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ABSTRACT 
Bacterial Foraging Optimization Algorithm (BFOA) attempts 
to model the individual and group behavior of E.Coli bacteria 
as a distributed optimization process. Since its inception, 
BFOA has been finding many important applications in real-
world optimization problems from diverse domains of science 
and engineering. One key step in BFOA is the computational 
chemotaxis, where a bacterium (which models a candidate 
solution of the optimization problem) takes steps over the 
foraging landscape in order to reach regions with high 
nutrient content (corresponding to higher fitness). The 
simulated chemotactic movement of a bacterium may be 
viewed as a guided random walk or a kind of stochastic hill 
climbing from the viewpoint of optimization theory. In this 
article, we firstly derive a mathematical model for the 
chemotactic movements of an artificial bacterium living in 
continuous time. The stability and convergence-behavior of 
the said dynamics is then analyzed in the light of Lyapunov 
stability theorems. The analysis undertaken provides 
important insights into the search mechanism of BFOA.  In 
addition, it indicates the necessary bounds on the chemotactic 
step-height parameter that avoids limit-cycles and guarantees 
convergence of the bacterial dynamics into an optimum. 
Illustrative examples as well as simulation results have been 
provided in order to support the analytical treatments.  

Categories and Subject Descriptors 
 I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search --- Heuristic methods; G.1.6 
[Numerical Analysis]: Optimization --- Global optimization; 
G.3 --- Probabilistic algorithms 

 

 

General Terms  

Algorithms  

Keywords 
Biological systems, Bacterial foraging, Computational 

chemotaxis, Stability analysis, Limit cycles.   

1. INTRODUCTION 
To tackle complex search problems of real world, scientists 
have been looking into the nature for years, both as model and 
as metaphor, for inspiration. Optimization is at the heart of 
many natural processes like Darwinian evolution, group 
behavior of social insects and the foraging strategy of other 
microbial creatures. Natural selection tends to eliminate 
species with poor foraging strategies and favor the 
propagation of genes of species with successful foraging 
behavior since they are more likely to enjoy reproductive 
success.  
Since a foraging organism or animal takes necessary action to 
maximize the energy utilized per unit time spent for foraging, 
considering all the constraints presented by its own 
physiology such as sensing and cognitive capabilities, and 
environment (e.g. density of prey, risks from predators, 
physical characteristics of the search space), the natural 
foraging strategy can lead to optimization and essentially this 
idea can be applied to solve real-world optimization 
problems. Based on this conception, Passino proposed an 
optimization technique, now well-known as the Bacterial 
Foraging Optimization Algorithm (BFOA) [1, 2]. Until date, 
the algorithm has successfully been applied to several real life 
problems like optimal controller design [1, 3], harmonic 
estimation [4], transmission loss reduction [5], active power 
filter synthesis [6], and machine learning [7]. On the 
algorithmic front, extensions have been made to deal with 
complex and multi-modal fitness landscapes, dynamical 
environments and to obtain efficient convergence behavior [8-
12]. BFOA has also been hybridized with a few other state-of 
-the-art evolutionary computing techniques [3, 13, and 14] in 
order to achieve robust and efficient search performances.  
One major step in BFOA is the simulated chemotactic 
movement. Chemotaxis is a foraging strategy that implements 
one type of local optimization where the bacteria try to climb 
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up the nutrient concentration, avoid noxious substance and 
search for ways out of neutral media. This step has much 
resemblance with a biased random walk model [15]. The 
chemotactic operator employed in BFOA is supposed to guide 
the swarm to converge towards optima. In this article we 
make an attempt to find out under what conditions this local 
search strategy leads to a stable dynamics that can avoid limit-
cycles and asymptotically converge towards an optimum of 
the fitness landscape. The stability analysis has been 
undertaken using the celebrated Lyapunov’s stability 
theorems from classical nonlinear control theory [16, 17]. 
Finally, we determine the bounds on the chemotactic step-size 
parameter C, which ensures asymptotic stability. Results of 
computer simulations have been provided in order to support 
the theoretical claims made in the work. Although the analysis 
may appear to have a limited scope, note that this article is the 
first of its kind and the issues of multi-bacterial population 
over a multi-dimensional fitness landscape are topics of 
further research. Here our primary objective is to gain 
important insight into the operational mechanism of the 
artificial bacterial foraging system, acting as a function 
optimizer. 
The rest of the paper is organized as follows. Section 2 
describes the classical BFOA in sufficient details. In Section 3 
differential equation model governing the motion of an 
individual bacterium in chemotaxis phase, is derived. The 
model is then used to carry out stability analysis in Section 4. 
Results of computer simulations have been presented and 
discussed in Section 5. Finally, the paper is concluded in 
Section 6.   

