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ABSTRACT
Peer-to-peer (P2P) topology has a significant influence on
the performance, search efficiency and functionality, and
scalability of the application. In this paper, we investigate a
multi-swarm approach to the problem of Neighbor Selection
(NS) in P2P networks. Particle swarm optimization algo-
rithm share some common characteristics with P2P in a dy-
namic social environment. Each particle encodes the upper
half of the peer-connection matrix through the undirected
graph, which reduces the search space dimension. The syn-
ergetic performance is achieved by the adjustment to the
velocity influenced by the individual’s cognition, the group
cognition from multi-swarms, and the social cognition from
the whole swarm. The performance of the proposed ap-
proach is evaluated and compared with two other different
algorithms. The results indicate that it usually required
shorter time to obtain better results than the other consid-
ered methods, specially for large scale problems.

Categories and Subject Descriptors
Computing Methodologies [I.2 Artificial Intelligence]:
I.2.8 Problem Solving, Control Methods, and Search

General Terms
Algorithms, Design, Performance
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1. INTRODUCTION
Peer-to-peer computing has recently attracted great in-

terest and attention of the computing industry and gained
popularity among computer users and their networked vir-
tual communities [1, 2], since it allows the implementation of
large distributed repositories of digital information. Many
P2P systems also have emerged as platforms for users to
search and share information over the Internet [3]. All par-
ticipants in a peer-to-peer system act as both clients and
servers to one another, thereby surpassing the conventional
client/server model and bringing all participant computers
together with the purpose of sharing resources such as con-
tent, bandwidth, CPU cycles [4]. Peer-to-peer networks are
applied to many fields, which includes communication and
collaboration, distributed computing, Internet service sup-
port, database system, and content/data distribution, even
service platform for public welfare (e.g. providing process-
ing power to fight cancer) [5, 6, 7, 8, 9]. It is reported in a
recent survey that Peer-to-Peer applications generate one-
fifth of the total Internet traffic, and it is believed that it
will continue to grow [10].

In pure P2P systems, individual machines communicate
directly with each other and share information and resources
without using dedicated servers. A node cannot realistically
keep the addresses of all other peers, so an overlay network
need be constructed where each node keeps addresses of a
few other peers (called its neighbors) at the application level.
A common difficulty in the current P2P systems is caused
by the dynamic membership of peer hosts. The neighbor
selection mechanism and topology control become very im-
portant topics in P2P networks [11].

On the other hand, the performance and availability of
these systems relies on the voluntary participation of their
users, and so they may be highly variable and unpredictable,
which results in a large proportion of the participants (20 to
40% of Napster and almost 70% of Gnutella peers) share few
or no files [12]. This phenomenon is known as free-loading:
peers that consume more resources than they contribute.
One of the reasons for this problem is that those users, called
free-riders, benefit largely from contributions of other users
but reduce the system performance for contributing users.
Self-interested behavior of the peers has not been taken into
account at the design stage. In fact, the P2P system’s users



act rationally trying to maximize the benefits obtained from
using the system’s shared resources. Therefore, it will be
necessary to find mechanisms that provide incentives and
encourage cooperative behavior between the peers.

Particle Swarm Optimization (PSO) algorithm is inspired
by social behavior patterns of organisms that live and in-
teract within large groups. In particular, PSO incorpo-
rates swarming behaviors observed in flocks of birds, schools
of fish, or swarms of bees, and even human social behav-
ior, from which the Swarm Intelligence (SI) paradigm has
emerged. In this paper, we explore the neighbor-selection
problem based PSO for P2P Networks. We introduce the
crossover neighborhood organization mechanism from the
social networks to improve the swarm algorithm, which re-
sults in more mutual trust, mutual benefit, equality and
cooperation among the participants.

2. NEIGHBOR-SELECTION PROBLEM
In a P2P system, all participating peers form a P2P net-

work on top of an underlying physical network. A P2P net-
work is an abstract, logical network called an overlay net-
work. Based on existing research [4, 10, 13, 14, 15], we
formulate the neighbor-selection problem for P2P overlay
networks in this Section. According to Liu, et al. [13], a
P2P network can be modeled based on the following as-
sumptions:

• An overlay connection between a pair of peering nodes
consists of a number of physical links which form a
shortest path between the pair of end nodes in the
physical topology, and Internet paths are relatively
stable.

• The same size packets traversing the same physical
link in a short period of time will have similar delay,
as assumed by many other measurement applications.

