
Failure and Power Utilization System Models of Differential Equations by
Polynomial Neural Networks

Ladislav Zjavka
National supercomputing center IT4innovations

VŠB-Technical University of Ostrava
Ostrava, Czech Republic

lzjavka@gmail.com

Ajith Abraham1,2
1Machine Intelligence Research Labs,Washington, USA
2IT4innovations, VŠB-Technical University of Ostrava,

Czech Republic
ajith.abraham@ieee.org

Abstract—Reliability modeling of electronic circuits can be best
performed by the stressor – susceptibility interaction model. A
circuit or a system is deemed to be failed once the stressor has
exceeded the susceptibility limits. Complex manufacturing
systems often require a high level of reliability from the
incoming electricity supply. Modern industrial time power
quality monitoring systems can be used for the pre-fault load
alarming. Neural networks can successfully model and predict
the failure frame of critical electronic systems and power
utilization in power plants described only a few input
quantities. Differential polynomial neural network is a new
type of neural network, which constructs and substitutes an
unknown general sum partial differential equation with a total
sum of fractional polynomial terms. The system model
describes partial relative derivative dependent changes of some
input combinations of variables. This type of non-linear
regression is based on trained generalized data relations
decomposed by partial low order polynomials of 2-input
variables. Experimental results indicate that the proposed
method is efficient.

Keywords-reliability modeling; power utilization; polynomial
neural network; differential equation composition; multi-
parametric function approximation

I. INTRODUCTION
Differential equation solutions can describe a variety of

real data observation problems, which a unique single exact
model is hardly to specify. They can apply sum series [1],
genetic programming (GP) techniques [2] or an artificial
neural network (ANN) construction [3]. Standard soft-
computing methods are generally direct computational
techniques, operating only within absolute interval values of
input variables, e.g. GP or fuzzy models can compose a
searched function using collections of operators and
terminals from a defined set to form some symbolic
expressions. A common ANN operating principle is based on
entire similarity relationships of new presented input patterns
with the trained ones. If a modeled multi-parametric function
involves some similar harmonic parts, then a benefit of ANN
solution might become evident. ANN models are solid and
simple but impossible to be expressed in the form of a math
description, the models appear to the users as a “black box”.

Differential polynomial neural network (D-PNN) is a
new neural network type designed by Zjavka [4], which

results from the GMDH (Group Method of Data Handling),
created by a Ukrainian scientist Aleksey Ivakhnenko in
1968, when the back-propagation technique was not known
yet [5]. GMDH constructs in successive steps a polynomial
neural network (PNN), adding one layer a time and
calculating parameters. General connection between input
and output variables are possible to express by the Volterra
functional series, a discrete analogue of which is
Kolmogorov-Gabor polynomial (1). This polynomial can
approximate any stationary random sequence of
observations and can be computed by either adaptive
methods or system of Gaussian normal equations. GMDH
decomposes the complexity of a process into many simpler
relationships each described by low order polynomials (2)
for every pair of the input values. Typical GMDH network
maps a vector input x to a scalar output y, which is an
estimate of the true function f(x) = yt. Each neuron of the
PNN should fit its output to a desired value yt for each input
vector x from the training set. It defines an optimal structure
of a complex system model with identifying non-linear
relations between input and output variables [6].

∑∑∑∑∑∑
= = == ==

++++=
m

i

m

j

m

k
kjiijk

m

i

m

j
jiij

m

i
ii xxxaxxaxaay

1 1 11 11
0 ... (1)

m – number of variablesX(x1, x2, ... , xm)
A(a1, a2, ... , am), ... - vectors of parameters

D-PNN combines the PNN functionality with some math
techniques of differential equation (DE) solutions. Its
models are a boundary of neural network and exact
computational techniques. D-PNN forms and resolves an
unknown general DE description of a searched function
approximation. A DE is substituted producing sum of
fractional polynomial derivative terms, forming a system
model of dependent variables. In contrast with the ANN
functionality, each neuron can direct be a part in the total
network output calculation, which is generated by the sum
of active neuron output values. A real complex function is
decomposed into many partial data relation specifications,
defining a composite structural model, which exact solution
is vague or impossible to get using a predetermined DE [7].

