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Abstract—Reliability modeling of electronic circuits can be best 
performed by the stressor – susceptibility interaction model. A 
circuit or a system is deemed to be failed once the stressor has 
exceeded the susceptibility limits. Complex manufacturing 
systems often require a high level of reliability from the 
incoming electricity supply. Modern industrial time power 
quality monitoring systems can be used for the pre-fault load 
alarming. Neural networks can successfully model and predict 
the failure frame of critical electronic systems and power 
utilization in power plants described only a few input 
quantities.  Differential polynomial neural network is a new 
type of neural network, which constructs and substitutes an 
unknown general sum partial differential equation with a total 
sum of fractional polynomial terms. The system model 
describes partial relative derivative dependent changes of some 
input combinations of variables. This type of non-linear 
regression is based on trained generalized data relations 
decomposed by partial low order polynomials of 2-input 
variables. Experimental results indicate that the proposed 
method is efficient. 

Keywords-reliability modeling; power utilization; polynomial 
neural network; differential equation composition; multi-
parametric function approximation 

I.  INTRODUCTION 
Differential equation solutions can describe a variety of 

real data observation problems, which a unique single exact 
model is hardly to specify. They can apply sum series [1], 
genetic programming (GP) techniques [2] or an artificial 
neural network (ANN) construction [3]. Standard soft-
computing methods are generally direct computational 
techniques, operating only within absolute interval values of 
input variables, e.g. GP or fuzzy models can compose a 
searched function using collections of operators and 
terminals from a defined set to form some symbolic 
expressions. A common ANN operating principle is based on 
entire similarity relationships of new presented input patterns 
with the trained ones. If a modeled multi-parametric function 
involves some similar harmonic parts, then a benefit of ANN 
solution might become evident. ANN models are solid and 
simple but impossible to be expressed in the form of a math 
description, the models appear to the users as a “black box”. 

Differential polynomial neural network (D-PNN) is a 
new neural network type designed by Zjavka [4], which 

results from the GMDH (Group Method of Data Handling), 
created by a Ukrainian scientist Aleksey Ivakhnenko in 
1968, when the back-propagation technique was not known 
yet [5]. GMDH constructs in successive steps a polynomial 
neural network (PNN), adding one layer a time and 
calculating parameters. General connection between input 
and output variables are possible to express by the Volterra 
functional series, a discrete analogue of which is 
Kolmogorov-Gabor polynomial (1). This polynomial can 
approximate any stationary random sequence of 
observations and can be computed by either adaptive 
methods or system of Gaussian normal equations. GMDH 
decomposes the complexity of a process into many simpler 
relationships each described by low order polynomials (2) 
for every pair of the input values. Typical GMDH network 
maps a vector input x to a scalar output y, which is an 
estimate of the true function f(x) = yt. Each neuron of the 
PNN should fit its output to a desired value yt for each input 
vector x from the training set. It defines an optimal structure 
of a complex system model with identifying non-linear 
relations between input and output variables [6]. 
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m – number of variablesX(x1, x2, ... , xm )        
A(a1, a2, ... , am), ... -  vectors of parameters 

 
D-PNN combines the PNN functionality with some math 
techniques of differential equation (DE) solutions. Its 
models are a boundary of neural network and exact 
computational techniques. D-PNN forms and resolves an 
unknown general DE description of a searched function 
approximation. A DE is substituted producing sum of 
fractional polynomial derivative terms, forming a system 
model of dependent variables. In contrast with the ANN 
functionality, each neuron can direct be a part in the total 
network output calculation, which is generated by the sum 
of active neuron output values. A real complex function is 
decomposed into many partial data relation specifications, 
defining a composite structural model, which exact solution 
is vague or impossible to get using a predetermined DE [7]. 

 



y = a0 + a1xi + a2xj + a3xixj + a4xi
2 + a5xj

2    (2) 
 

II. FAILURE AND POWER DEMAND SYSTEM MODELING 

A. Failure modeling of electronic systems in power plants 
The stressor-susceptibility interaction is a technique of 

failure predictions, which can be extended to simple 
electronic components or more complicated electronic 
circuits. Stressor is a physical entity influencing the lifetime 
of a component or circuit. A stressor, indicating a physical 
entity x will be denoted as 

xψ . Susceptibility of a component 
to a certain failure mechanism is defined as the probability 
function indicating the probability that a component will not 
remain operational for a certain time under a given 
combination of stressors. The susceptibility related to the 
failure mechanism “y” is usually defined as Sy (t, ψp, ψq,ψr). 
Most components tend to have more than one failure 
mechanism, resulting in more than one “failure probability”. 
It can be shown that there is a strong correlation between the 
various failure mechanisms existing within a component. 
Figure 1 illustrates the stressor - susceptibility interaction for 
a single failure mechanism. It is clear that the main source of 
problem is the overlap between stressor and susceptibility 
density. 