2. THE BFOA ALGORITHM 
The bacterial foraging system proceeds through four principal 
mechanisms, namely chemotaxis, swarming, reproduction and 
elimination-dispersal [1]. Below we briefly describe each of 
these processes and finally provide a flow chart of the 
complete algorithm in Figure 1. 

 
i) Chemotaxis: This process simulates the movement of an 

E.coli cell through swimming and tumbling via flagella. 
Biologically an E.coli bacterium can move in two different 
ways. It can swim for a period of time in the same direction or 
it may tumble, and alternate between these two modes of 
operation for the entire lifetime. Suppose 

),,( lkjiθ represents i-th bacterium at j-th chemotactic, k-th 

reproductive and l-th elimination-dispersal step. )(iC  is the 

size of the step taken in the random direction specified by the 
tumble (run length unit). Then in computational chemotaxis 
the movement of the bacterium may be represented by                 
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 Where ∆  indicates a unit length vector in the random 
direction.  
 

ii) Swarming: An interesting group behavior has been 

observed for several motile species of bacteria including 
E.coli and S. typhimurium, where stable spatio-temporal 
patterns (swarms) are formed in semisolid nutrient medium. A 
group of E.coli cells arrange themselves in a traveling ring by 

moving up the nutrient gradient when placed amidst a 
semisolid matrix with a single nutrient chemo-effecter. The 
cells when stimulated by a high level of succinate, release an 
attractant aspertate, which helps them to aggregate into 
groups and thus move as concentric patterns of swarms with 
high bacterial density. The cell to cell signaling in E. coli 
swarm may be represented by the following function. 
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            where )),,(,( lkjPJ cc θ is the objective function 

value to be added to the actual objective function (to be 
minimized) to present a time varying objective function,  S is 
the total number of bacteria, p is the number of variables to be 
optimized, which are present in each bacterium and 

T
p ][ ,..........,.........2,1 θθθθ =  is a point in the p-dimensional search 

domain. repellantrepellantattractantaatractant  and ,,, whwd  are 

different coefficients that should be chosen properly. 

 
iii) Reproduction: The least healthy bacteria eventually die 
while each of the healthier bacteria (those yielding lower 
value of the objective function) asexually split into two 
bacteria, which are then placed in the same location. This 
keeps the swarm size constant. 

 
 iv)Elimination and Dispersal: Gradual or sudden changes 
in the local environment where a bacterium population lives 
may occur due to various reasons e.g. a significant local rise 
of temperature may kill a group of bacteria that are currently 
in a region with a high concentration of nutrient gradients. 
Events can take place in such a fashion that all the bacteria in 
a region are killed or a group is dispersed into a new location. 
To simulate this phenomenon in BFOA some bacteria are 
liquidated at random with a very small probability while the 
new replacements are randomly initialized over the search 
space. 

 

3. MODELING THE CHEMOTACTIC 

DYNAMICS  
Let us consider a single bacterium cell that undergoes 
chemotactic steps according to (1) over a single-dimensional 
objective function space. The bacterium lives in continuous 

time and at the t-th instant its position is given by )(tθ . 

Below we list a few assumptions, which have been considered 
for the sake of gaining mathematical insight.  
 

i) The objective function )(θJ is continuous and 

differentiable at all points in the search space. The function 
is uni-modal and its one and only optima (minimum) is 

located at 0θθ = . Also 0)( ≠θJ for 0θθ ≠ . 

 



ii) The chemotactic step size C is very small (Passino [1] used 

0.1 C = ). 

 
iii) The analysis applies to the regions of the fitness landscape 

where gradients of the function are small i.e. near to the 
optima. 