y = a0 + a1xi + a2xj + a3xixj + a4xi
2 + a5xj

2 (2)

II. FAILURE AND POWER DEMAND SYSTEM MODELING

A. Failure modeling of electronic systems in power plants
The stressor-susceptibility interaction is a technique of

failure predictions, which can be extended to simple
electronic components or more complicated electronic
circuits. Stressor is a physical entity influencing the lifetime
of a component or circuit. A stressor, indicating a physical
entity x will be denoted as

xψ . Susceptibility of a component
to a certain failure mechanism is defined as the probability
function indicating the probability that a component will not
remain operational for a certain time under a given
combination of stressors. The susceptibility related to the
failure mechanism “y” is usually defined as Sy (t, ψp, ψq,ψr).
Most components tend to have more than one failure
mechanism, resulting in more than one “failure probability”.
It can be shown that there is a strong correlation between the
various failure mechanisms existing within a component.
Figure 1 illustrates the stressor - susceptibility interaction for
a single failure mechanism. It is clear that the main source of
problem is the overlap between stressor and susceptibility
density.

Figure 1. Stressor- Susceptibility interaction for single failure mechanism.

The failure probability can be calculated for this stressor
distribution on a failure mechanism with a single time
independent variable (3). To calculate the failure probability
as a function of more complex susceptibility model, it will be
necessary to calculate the failure probability of a part of the
susceptibility model, for a certain stressor interval Δ,
characterized by its mean value ψo and the corresponding
susceptibility density function at that point Sy(ψo).

() () ΨΨ=Ψ ∫
∞

Ψ

Ψ dff yyfail

0

0,, (3)

As for large series of components, the physical structures
of the individual components will be different for everyone,
the survival probability of such a series of components will
also show individual differences. The stress on a component

may vary with time due to circuit behavior and circuit use.
The circuit behavior will differ amongst a series of circuits
due to physical differences in the individual circuit
components, the physical structure of a circuit, the use of a
circuit and the environment (electrical, thermal, etc.) of the
circuit. To summarize the variety of effects it is useful to
describe stressors as stochastic signals with properties
depending on the influencing factors mentioned above.

There are two different categories of failure mechanisms
applicable to electronic components. First are the failure
mechanisms that are related to the electrical stress in a
circuit. Second, failure mechanisms related to the intrinsic
aspects of a component. There are two possible ways to
obtain stressor sets for practical circuits. The First possibility
involves usage of computer simulation models to derive all
circuit signals using one single simulation. Second
possibility is to derive stressor sets from practical
measurements. In those cases where sufficient systems are
available it is possible to do a statistical evaluation of the
individual stressor functions existing in individual systems.
As the stressor sets are dependent on the conditions of use
and the operation modes of a system it is important that the
measured stressor is based on all the possible operation
modes of a circuit and all the possible transitions between the
various operation modes. Accurate description of a stressor
set will require a number of samples sufficient to cover all
the different states of the system. As a signal has often more
than one quasi-stationary states, each characterized by their
stressor set, it is possible to derive the overall stressor set
function from the individual state stressor sets using [8].

)(,,1)(, xiystr
total

in
ixystr f
T
Tf Σ =

= (4)

fstr,y (x) is the stressor probability density function of quasi-
stationary state i. Ti / Ttotal is the fraction of time that the
stressor is in quasi-stationary state i (4). The derivation of
stressor sets use Monte Carlo method, a logical model of the
system being analyzed is repeatedly evaluated, each run
using different values of the distributed parameters [9].