2.1 Modeling P2P Networks
P2P overlay networks can be modeled by an undirected

graph G = (V, E) where the vertex set V represents units
such as hosts and routers, and the edge set E represents
physical links connecting pairs of communicating unit. And
f : V → {1, · · · , n} be a labeling of its nodes, where n = |V |.
For instance, G could model the whole or part of the net-
work. Given an undirected graph G = (V, E) modeling an
interconnection network, and a subset X ⊆ V (G) of com-
municating units (peers), we can construct a corresponding
weighted graph D = (V, E), where V (D) = X, and the
weight of each (u, v) ∈ E(D) is equal to the length of a
shortest path between peer u and peer v in G. D includes
the connected edges, and is referred to as the distance graph
of G. Usually we start with a physical network G (perhaps
representing the Internet), and then choose a set of commu-
nicating peers X. The resulting distance graph D is the ba-
sis for constructing a P2P overlay graph H = (V, E), which
is done as follows. The vertex set V (H) will be the same as
V (D), and edge set E(H) ⊆ D(G). The key issue here is
how to select E(H). If E = [eij ]n×n is such that eij = 1 if
(i, j) ∈ E, and 0 otherwise, i.e., E is the incidence matrix of
G, then the neighbor-selection problem is to find a permuta-
tion of rows and columns which brings all non-zero elements
of E into the optimal possible interconnection around the
diagonal.

2.2 Problem Formulation
In P2P file sharing, an interested file is divided into many

fragments. The size of each fragment ranges from several
hundred kilobytes to several megabytes. When a new peer
joins the network, it begins to download fragments from
other peers. As long as it obtains one fragment of the file,
the new peer can start to serve other peers by uploading
fragments. Since peers are downloading and uploading at
the same time, when the network becomes large, although
the demands increase, the service provided by the network
also increases. Given N peers, a graph G = (V, E) can be
used to denote an overlay network, where the set of vertices
V = {v1, · · · , vN} represents the N peers and the set of
edges E = {eij ∈ {0, 1}, i, j = 1, · · · , N} represents their
connectivities : eij = 1 if peers i and j are connected, and
eij = 0 otherwise. For an undirected graph, it is required
that eij = eji for all i 6= j, and eij = 0 when i = j. Let C be
the entire collection of content fragments, and {ci ⊆ C, i =
1, · · · , N} denotes the collection of the content fragments
each peer i has. The disjointness of contents from peer i to
peer j is denoted by ci \ cj , which can be calculated as:

ci \ cj = ci − (ci ∩ cj). (1)

where \ denotes the intersection operation on sets. This
disjointness can be interpreted as the collection of content
fragments that peer i has but peer j does not. In other
words, it denotes the fragments that peer i can upload to
peer j. Moreover, the disjointness operation is not commu-
tative, i.e., ci\cj 6= cj \ci. Let |ci\cj | denote the cardinality
of ci\cj , which is the number of content fragments peer i can
contribute to peer j. In order to maximize the disjointness
of content, we maximize the number of content fragments
each peer can contribute to its neighbors by determining the
connections eij ’s. Define εij ’s to be sets such that εij = C
if eij = 1, and εij = ∅ (null set) otherwise.

In an overlay network, every node is a potential neighbor
of each other node since the network’s topology is a logical
one. So the full connection is an ideal solution for the peer’s
connectivity. For the network, we also have to consider some
constraints [16, 15]:

• based on the underlying network characteristics, i.e.,
delay or capacity of actual links;

• based on location of data and services;

• based on the nodes’s capabilities of managing peers,
e.g., the number of direct neighbors a node can main-
tain. some peers are tied down since they possess rela-
tive more content fragments. This resource constraint
can be independent of the underlying network.

In the environment, the maximum number of each peer
need to be considered, i.e., each peer i will be connected to
a maximum of di neighbors, where di < N . Therefore, we
have the following optimization problem:

max
E

N∑
j=1

∣∣∣
N⋃

i=1

(ci \ cj) ∩ εij

∣∣∣ (2)



Subject to

N∑
j=1

eij ≤ di for all i

N∑
i=1

eij ≤ dj for all j

(3)

3. META-HEURISTICS FOR NEIGHBOR SE-
LECTION

For applying the PSO algorithm successfully for any prob-
lem, one of the key issues is how to map the problem solution
to the particle space, which affects its feasibility and per-
formance. The constraint conditions have to be satisfied,
and the particle would search the solutions in as efficient a
search space as possible. In this section, a new approach to
the problem space mapping is depicted for particle swarm
optimization with reference to the neighbor-selection prob-
lem. For solving the problem, the upper half of the peer-
connection matrix through the undirected graph is encoded
to the particle’s position, which reduces the search space
dimension significantly. Since particle swarm shares some
common characteristics with P2P in the dynamic socially
environment, a multi-swarm interactive pattern is introduce
to match the corresponding mechanism.