 

 
Figure 1.  Stressor- Susceptibility interaction for single failure mechanism. 

The failure probability can be calculated for this stressor 
distribution on a failure mechanism with a single time 
independent variable (3). To calculate the failure probability 
as a function of more complex susceptibility model, it will be 
necessary to calculate the failure probability of a part of the 
susceptibility model, for a certain stressor interval Δ, 
characterized by its mean value ψo and the corresponding 
susceptibility density function at that point Sy(ψo). 
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As for large series of components, the physical structures 
of the individual components will be different for everyone, 
the survival probability of such a series of components will 
also show individual differences. The stress on a component 

may vary with time due to circuit behavior and circuit use. 
The circuit behavior will differ amongst a series of circuits 
due to physical differences in the individual circuit 
components, the physical structure of a circuit, the use of a 
circuit and the environment (electrical, thermal, etc.) of the 
circuit. To summarize the variety of effects it is useful to 
describe stressors as stochastic signals with properties 
depending on the influencing factors mentioned above. 

There are two different categories of failure mechanisms 
applicable to electronic components. First are the failure 
mechanisms that are related to the electrical stress in a 
circuit. Second, failure mechanisms related to the intrinsic 
aspects of a component. There are two possible ways to 
obtain stressor sets for practical circuits. The First possibility 
involves usage of computer simulation models to derive all 
circuit signals using one single simulation. Second 
possibility is to derive stressor sets from practical 
measurements. In those cases where sufficient systems are 
available it is possible to do a statistical evaluation of the 
individual stressor functions existing in individual systems. 
As the stressor sets are dependent on the conditions of use 
and the operation modes of a system it is important that the 
measured stressor is based on all the possible operation 
modes of a circuit and all the possible transitions between the 
various operation modes. Accurate description of a stressor 
set will require a number of samples sufficient to cover all 
the different states of the system. As a signal has often more 
than one quasi-stationary states, each characterized by their 
stressor set, it is possible to derive the overall stressor set 
function from the individual state stressor sets using [8].  
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fstr,y (x) is the stressor probability density function of quasi-
stationary state i. Ti / Ttotal  is the fraction of time that the 
stressor is in quasi-stationary state i (4). The derivation of 
stressor sets use Monte Carlo method, a logical model of the 
system being analyzed is repeatedly evaluated, each run 
using different values of the distributed parameters [9].  

B. Power demand modeling in power plants 
Modern complex manufacturing systems rely heavily on 

computer numerical controlled machines, variable speed 
drives and robotic devices which often require a high level 
of reliability from the incoming electricity supply. Due to 
the widespread usage of non-linear loads there has been a 
significant increase in the harmonic content of the 3-phase 
supply, raising serious power quality issues [10]. Predicting 
the power factor and active power demand is possible to 
automate the control of reactive power load and to better 
utilize the volt-amperes (VA) inflow. Efficient usage of the 
VA loading will not only improve the overall grid condition 
but also reduce the consumer’s industrial tariffs. Depending 
on the estimated power factor, power factor corrective 
measures could be turned on or off to control the VA inflow 
into the plant. The ratio of active power P [W] to the 
apparent power S [VA] is termed the power factor (5). 



 

(Z) impedance
(R) resistance

S
P)( cosfactor Power === ϕ    (5) 

 
The power factor is lagging when the current lags the 

supply voltage and leading when the current leads the 
supply voltage. This means that the supply voltage is 
regarded as the reference quantity, a majority of loads 
served by a power utility draw current at a lagging power 
factor. When the power factor of the load is unity, active 
power equals apparent power (P = S). But, when the power 
factor of the load is less than unity, say 0.6, the power 
utilized is only 60%. This means that 40% of the apparent 
power is being utilized to supply the reactive power demand 
of the system. It is therefore clear that the higher the power 
factor of the load, the greater the utilization of the apparent 
power [11]. For the generating and transmission stations, 
lower the power factor the larger must be the size of the 
source to generate that power, and greater must be the cross-
sectional area of the conductor to transmit it, i.e. the greater 
is the cost of generation and transmission of the power. 
Moreover, lower power factor will also increase the I2R (I 
denotes current) losses in lines/equipment as well as result 
in poor voltage regulation. 
 