B. Power demand modeling in power plants
Modern complex manufacturing systems rely heavily on

computer numerical controlled machines, variable speed
drives and robotic devices which often require a high level
of reliability from the incoming electricity supply. Due to
the widespread usage of non-linear loads there has been a
significant increase in the harmonic content of the 3-phase
supply, raising serious power quality issues [10]. Predicting
the power factor and active power demand is possible to
automate the control of reactive power load and to better
utilize the volt-amperes (VA) inflow. Efficient usage of the
VA loading will not only improve the overall grid condition
but also reduce the consumer’s industrial tariffs. Depending
on the estimated power factor, power factor corrective
measures could be turned on or off to control the VA inflow
into the plant. The ratio of active power P [W] to the
apparent power S [VA] is termed the power factor (5).

(Z) impedance
(R) resistance

S
P)(cosfactor Power === ϕ (5)

The power factor is lagging when the current lags the

supply voltage and leading when the current leads the
supply voltage. This means that the supply voltage is
regarded as the reference quantity, a majority of loads
served by a power utility draw current at a lagging power
factor. When the power factor of the load is unity, active
power equals apparent power (P = S). But, when the power
factor of the load is less than unity, say 0.6, the power
utilized is only 60%. This means that 40% of the apparent
power is being utilized to supply the reactive power demand
of the system. It is therefore clear that the higher the power
factor of the load, the greater the utilization of the apparent
power [11]. For the generating and transmission stations,
lower the power factor the larger must be the size of the
source to generate that power, and greater must be the cross-
sectional area of the conductor to transmit it, i.e. the greater
is the cost of generation and transmission of the power.
Moreover, lower power factor will also increase the I2R (I
denotes current) losses in lines/equipment as well as result
in poor voltage regulation.

III. GENERAL DIFFERENTIAL EQUATION COMPOSITION
The basic idea of the D-PNN is to compose and substitute

a general sum partial differential equation (6), which is not
known in advance and can describe a system of dependent
variables, with a sum of fractional relative multi-parametric
polynomial derivative terms (7).

∑∑∑∑
∞

====

==+
∂∂

∂
+

∂
∂

+
11

2

11

0...
k

k

n

j ji
ij

n

i

n

i i
i uu

xx
uc

x
uba (6)

u = f(x1, x2,, … , xn) – searched function of all input variables
a, B(b1, b2,, ..., bn), C(c11, c12, ,...) – polynomial parameters

Partial DE terms are formed according to the adapted
integral analogues method, which is a part of similarity
model analysis. It replaces mathematical operators and
symbols of a DE by ratio of corresponding values.
Derivatives are replaced by their integral analogues, i.e.
derivative operators are removed and simultaneously with
all operators are replaced by similarly or proportion signs in
equations to form dimensionless groups of variables [12].

()

m

n
m

n
m

i

xxx
xxf

xbb
xaxaxxaxaxaau

∂∂∂

∂
=

=
++

++++++
=

...
),...,(

...
...

21

1

110

2
25

2
1421322110

 (7)

n – combination degree of a complete polynomial of n-variables
m – combination degree of denominator variables

The fractional polynomials (7) define partial relations of
n-input variables. The numerator of a DE term (7) is a
polynomial of all n-input variables and partly defines an
unknown function u of eq. (6). The denominator is a
derivative part, which includes an incomplete polynomial of
the competent combination variable(s). The root function of
numerator takes the polynomial into competent combination
degree to get the dimensionless values. In a case of time-
series data application an ordinary differential equation is
formed with only time derivatives, the partial DE (6) might
become form of (8).

0...
),,(),(

1
2

2

11
=++++ ∑∑∑

===

m

j

ji
ij

m

i

m

i

i
i dt

xxtfd
d

dt
xtdfcbfa (8)

f(t,x) – function of time t and independent variables x(x1, x2, ... , xm)

Blocks of the D-PNN (Figure 2.) consist of derivative
neurons with the same inputs, one for each fractional
polynomial derivative combination, so each neuron is
considered a summation DE term (7). Each block contains a
single output polynomial (2), without derivative part.
Neurons do not affect the block output but can participate
direct in the total network output sum calculation of a DE
composition. Each block has 1 and neuron 2 vectors of
adjustable parameters a, resp. a, b.