 
Now, according to BFOA, the bacterium changes its position 
only if the modified objective function value is less than the 

previous one i.e. )(θJ > )( θθ ∆+J  i.e. )()( θθθ ∆+− JJ  is 

positive. This ensures that bacterium always moves in the 
direction of decreasing objective function value. A particular 
iteration starts by generating a random vector of unit length, 

termed as the direction of tumble and denoted by ∆ . Assuming 

uniform rate of position change, if the bacterium moves ∆C  in 

unit time, its position is changed by ))(( tC ∆∆  in t∆ sec.  We 

have assumed that t∆ is an infinitesimally small positive 

quantity, thus sign of the quantity )()( θθθ ∆+− JJ  remains 

unchanged if t∆ divides it. So, bacterium will change its 

position if and only if 
t

JJ

∆

∆+− )()( θθθ
 is positive. This 

crucial decision making (i.e. whether to take a step or not) 
activity of the bacterium can be modeled by a unit step function 
(also known as Heaviside step function [18]) defined as,  
 

1)( =xu ,  if 0>x  

          ,0=  otherwise.                                                (3)                                                                        
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Defining the velocity of the bacterium as 
t

LimV
t

b
∆

∆
=

→∆

θ

0

  

(Naturally, here we assume the time to be unidirectional 

i.e. 0>∆t ), we obtain 

].}.
)()(

{[
00

∆
∆

−∆+
−=

∆

∆
=

→∆→∆
C

t

JJ
uLim

t
LimV

tt
b

θθθθ  

].}.
)()(

{[
0

∆
∆

∆

∆

−∆+
−=⇒

→∆
C

t

JJ
uLimV

t
b

θ

θ

θθθ  

as 0→∆ t makes 0→∆θ , we may write,  

].}.
)()(

{[
00

∆








∆

∆









∆

−∆+
−=

→∆→∆
C

tt
Lim

JJ
LimuVb

θ

θ

θθθ

θ
 

Again, )(θJ is assumed to be continuous and differentiable 

and thus 
θ

θθθ
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Lim  is the value of the gradient at 

the point θθ = . Therefore we have,                                                                                                                                    

∆−= CGVuV bb )(                                                    (5) 

where ==
θ

θ

d

dJ
G

)(  gradient of the objective function at 

θθ = .   

In (5) argument of the unit step function is 
bGV− . Value of 

the unit step function is 1 if G and 
bV are of different sign 

and in this case the velocity is ∆C . Otherwise, it is 0  making 

bacterium motionless. So equation (5) suggests that bacterium 
will move the direction of negative gradient. 

Since the unit step function )(xu has a jump 

discontinuity at 0=x , to simplify the analysis further, we 

replace )(xu with the continuous logistic function )(xφ , 

where 
kx

e
x

−+
=

1

1
)(φ .                                                       

We note that,  
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For analysis purpose k cannot be infinity. We restrict 
ourselves to moderately large values of k (say k = 10) for 

which )(xφ fairly approximates )(xu . Hence from (5)                                  
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According to assumptions (ii) and (iii), if C and G are very 

small and 10~k , then also we may have 1<<bkGV . In that 

case we neglect higher order terms in the expansion of 
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Equation (9) represents the fundamental dynamics of the 
computational chemotaxis step in BFOA. In what follows, our 
stability analysis procedures will be mostly centered on this 
equation.                                         
 

4. STABILITY ANALYSIS 
In this section, we analyze the stability of the chemotactic 
dynamics represented by (9) using the concept of Lyapunov 
stability theorems [16]. We begin this treatment by explaining 



some basic concepts and their interpretations from the 
standard literature on nonlinear control theory [17, 19]. 
Definition 4.1  

A point exx
��

= is called an equilibrium state, if the 

dynamics of the system is given by  

))(( txf
dt

xd �
�

=  

becomes zero at exx
��

=  for any t i.e. 0))(( =txf e

�
. The 

equilibrium state is also called equilibrium (stable) point in D-

dimensional hyperspace, when the state ex
�

 has D-

components. 
Definition 4.2  

A scalar function )(xV
�

 is said to be positive definite with 

respect to the point ex
�

 in the region Kxx e ≤−
��

, if 

0)( >xV
�

 at all points of the region except at ex
�

where it is 

zero. 
Definition 4.3  

A scalar function )(xV
�

is said to be negative definite if 

)(xV
�

−  is positive definite. 

Definition 4.4  

A dynamics ))(( txf
dt

xd �
�

=  is asymptotically stable at the 

equilibrium point ex
�

, if 

 a)  it is stable in the sense of Lyapunov, i.e., for any 

neighborhood ( )εS  surrounding ex
�

 ( ( )εS contains 

points x
�

 for which ε≤− exx
��

) where there is a 

region ( )δS ( ( )δS contains points x
�

 for which 

δ≤− exx
��

), ε<δ , such that trajectories of the 

dynamics starting within ( )δS  do not leave ( )εS  as 

time ∞→t  and  

   b) the trajectory starting within ( )δS  converges to the origin 

as time t approaches infinity.   
   