III. GENERAL DIFFERENTIAL EQUATION COMPOSITION 
The basic idea of the D-PNN is to compose and substitute 

a general sum partial differential equation (6), which is not 
known in advance and can describe a system of dependent 
variables, with a sum of fractional relative multi-parametric 
polynomial derivative terms (7). 
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u = f(x1, x2,, … , xn) – searched function of all input variables 
a, B(b1, b2,, ..., bn), C(c11, c12, ,... ) – polynomial parameters 

 
Partial DE terms are formed according to the adapted 
integral analogues method, which is a part of similarity 
model analysis. It replaces mathematical operators and 
symbols of a DE by ratio of corresponding values. 
Derivatives are replaced by their integral analogues, i.e. 
derivative operators are removed and simultaneously with 
all operators are replaced by similarly or proportion signs in 
equations to form dimensionless groups of variables [12].  
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n – combination degree of  a complete polynomial of n-variables 
m – combination degree of denominator variables 

 

The fractional polynomials (7) define partial relations of 
n-input variables. The numerator of a DE term (7) is a 
polynomial of all n-input variables and partly defines an 
unknown function u of eq. (6). The denominator is a 
derivative part, which includes an incomplete polynomial of 
the competent combination variable(s). The root function of 
numerator takes the polynomial into competent combination 
degree to get the dimensionless values. In a case of time-
series data application an ordinary differential equation is 
formed with only time derivatives, the partial DE (6) might 
become form of (8). 
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f(t,x) – function of time t and independent variables x(x1, x2, ... , xm) 
 

Blocks of the D-PNN (Figure 2.) consist of derivative 
neurons with the same inputs, one for each fractional 
polynomial derivative combination, so each neuron is 
considered a summation DE term (7). Each block contains a 
single output polynomial (2), without derivative part. 
Neurons do not affect the block output but can participate 
direct in the total network output sum calculation of a DE 
composition. Each block has 1 and neuron 2 vectors of 
adjustable parameters a, resp. a, b. 

 
Figure 2.  D-PNN block of basic and compound neurons (DE terms). 

In the case of 2 input variables the 2nd odder partial DE can 
be expressed in the form (9), which involves all derivative 
terms with respect to variables applied by the GMDH 
polynomial (2). D-PNN’s blocks and neurons process these 
2-combination square polynomials, which form competent 
DE terms of a DE definition (6). Each block so include 5 
simple neurons of derivatives x1, x2, x1x2, x1

2, x2
2 of the 2nd 

order partial DE (9), which is most often used to specify 
models of physical or natural systems.  
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where F(x1, x2, u, p, q, r, s, t) is a function of 8 variables 
 

D-PNN’s basic form, using only 2-input variables comprises 
1 block of at most 5 simple derivative neurons of a DE 
solution (9) (Figure 2). Denominator coefficients balance a 
length variety of the derivative polynomials (10)(11)(12). 
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Figure 3.  1-block D-PNN with 2-inputs and 5 basic neurons (DE terms). 
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IV. DIFFERENTIAL POLYNOMIAL NEURAL NETWORK 
Multi-layered networks forms composite polynomial 

functions (Figure 4.). Compound terms (CT), i.e. derivatives 
in respect to variables of previous layers, are calculated 
according to the composite function partial derivation rules 
(13)(14). They are formed by products of partial derivatives 
of external and internal functions [7]. 

 
F(x1, x2, … , xn) = f(y1, y2, … , ym) = f(φ1(X), φ2(X),..., φm(X))   (13) 
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 2nd and following hidden layers blocks are additionally 
extended with compound terms (neurons), which form 
composite derivatives with respect to outputs and inputs of 
back connected previous layer blocks. The 1st block of the 
last (3rd) hidden layer (Figure 4.) forms CT e.g. (15)(16). 
The square and combination derivative terms are calculated 
analogously, according to the partial derivation rules (14). 
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Figure 4.  3-variable multi-layered backward D-PNN  