Figure 2. D-PNN block of basic and compound neurons (DE terms).

In the case of 2 input variables the 2nd odder partial DE can
be expressed in the form (9), which involves all derivative
terms with respect to variables applied by the GMDH
polynomial (2). D-PNN’s blocks and neurons process these
2-combination square polynomials, which form competent
DE terms of a DE definition (6). Each block so include 5
simple neurons of derivatives x1, x2, x1x2, x1

2, x2
2 of the 2nd

order partial DE (9), which is most often used to specify
models of physical or natural systems.

0,,,,,,, 2
2

2

21

2

2
1

2

21
21 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂∂

∂

∂

∂

∂

∂

∂

∂

x
u

xx
u

x
u

x
u

x
uuxxF (9)

where F(x1, x2, u, p, q, r, s, t) is a function of 8 variables

D-PNN’s basic form, using only 2-input variables comprises
1 block of at most 5 simple derivative neurons of a DE
solution (9) (Figure 2). Denominator coefficients balance a
length variety of the derivative polynomials (10)(11)(12).

x1 x2

Differential
equation

 Block output

GMDH
polynomial

 + + … 5 neurons

/

Input
variables

Compound
neurons

/

/

Π

Block

Figure 3. 1-block D-PNN with 2-inputs and 5 basic neurons (DE terms).

()
)(5.1

),(

110

2
12

25
2
1421322110

1
1

21
1 xbb

xaxaxxaxaxaa
w

x
xxf

y
+⋅

+++++
=

∂

∂
= (10)

)(7.2
),(

2
22210

2
25

2
1421322110

42
2

21
2

4 xbxbb
xaxaxxaxaxaaw

x
xxfy

++⋅

+++++
=

∂

∂
= (11)

)(3.2
),(

121131221110

2
25

2
1421322110

5
21

21
2

5 xxbxbxbb
xaxaxxaxaxaaw

xx
xxfy

+++⋅

+++++
=

∂∂

∂
= (12)

IV. DIFFERENTIAL POLYNOMIAL NEURAL NETWORK
Multi-layered networks forms composite polynomial

functions (Figure 4.). Compound terms (CT), i.e. derivatives
in respect to variables of previous layers, are calculated
according to the composite function partial derivation rules
(13)(14). They are formed by products of partial derivatives
of external and internal functions [7].

F(x1, x2, … , xn) = f(y1, y2, … , ym) = f(φ1(X), φ2(X),..., φm(X)) (13)

∑
= ∂

∂
⋅

∂

∂
=

∂

∂ m

i k

i

i

m

k x
X

y
yyyf

x
F

1

21)(),...,,(φ k=1, … , n (14)

 2nd and following hidden layers blocks are additionally
extended with compound terms (neurons), which form
composite derivatives with respect to outputs and inputs of
back connected previous layer blocks. The 1st block of the
last (3rd) hidden layer (Figure 4.) forms CT e.g. (15)(16).
The square and combination derivative terms are calculated
analogously, according to the partial derivation rules (14).

()1110

21

22

2
225

2
214222132222110

2
11

2221
2

5.1
)(

6.1
)(),(

2
1

2
1

xbb
x

x
xaxaxxaxaxaaw

x
xxfy

+⋅
⋅

⋅
⋅

+++++
=

∂

∂
= (15)

()110

11

12

21

22

2
225

2
214222132222110

3
1

2221
3

5.1
)(

6.1
)(

6.1
)(),(

2
1

2
1

2
1

xbb
x

x
x

x
xaxaxxaxaxaa

w
x
xxf

y

+⋅
⋅

⋅
⋅

⋅
⋅

+++++
=

∂

∂
= (16)