Given a P2P state S = (N, C, M, f), in which N is the
number of peers, C is the entire collection of content frag-
ments, M is the maximum number of the peers which each
peer can connect steadily in the session, f is to goal the num-
ber of swap fragments, i.e. to maximize Eq.(2). It is to be
noted that the routing and connection between peers must
satisfy the constraint in Eq.(3) because of bandwidth, etc.
To apply the particle swarm algorithm successfully for the
NS problem, one of the key issues is the mapping of the prob-
lem solution into the particle space, which directly affects its
feasibility and performance. Usually, the particle’s position
is encoded to map each dimension to one directed connection
between peers, i.e. the dimension is N ∗N . But the neigh-
bor topology in P2P networks is an undirected graph, i.e.
eij = eji for all i 6= j, and eij ≡ 0 for all i = j. To reduce the
space complexity, we set up a search space of D dimension
as N ∗(N−1)/2. Accordingly, each particle’s position is rep-
resented as a binary bit string of length D. Each dimension
of the particle’s position maps one undirected connection.
The domain for each dimension is limited to 0 or 1.

PSO model consists of a swarm of particles, which are
initialized with a population of random candidate solutions.
They move iteratively through the D-dimension problem
space to search the new solutions, where the fitness f can
be measured by calculating the number of swap fragments
in the potential solution. Each particle has a position repre-
sented by a position-vector ~pi (i is the index of the particle),
and a velocity represented by a velocity-vector ~vi. Each par-
ticle remembers its own best position so far in a vector ~p#

i ,

and its j-th dimensional value is p#
ij . The best position-

vector among the swarm so far is then stored in a vector
~p∗, and its j-th dimensional value is p∗j . When the particle
moves in a state space restricted to zero and one on each di-
mension, the change of probability with time steps is defined
as follows:

P (pij(t) = 1) = f(pij(t− 1), vij(t− 1),

p#
ij(t− 1), p∗j (t− 1)).

(4)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (5)

At each time step, each particle updates its velocity and
moves to a new position according to Eqs.(6) and (7):

vij(t) = wvij(t− 1) + c1r1(p
#
ij(t− 1)− pij(t− 1))

+ c2r2(p
∗
j (t− 1)− pij(t− 1))

(6)

pij(t) =

{
1 if ρ < sig(vij(t));

0 otherwise.
(7)

Where c1 is a positive constant, called as coefficient of the
self-recognition component, c2 is a positive constant, called
as coefficient of the social component. r1 and r2 are the ran-
dom numbers in the interval [0,1]. The variable w is called
as the inertia factor, which value is typically setup to vary
linearly from 1 to near 0 during the iterated processing. ρ
is random number in the closed interval [0,1]. From Eq.(6),
a particle decides where to move next, considering its cur-
rent state, its own experience, which is the memory of its
best past position, and the experience of its most successful
particle in the swarm. The particle has priority levels ac-
cording to the order of peers. The sequence of the peers are
not changed during the iteration. Each particle’s position
indicates the potential connection state.

Some previous studies have discussed the trajectory of
particles and its convergence [17, 18, 19]. It has been shown
that the trajectories of the particles oscillate as different
sinusoidal waves and converge quickly, sometimes prema-
turely. Various methods have been used to identify some
other particle to influence the individual. Eberhart and
Kennedy called the two basic methods as “gbest model” and
“lbest model” [20]. In the gbest model, the trajectory for
each particle’s search is influenced by the best point found
by any member of the entire population. The best parti-
cle acts as an attractor, pulling all the particles towards
it. Eventually all particles will converge to this position.
In the lbest model, particles have information only of their
own and their nearest array neighbors’ best (lbest), rather
than that of the whole swarm. Namely, in Eq.(6), gbest
is replaced by lbest in the model. The lbest model allows
each individual to be influenced by some smaller number
of adjacent members of the population array. The particles
selected to be in one subset of the swarm have no direct re-
lationship to the other particles in the other neighborhood.
Typically lbest neighborhoods comprise exactly two neigh-
bors. When the number of neighbors increases to all but
itself in the lbest model, the case is equivalent to the gbest
model. Some experiment results testified that gbest model
converges quickly on problem solutions but has a weakness
for becoming trapped in local optima, while lbest model
converges slowly on problem solutions but is able to “flow
around” local optima, as the individuals explore different
regions.