 The best-fit neuron selection is the initial phase of the DE 
composition, which may apply a proper genetic algorithm 
(GA). Parameters of polynomials might be adjusted by 
means of difference evolution algorithm (EA), supplied with 
sufficient random mutations [13]. The parameter 
optimization is performed simultaneously with the GA 
neuron combination search, which may result in a quantity 
of local or global error solutions. There would be welcome 
to apply an adequate gradient descent method too, which 
parameter updates result from partial derivatives of 
polynomial DE terms in respect with the single parameters 
[14]. The number of network hidden layers should coincide 
with a total amount of input variables. 
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Only some of all potential combination DE terms (neurons) 
may participate in the DE composition, in despite of they 
have an adjustable term weight (wi). D-PNN’s total output Y 
is the sum of all active neuron outputs, divided by their 
amount k (17).  
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M = number of data samples, yd = desired output 
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The mean square error (MSE) method (18) was applied 
for the polynomial parameter optimization and neuron 
combination selection. D-PNN is trained only with a small 
set of input-output data samples likewise the GMDH 
algorithm does [6]. 

V. EXPERIMENTAL RESULTS 
Reliability models of electronic circuits apply 2 input 

variables of current and voltage, normalized into <0, 1>. 
The D-PNN model is very simple, consisting only 1 block of 
at most 5 neurons (Figure 3), i.e. derivative terms of the 2nd 
order partial DE solution (9), forming the total sum output. 
The failure probability [%] model applied all 5 neurons 
(Figure 5), leakage current [Amps] only 2 neurons (Figure 6) 
and junction temperature [oC] consists of 2 the same blocks 
of 4 neurons totally (Figure 7). All models, entered by 2 
input variables, estimate a next time output value of a 1-
shifted time step onward. The failure and leakage testing 
errors might probably get any lower. 

 

 
Figure 5.  Failure probability MSETest = 0.000000838, MSETrain = 0.00001  

 

 
Figure 6.  Leakage current MSETest = 0.0000439, MSETrain = 0.00001  

 
Figure 7.  Junction temperature MSETest = 0.0000926, MSETrain = 0.000036 

 
Figure 8.  Power factor MSETest = 0.000124, MSETrain = 0.000158 



A heavy engineering manufacturing plant was considered 
for the prediction of power factor. Power demand 
(utilization) model applied 3-time series of 2 input 
parameters - the voltage and current again, i.e. 6 input vector 
variables totally. It used a 3-layered D-PNN structure, 
consisting of 2 interconnected networks of Figure 3., which 
disables it to define all possible data relations. The network 
was trained using 70% of the simulated data and the 
remaining 30% data was used for testing and validation 
(Figure 8.). 

An increasing number of variables using PNN cause a 
combinatorial explosion of higher layers, i.e. an impossibility 
of a full faultless D-PNN data relation description (formation 
a complete DE model). Some few block outputs might merge 
(sum) to form 1 block of an auxiliary layer, to keep the 
previous hidden layer total amount of blocks and thus 
prevent from an undesirable outsize exponential combination 
growth. This complex merge network structure is still not 
resolved in a satisfactory manner [15]. 

 

VI. CONCLUSIONS 
The reliability estimations of electronic circuits (i.e. 

failure probability, temperature and leakage current) using 
the new type of PNN called differential polynomial neural 
network obtained very good results, despite of the applied 1-
block models of DE solutions are too simple. The problem 
modeling using stressor – susceptibility interaction method 
can be widely applied to a wide range of electronic circuits 
or systems. The power factor model obtained satisfactory 
results, however an impossibility of using more input vector 
variables (more than 3), with a corresponding number of 
network hidden layers, disallows it to get better results. 6 
input variables would require 6 hidden layers of blocks, to 
enable the D-PNN to form all eventual combination 
derivative terms.  Random values of input parameter voltage 
(i.e. +/- 2.5% of the normal value) were considered to test the 
learning ability of the neural network during worst 
conditions in the grid voltage regardless of the plant load. 
The performance could have been even better if the observed 
rather than simulated values of voltage were used. The D-
PNN's adjustment was highly time-consuming, as the applied 
methods are still not finished.  

D-PNN forms and resolves an unknown general DE with 
a composition and substitution of sum fractional derivative 
terms, describing a system model of dependent variables. Its 
non-linear regression is based on a generalization of data 
relations. The characteristics of differential equation 
solutions can facilitate a greater variety of model forms than 
allowed by standard soft computing methods. Its models can 
combine the PNN functionality with exact computational 
techniques of differential equation solutions, so there would 
be possible to define and form derivative terms in different 
ways, using some alternative methods (e.g. Fourier’s series). 

D-PNN’s operating and constructing principles differ by far 
from other common neural network techniques.  
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