 0.1365 + 0.00002358y13 +0.000001502y16 + 0.0321y12 +
0.004324y5 + 0.0001 c15

c16
+ 37.48 y2

c12
− 0.0000005843y17

Subject to:

g1 = 0.28
0.72y5 − y4 ≤ 0, g2 = x3 − 1.5x2 ≤ 0,

g3 = 3496 y2

c12
−21 ≤ 0, g4 = 110.6+y1− 62,212

c17
≤ 0, g5 = y1−405.23 ≤ 0, g6 = 213.1−y1 ≤ 0

g7 = y2 − 1053.6667 ≤ 0, g8 = 17.505 − y2 ≤ 0

g9 = y3−35.03 ≤ 0, g10 = 11.275−y3 ≤ 0 , g11 = y4−665.585 ≤ 0 , g12 = 214.228−y4 ≤ 0,
g13 = y5 − 584.463 ≤ 0,g14 = 7.458 − y5 ≤ 0 ,

g15 = y6 − 265.916 ≤ 0, g16 = 0.961 − y6 ≤ 0, g17 = y7 − 7.046 ≤ 0, g18 = 1.612 − y7 ≤ 0,
g19 = y8 − 0.222 ≤ 0, g20 = 0.146 − y8 ≤ 0, g21 = y9 − 273.366 ≤ 0 , g22 = 107.99 − y9 ≤ 0,
g23 = y10 − 1286.105 ≤ 0, g24 = 922.693 − y10 ≤ 0, g25 = y11 − 1444.046 ≤ 0, g26 =
926.832−y11 ≤ 0, g27 = y12−537.141 ≤ 0, g28 = 18.766−y12 ≤ 0, g29 = y13−3247.039 ≤ 0,
g30 = 1072.163 − y13 ≤ 0, g31 = y14 − 26844.086 ≤ 0,

g32 = 8961.448 − y14 ≤ 0, g33 = y15 − 0.386 ≤ 0, g34 = 0.063 − y15 ≤ 0, g35 = y16 −
140, 000 ≤ 0,

g36 = 71, 084.33 − y16 ≤ 0, g37 = y17 − 12, 146, 108 ≤ 0, g38 = 2, 802, 713 − y17 ≤ 0,

704.4148 ≤ x1 ≤ 906.3855,68.6 ≤ x2 ≤ 288.88 , 0 ≤ x3 ≤ 134.75, 193 ≤ x4 ≤ 287.0966,

25 ≤ x5 ≤ 84.1988.

Calculations:

y1 = x2 + x3 + 41.6, c1 = 0.024x4 − 4.62 , y2 = 12.5
c1

+ 12 ,

c2 = 0.0003535x2
1 + 0.5311x1 + 0.08705y2x1 , c3 = 0.052x1 + 78 + 0.002377y2x1 ,

y3 = c2
c3

, y4 = 19y3 , c4 = 0.04782(x1 − y3) + 0.1956(x1−y3)2

x2
+ 0.6376y4 + 1.594y3,

c5 = 100x2, c6 = x1 − y3 − y4, c7 = 0.95 − c4
c5

, y5 = c6c7 , y6 = x1 − y5 − y4 − y3
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c8 = (y5 + y4)0.995, y7 = c8
y1

, y8 = c8
3798 , c9 = y7 − 0.0663y7

y8
− 0.3153

y9 = 96.82
c9

+0.321y1, y10 = 1.29y5+1.258y4+2.29y3+1.71y6 , y11 = 1.71x1−0.452y4+0.58y3

c10 = 12.3
752.3 , c11 = (1.75y2)(0.995x1), c12 = 0.995y10 + 1998 , y12 = c10x1 + c11

c12

y13 = c12 − 1.75y2 , y14 = 3623 + 64.4x2 + 58.4x3 + 146312
y9+x5

c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095 , y15 = y13

c13

y16 = 148000 − 331000y15 + 40y13 − 61y15y13 , c14 = 2324y10 − 28740000y2

y17 = 14130, 000 − 1328y10 − 531y11 + c14
c12

, c15 = y13

y15
− y13

0.52

c16 = 1.104 − 0.72y15 , c17 = y9 + x5 .

17. F17:

Minimize f(x) = f1(x1) + f2(x2)

Constraints:

f1(x1) =

{

31x1

30x1

0 ≤ x1 ≤ 300

300 ≤ x1 ≤ 400
f2(x2) =











28x2

29x2

30x2

0 ≤ x2 ≤ 100

100 ≤ x2 ≤ 200

200 ≤ x2 ≤ 1000

x1 = 300 − x3x4

131.078 cos(1.48477 − x6) +
0.90798x2

3

131.078 cos(1.47588)

x2 = − x3x4

131.078 cos(1.48477 + x6) +
0.90798x2

4

131.078 cos(1.47588)

x5 = − x3x4

131.078 sin(1.48477 + x6) +
0.90798x2

4

131.078 sin(1.47588)200 − x3x4

131.078 sin(1.48477 − x6) +

+
0.90798x2

3

131.078 sin(1.47588) = 0

0 ≤ x1 ≤ 400

0 ≤ x2 ≤ 1000

340 ≤ x3 ≤ 420

340 ≤ x4 ≤ 420

−1000 ≤ x5 ≤ 1000

0 ≤ x6 ≤ 0.5236

18. F18:

Minimize f(x) = −0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7)

Subject to:

g1(x) = x2
3+x2

4−1 ≤ 0g2(x) = x2
9−1 ≤ 0g3(x) = x2

5+x2
6−1 ≤ 0g4(x) = x2

1+(x2−x9)
2−1 ≤

0g5(x) = (x1 − x5)
2 + (x2 − x6)

2 − 1 ≤ 0g6(x) = (x1 − x7)
2 + (x2 − x8)

2 − 1 ≤ 0g7(x) =
(x3 − x5)

2 + (x4 − x6)
2 − 1 ≤ 0

g8(x) = (x3 − x7)
2 + (x4 − x8)

2 − 1 ≤ 0
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g9(x) = x2
7 + (x8 − x9)

2 − 1 ≤ 0

g10(x) = x2x3 − x1x5 ≤ 0

g11(x) = −x3x9 ≤ 0

g12(x) = x5x9 ≤ 0

g13(x) = x6x7 − x5x8 ≤ 0

−10 ≤ xi ≤ 10, i = 1, . . . , 8, 0 ≤ x9 ≤ 10

The optimum value isf(x∗) = −0.8660at x∗ = (−0.65777,−0.15341, 0.32341,−0.94625,
−0.65777,−0.75321, 0.32341,−0.34646, 0.59979)