Many multi-swarm approaches illustrate good performance
for some complex problems [21, 22]. To match the social
characteristics, we introduce a multi-swarm search algorithm
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Figure 1: A multi-swarm topology

for neighbor-selection problem in P2P networks. In the pro-
posed algorithm, all particles are clustered spontaneously
into different sub-swarms of the whole swarm. Every parti-
cle can connect to more than one sub-swarm, and a crossover
neighborhood topology is constructed between different sub-
swarms. The particles in the same sub-swarm would carry
some similar functions as possible and search for their opti-
mal. Each sub-swarm would approach its appropriate posi-
tion (solution), which would be helpful for the whole swarm
to keep in a good balance state. Figure 1 illustrates a multi-
swarm topology. In the swarm system, a swarm with 30
particles is organized into 10 sub-swarms, with each sub-
swarm consisting of 5 particles. Particles 3 and 13 have
the maximum membership level, 3. During the iteration
process, the particle updates its velocity followed by the lo-
cation of the best fitness achieved so far by the particle itself
and by the location of the best fitness achieved so far across
all its neighbors in all sub-swarms it belongs to. The process
makes an important influence on the particles’ ergodic and
synergetic performance.

Since the positions of all the particles indicate the poten-
tial assigned solutions, the binary bit strings of length D can
be “decoded” to the feasible solution. “1” denotes the two
corresponding peers are selected in the neighborhood. On
the contrary, “0” denotes the two corresponding peers are
disconnected. The position may violate the constraint (3)
after some iterations. We scan each column and row before
the decoding procedure. The latest binary bits are set to
“0” if

∑N
j=1 eij > di or

∑N
i=1 eij > dj . The scan direction

are reversed after each scan. The pseudo-code for the multi-
swarm search algorithm is illustrated as follows:

Step 1. Initialize the size of the particle swarm n, and other
parameters. Initialize the positions and the velocities for all
the particles randomly.
Step 2. Multiple sub-swarms n are organized into a crossover
neighborhood topology. A particle can join more than one
sub-swarm. Each particle has the maximum membership
level l, and each sub-swarm accommodates default number
of particles m.
Step 3. Decode the positions and evaluate the fitness for
each particles.

3.01 For s = 1 to n
3.02 If ( reverse )
3.03 For i = 0 to N − 1
3.04 e = 0
3.05 For j = 0 to N − 1
3.06 If (j == i) eij = 0;
3.07 If (j < i) a = j; b = i;
3.08 If (j > i) a = i; b = j;
3.09 If (e > dj) p[a∗N+b−(a+1)∗(a+2)/2] = 0
3.10 else
3.11 If (p[a∗N+b−(a+1)∗(a+2)/2]),
3.12 Calculate ci \ cj ; e + +;}
3.13 End if
3.14 Next j
3.15 Next i
3.16 else
3.17 For i = N − 1 to 0
3.18 e = 0
3.19 For j = N − 1 to 0
3.20 If (j == i) eij = 0;
3.21 If (j < i) a = j; b = i;
3.22 If (j > i) a = i; b = j;
3.23 If (e > dj) p[a∗N+b−(a+1)∗(a+2)/2] = 0
3.24 else
3.25 If (p[a∗N+b−(a+1)∗(a+2)/2]),
3.26 Calculate ci \ cj ; e + +;}
3.27 End if
3.28 Next j
3.29 Next i
3.30 End if
3.31 Calculate f = f +

∣∣∣ ⋃N
i=1(ci \ cj) ∩ εij

∣∣∣;
3.32 If ( rand(0, 1) < 0.5 ) reverse = 0
3.33 else reverse = 1;
3.34 Next s

Step 4. Find the best particle in the swarm, and find the
best one in each sub-swarms. If the “global best” of the
swarm is improved, noimprove = 0, otherwise, noimprove =
1. Update velocity and position for each particle at the it-
eration t.

4.01 For m = 1 to subs
4.02 ~p∗ = argminsubsm

i=1 (f(~p∗(t− 1)), f(~p1(t)),
4.02 f(~p2(t)), · · · , f(~pi(t)), · · · , f(~psubsm(t)));
4.03 For ss = 1 to subsm

4.04 ~p#
i (t) = argmin(f(~p#

i (t− 1)), f(~pi(t));
4.05 For d = 1 to D
4.06 Update the d-th dimension value of ~pi and ~vi

4.06 according to Eqs.(6) and (7);
4.07 Next d
4.08 Next ss
4.09 Next m

Step 5. If noimprove = 1, goto Step 2, the topology is
re-organized. If the end criterion is not met, goto Step 3.
Otherwise, output the best solution, the fitness.