Figure 4. 3-variable multi-layered backward D-PNN

 The best-fit neuron selection is the initial phase of the DE
composition, which may apply a proper genetic algorithm
(GA). Parameters of polynomials might be adjusted by
means of difference evolution algorithm (EA), supplied with
sufficient random mutations [13]. The parameter
optimization is performed simultaneously with the GA
neuron combination search, which may result in a quantity
of local or global error solutions. There would be welcome
to apply an adequate gradient descent method too, which
parameter updates result from partial derivatives of
polynomial DE terms in respect with the single parameters
[14]. The number of network hidden layers should coincide
with a total amount of input variables.

k

y
Y

k

i
i∑

== 1 k = amount of active neurons (17)

Only some of all potential combination DE terms (neurons)
may participate in the DE composition, in despite of they
have an adjustable term weight (wi). D-PNN’s total output Y
is the sum of all active neuron outputs, divided by their
amount k (17).

()
min

2

1 →
−

=
∑
=

M

yy
MSE

M

i
i

d
i

 (18)

M = number of data samples, yd = desired output

 x1 x2

Differential equation
solution Blo

ck	

 w0 + + + + …..

 5 neurons

(10)

 (11) (12)

(11) Block

x3

x2

x1

x31

Y

x22 x21

x13 x12 x11

Σ

CT

O = basic neurons (terms)
CT = compound terms
P = output polynomial

CT

CT

CT

CT

CT

 p p p

 p p p

The mean square error (MSE) method (18) was applied
for the polynomial parameter optimization and neuron
combination selection. D-PNN is trained only with a small
set of input-output data samples likewise the GMDH
algorithm does [6].

V. EXPERIMENTAL RESULTS
Reliability models of electronic circuits apply 2 input

variables of current and voltage, normalized into <0, 1>.
The D-PNN model is very simple, consisting only 1 block of
at most 5 neurons (Figure 3), i.e. derivative terms of the 2nd
order partial DE solution (9), forming the total sum output.
The failure probability [%] model applied all 5 neurons
(Figure 5), leakage current [Amps] only 2 neurons (Figure 6)
and junction temperature [oC] consists of 2 the same blocks
of 4 neurons totally (Figure 7). All models, entered by 2
input variables, estimate a next time output value of a 1-
shifted time step onward. The failure and leakage testing
errors might probably get any lower.

Figure 5. Failure probability MSETest = 0.000000838, MSETrain = 0.00001

Figure 6. Leakage current MSETest = 0.0000439, MSETrain = 0.00001

Figure 7. Junction temperature MSETest = 0.0000926, MSETrain = 0.000036

Figure 8. Power factor MSETest = 0.000124, MSETrain = 0.000158

A heavy engineering manufacturing plant was considered
for the prediction of power factor. Power demand
(utilization) model applied 3-time series of 2 input
parameters - the voltage and current again, i.e. 6 input vector
variables totally. It used a 3-layered D-PNN structure,
consisting of 2 interconnected networks of Figure 3., which
disables it to define all possible data relations. The network
was trained using 70% of the simulated data and the
remaining 30% data was used for testing and validation
(Figure 8.).

An increasing number of variables using PNN cause a
combinatorial explosion of higher layers, i.e. an impossibility
of a full faultless D-PNN data relation description (formation
a complete DE model). Some few block outputs might merge
(sum) to form 1 block of an auxiliary layer, to keep the
previous hidden layer total amount of blocks and thus
prevent from an undesirable outsize exponential combination
growth. This complex merge network structure is still not
resolved in a satisfactory manner [15].