The sufficient condition for stability of a dynamics can be 
obtained from the Lyapunov’s theorem, presented below. 
 

Lyapunov’s stability theorem [16, 19] 

Given a scalar function )(xV
�  and some real number 0>ε , 

such that for all x
�

 in the region ε≤− exx
��

 the following 

conditions hold: 
1) 0)( =exV

�
 

2)  0)( >xV
�

for
exx
��

≠ , i.e. )(xV
�

 is positive definite.   

3) )(xV
�

 has continuous first partial derivatives with 

respect to all components of x
�

. 

 Then the equilibrium state ex
�

 of the system 

))(( txf
dt

xd �
�

=  is 

a) asymptotically stable if 0<
dt

dV , i.e. 
dt

dV  is 

negative definite, and 

         b)  asymptotically stable in the large if  0<
dt

dV  for 

exx
��

≠ , and in addition, ∞→)(xV
�

  as 

∞→− exx
�� . 

 

Remark: Lyapunov stability analysis is based on the idea that 
if the total energy in the system continually decreases, then 

the system will asymptotically reach the zero energy state 
associated with an equilibrium point of the system. A 
system is said to be asymptotically stable if all the 
states approach the equilibrium state with time. 
 

Theorem 4.1 (main result):  

Let the bacterial dynamics be represented by (9) and 

0θθ = be the single optimum (minimum) in the region of 

search. Then this optimum is asymptotically stable if  

             
)(

4 0

θ

θθ

Jk
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−
>   if 0θθ ≠ .                                (12)                                                                            

                 0=                   if 0θθ = .              

 
 

Proof:  
In order to determine the equilibrium point for the system, we 
set (by definition 3.1), 

                                   0=
dt

dθ
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Since the bacterium is expected to converge at the optimum of 
the fitness landscape, we have the equilibrium 

point
0θθ =e
and also the function gradient 0=G  at this 

point. Putting 0=G  in (13) we obtain 0=C . Thus, the 

step-height C should become zero at 0θθ =  for the 

equilibrium point to be located at the desired optimum i.e. 

                     0=C  if  
0θθ =                                       (14)                                                                        

This criterion is intuitively appealing also from the 
perspective of an optimization algorithm. Once reaching the 
optimum of the uni-modal fitness landscape, the bacterium is 
expected to stay there and hence it should not take any more 

chemotactic steps or in other words it’s C should become 

zero.  
 Now to test the stability, consider a scalar function:                                                       

),(
2

)(
8

)( 0

2

θθθθ −
∆

−=
C

J
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where )(θJ is the objective function .  In order to qualify as a 

Lyapunov energy function, )(θV  must be a positive definite 

function with respect to the equilibrium point 0θ . Thus, by 



definition (4.2), )(θV  must satisfy the relation 0)( 0 =θV  and 

0)( >θV if 
0θθ ≠ .                          

As 0=C at 
0θθ = we have, 

           0)(
8

)(
2

)(
8

)( 0

2

000

2

0 ==−
∆

−= θθθθθ J
kCC

J
kC

V  

Now for the second condition to be satisfied we should have, 
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Now by assumption (i), 0)( ≠θJ  for all
0θθ ≠ , and also 

noting that 0>k , dividing both sides of (16) by 
4

)(θkJ  we 

get, 
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If the right hand side of (17) be negative, it will lead to a 

trivial condition as step-height C  is always positive.  

        Now, 
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So if  C  satisfies the relation  
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for all 0≠θ  i.e. condition (17) is automatically satisfied. 

Thus, provided that C satisfies conditions (14) and (17), 

)(θV is a Lyapunov energy function and  

                  
dt

d

d
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dV θ

θ
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 Now, differentiating both sides of (15) with θ  we have, 
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 Substituting values of  
θd

dV
 and 

dt

dθ
 from (19) and (9) 

respectively into (18) we get, 
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dt

dV ,if 0θθ ≠ .             (20)                                               

Also, 0=
dt

dV
 if 

0θθ =   [as 0=C and 0=G at 0θθ = .] Thus, 

by definition (4.3), 
dt

dV is negative definite. So we can infer 

that the bacterial dynamics of (9) exhibits an asymptotically 

stable behavior with respect to the optimum 0θθ =  if the 

step size satisfies conditions (14) and (17) simultaneously. 
This completes the proof. 