4. EXPERIMENTAL RESULTS
To illustrate the effectiveness and performance of the par-

ticle swarm optimization algorithm, we illustrate an execu-
tion trace of the algorithm for the NS problem. A file of
size 7 MB is divided into 14 fragments (512 KB each) to
distribute, 6 peers download from the P2P networks, and
the connecting maximum number of each peer is 3, which is
represented as (6, 14, 3) problem. In some session, the state
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of distributed file fragments is as follows:



1 0 0 4 0 6 7 8 0 10 0 12 0 14
0 0 0 4 5 0 7 0 9 0 11 0 13 0
0 2 0 0 0 6 0 0 0 0 11 12 0 14
0 2 3 4 0 6 0 0 0 0 11 0 0 0
0 2 0 0 0 0 7 8 0 10 0 12 0 14
1 2 0 0 5 0 0 0 9 10 11 0 13 14




The optimal search result by the multi-swarm algorithm is
31, and the neighbor selection solution is illustrated below:




1 2 3 4 5 6

1 0 0 0 1 1 1
2 0 0 0 0 1 1
3 0 0 0 1 1 1
4 1 0 1 0 0 0
5 1 1 1 0 0 0
6 1 1 1 0 0 0




We also tested three other representative instances (prob-
lem (25,1400,12), problem (30,1400,15), problem (35,1400,17)
and problem (100,1400,20)). In our experiments, the al-
gorithms used for comparison were mainly Standard PSO
(SPSO) [20] and Genetic Algorithm (GA). These algorithms
share many similarities. Genetic algorithms mimic an evolu-
tionary natural selection process. Generations of solutions
are evaluated according to a fitness value and only those
candidates with high fitness values are used to create fur-
ther solutions via crossover and mutation procedures. The
considered algorithms were repeated 4 times with different
random seeds. Each trial had a fixed number of 50 or 80 it-
erations. Other specific parameter settings of the algorithms
are described in Table 1. S = (even)(int)(10+2 ∗ sqrt(D)),
where D is the dimension of the position. The average fit-
ness values of the best solutions throughout the optimization
run were recorded. The average and the standard deviation
were calculated from the 4 different trials.

Figures 2, 3, 4 and 5 illustrate the performances during the
search processes using the considered algorithms to solve the
NS problems. The best values, mean values, the standard
deviations for 4 trials are shown in Table 2. As evident, the
multi-swarm algorithm obtained better results much faster



Table 1: Parameter settings for the algorithms.

Algorithm Parameter name Value
Size of the population S

GA Probability of crossover 0.8
Probability of mutation 0.01
Swarm size S
Self coefficient c1 0.5 + log(2)

PSO(s) Social coefficient c2 0.5 + log(2)
Inertia weight w 0.91
Clamping Coefficient ρ 0.5

Table 2: Performance comparison of the three algo-
rithms.

Instance Item GA SPSO MPSO
Best 8716.00 8717.00 8721.00

(25, 1400, 12) Mean 8.714.30 8716.00 87192.00
Std. dev. 1.7078 1.1547 1.3292
Best 10513.00 10514.00 10515.00

(30, 1400, 15) Mean 10504.00 10512.00 10514.00
Std. dev. 6.3443 1.2990 1.2910
Best 12321.00 12332.00 12332.00

(35, 1400, 17) Mean 12319.00 12329.00 12330.00
Std. dev. 1.7078 2.5166 1.1690
Best 35047.00 35057.00 35061.00

(100, 1400, 20) Mean 35042.25 35055.00 35059.25
Std. dev. 3.6996 1.2247 1.0897

than other algorithms, especially for large scale problems.

5. CONCLUSIONS
In this paper, we investigated the neighbor-selection prob-

lem in peer-to-peer networks by using a swarm intelligence
approach. Since particle swarm shares some common char-
acteristics with P2P in the dynamic socially environment, a
multi-swarm interactive pattern was introduced to match
the corresponding mechanism. We evaluated the perfor-
mance of the proposed approach and compared it with GA
and SPSO. Empirical results indicates that multi-swarm ap-
proach usually obtained better results much faster than GA
and SPSO, specially for large scale problems.
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