VI. CONCLUSIONS
The reliability estimations of electronic circuits (i.e.

failure probability, temperature and leakage current) using
the new type of PNN called differential polynomial neural
network obtained very good results, despite of the applied 1-
block models of DE solutions are too simple. The problem
modeling using stressor – susceptibility interaction method
can be widely applied to a wide range of electronic circuits
or systems. The power factor model obtained satisfactory
results, however an impossibility of using more input vector
variables (more than 3), with a corresponding number of
network hidden layers, disallows it to get better results. 6
input variables would require 6 hidden layers of blocks, to
enable the D-PNN to form all eventual combination
derivative terms. Random values of input parameter voltage
(i.e. +/- 2.5% of the normal value) were considered to test the
learning ability of the neural network during worst
conditions in the grid voltage regardless of the plant load.
The performance could have been even better if the observed
rather than simulated values of voltage were used. The D-
PNN's adjustment was highly time-consuming, as the applied
methods are still not finished.

D-PNN forms and resolves an unknown general DE with
a composition and substitution of sum fractional derivative
terms, describing a system model of dependent variables. Its
non-linear regression is based on a generalization of data
relations. The characteristics of differential equation
solutions can facilitate a greater variety of model forms than
allowed by standard soft computing methods. Its models can
combine the PNN functionality with exact computational
techniques of differential equation solutions, so there would
be possible to define and form derivative terms in different
ways, using some alternative methods (e.g. Fourier’s series).

D-PNN’s operating and constructing principles differ by far
from other common neural network techniques.

ACKNOWLEDGMENT
The article has been elaborated in the framework of the

IT4Innovations Centre of Excellence project, reg. no.
CZ.1.05/1.1.00/02.0070 funded by Structural Funds of the
European Union and state budget of the Czech Republic and
in the framework of the project Opportunity for young
researchers, reg. no. CZ.1.07/2.3.00/30.0016, supported by
Operational Programme Education for Competitiveness and
co-financed by the European Social Fund and the state
budget of the Czech Republic.

REFERENCES
[1] J. Chaquet and E. Carmona, “Solving differential

equations with fourier series and evolution strategies”,
Applied Soft Computing 12 (2012) 3051–3062.

[2] H. Iba, “Inference of differential equation models by
genetic programming”, Information Sciences 178 (4)
(2008) 4453–4468.

[3] I. Tsoulos, D. Gavrilis and E. Glavas, “Solving
differential equations with constructed neural
networks”, Neurocomputing 72 (2009) 2385–2391.

[4] L.Zjavka, “Generalization of patterns by identification
with polynomial neural network”, Journal of Electrical
Engineering No. 2/2010, Vol.61, p.120-124.

[5] A. G. Ivakhnenko, „Polynomial theory of complex
systems“, IEEE Transactions on systems, Vol. SMC-1,
No.4.

[6] N.Y. Nikolaev and H. Iba, Adaptive Learning of
Polynomial Networks. Springer, New York 2006.

[7] L. Zjavka, “Recognition of Generalized Patterns by a
Differential Polynomial Neural Network”, Engineering,
Technology & Applied Science Research Vol. 2, No 1
(2012).

[8] A.C. Brombacher, Reliability by Design, Wiley, 1995.
[9] P.D. O’Connor, Practical Reliability Engineering, 3rd

edn., Wiley 1988.
[10] P. Lynch, “An active approach to harmonic filtering”,

IEE Review, Volume 45(3), May 1999
[11] T.J. Miller, “Reactive Power Control in Electric

Systems”, Wiley – Interscience, 1982.
[12] K. Chan and W. Y. Chau, “Mathematical theory of

reduction of physical parameters and similarity
analysis”, International Journal of Theoretical Physics
18 (1979) 835–844.

[13] S. Das, A. Abraham, A. Konar, Particle swarm
optimization and Differential evolution algorithms,
Studies in Computational Intelligence 116, 1-38,
Springer-Verlag Berlin 2008.

[14] N.Y. Nikolaev, H. Iba, “Polynomial harmonic GMDH
learning networks for time series modelling”, Neural
Networks 16, 2003, 1527–1540. Science Direct.

[15] L. Zjavka, “Combined differential polynomial neural
network”, Journal of Electrical and Control Engineering
Vol.2. No.3. (2012) 15–19.