 

 

5. EXPERIMENTAL RESULTS 
In Section 4, we have derived the criterion for asymptotic 
stability of a bacterium with respect to an optimum of the 
search space. In this section, we investigate what happens to 
the dynamics of the bacterium if this criterion is met and 
whether the bacterium shows unstable or oscillatory behavior 
otherwise, with the help of computer simulations. Consider 
the case of a single bacterium taking chemotactic steps over 
one-dimensional fitness landscape of the 

function
2)( θθ =J where the single optimum located at 

00 == θθ . Let the bacterium start from 5.0−=θ and start 

taking chemotactic steps of height 2.0=C following the 

directives of the actual BFOA. Now as step size remains 
constant, condition given in (12) is violated at some point of 

time. Let 
)(

4 0

θ

θθ

Jk
Cthreshold

−
= . Then, according to (12), 

the bacterium should exhibit stable dynamic behavior near the 

optima as long as thresholdCC > . Table 1 shows with 

changing positions of bacterium varying values of thresholdC . 

We have assumed 130=k .  

 

 

Table 1: Various states and set of  ∆  
 
 
 
In the very first iteration, the bacterium takes a step of size 0.2 

and reaches 3.0−=θ . Then in the second iteration it does not 

move (as doing so would increase the function value) and its 
velocity drops to 0. This situation is   represented as point B 
in phase trajectory. The line AB makes an angle of -45° with 
the position axis. Next it takes a chemotactic step. This state 
can be seen in C. After taking the step, it reaches P. Now the 

bacterium can change position by an amount C  or C− , 

which are 0.2 and –0.2 in this case. These cases have been 
shown in P and S. Otherwise it remains immobile and 
velocity becomes 0. These cases can be observed in Q and R. 
The bacterium makes transition between these points in cyclic 
order. Here in states P, Q, R, and S, the objective function 
value remains constant and the distance of the bacterium from 
the optimum is also constant. Still it continues to change its 
position. From Table 1, we can predict that after reaching 

1.0−=θ bacterium should show asymptotically unstable 

behavior. Experimentally we observe that the bacterium 
enters stable limit cycles after reaching that position. Figure 1 

State of phase-
trajectory 

or points on 
Figure 1 

Position Velocity Direction of 
tumble  

∆  

A -0.5 0.2 +1.0 

B -0.3 0.0 -0.1 

C -0.3 0.2 +0.1 

P -0.1 0.2 +0.1 

Q -0.1 0.0 -0.1 

S 0.1 -0.2 +0.1 

R 0.1 0.0 +0.1 



shows how the position of the bacterium θ varies with 

iteration time-step.  
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 1:  Variation of position with time for the 

bacterium. 

 

 

 

 

 

 

 

 

 

                       
                              
 

 

 

 

 

 

 

 

Figure 2: Phase trajectory constructed for bacterium 

satisfying condition (12). 

 

Finally, we observe what happens if the condition mentioned 

in (12) is satisfied i.e. 
)(

4 0

θ

θθ

Jk
C

−
< for all θ  in the 

feasible search range. In this case we take ξ+= thresholdCC  

for each iteration, where 01.0=ξ  is a small positive bias. 

Initial position is again 5.0−=θ . Phase-trajectory, 

constructed for this case has been provided in Figure 2 and we 

observe it converges and shows no oscillatory behavior.         

 

6. CONCLUSIONS 
In this work, we have presented a simple mathematical model 
of the computational chemotaxis operation in BFOA, which 
emerges as a prominent optimization technique of current 
interest. The Lyapunov’s stability theorems were applied to 
derive the conditions of asymptotic stability of a bacterium 

near an isolated optimum of the fitness landscape. Computer 
simulations over two single-dimensional uni-modal objective 
functions illustrate how the bacterium bursts into oscillations 
around the optimum instead of converging to the same, when 
the stability criteria derived here are not satisfied. We also 
note that in classical BFOA, where the step-size is usually 
kept constant, at some point of time the step-size violates the 
conditions of asymptotic stability and the bacterium starts 
oscillating around the optimum, instead of converging to it. 
This calls for some adaptation schemes, which may adjust the 
step-size on the run thus avoiding the limit-cycles. Future 
work should focus on extending the analysis undertaken here, 
to a multi-bacterial swarm working on a multi-dimensional 
fitness landscape. Another avenue is to include the effects of 
reproduction and elimination-dispersal events in the same 
mathematical model, in order to judge their effects on stability 
of the group dynamics. Some adaptation schemes for online 
adjustment of the chemotactic step-size (that guarantees 
convergence to the optimum) over different objective 
functions should also be investigated in future. 
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