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Abstract

The process of monitoring the events occurring in a computer system or network and

analyzing them for sign of intrusions is known as intrusion detection system (IDS). This paper

presents two hybrid approaches for modeling IDS. Decision trees (DT) and support vector

machines (SVM) are combined as a hierarchical hybrid intelligent system model (DT–SVM)

and an ensemble approach combining the base classifiers. The hybrid intrusion detection

model combines the individual base classifiers and other hybrid machine learning paradigms

to maximize detection accuracy and minimize computational complexity. Empirical results

illustrate that the proposed hybrid systems provide more accurate intrusion detection systems.
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1. Introduction

Traditional protection techniques such as user authentication, data encryption,
avoiding programming errors and firewalls are used as the first line of defense for
computer security. If a password is weak and is compromised, user authentication
cannot prevent unauthorized use, firewalls are vulnerable to errors in configuration
and suspect to ambiguous or undefined security policies (Summers, 1997). They are
generally unable to protect against malicious mobile code, insider attacks and
unsecured modems. Programming errors cannot be avoided as the complexity of the
system and application software is evolving rapidly leaving behind some exploitable
weaknesses. Consequently, computer systems are likely to remain unsecured for the
foreseeable future. Therefore, intrusion detection is required as an additional wall for
protecting systems despite the prevention techniques. Intrusion detection is useful
not only in detecting successful intrusions, but also in monitoring attempts to break
security, which provides important information for timely countermeasures (Heady
et al., 1990; Sundaram, 1996). Intrusion detection is classified into two types: misuse
intrusion detection and anomaly intrusion detection.

Misuse intrusion detection uses well-defined patterns of the attack that exploit
weaknesses in system and application software to identify the intrusions (Kumar and
Spafford, 1995). These patterns are encoded in advance and used to match against
user behavior to detect intrusions. Anomaly intrusion detection identifies deviations
from the normal usage behavior patterns to identify the intrusion. The normal usage
patterns are constructed from the statistical measures of the system features, for
example, the CPU and I/O activities by a particular user or program. The behavior
of the user is observed and any deviation from the constructed normal behavior is
detected as intrusion.

Several machine-learning paradigms including neural networks (Mukkamala et al.,
2003), linear genetic programming (LGP) (Mukkamala et al., 2004a), support vector
machines (SVM), Bayesian networks, multivariate adaptive regression splines
(MARS) (Mukkamala et al., 2004b) fuzzy inference systems (FISs) (Shah et al.,
2004), etc. have been investigated for the design of IDS. In this paper, we investigate
and evaluate the performance of decision trees (DT), SVM, hybrid DT–SVM and an
ensemble approach. The motivation for using the hybrid approach is to improve the
accuracy of the intrusion detection system when compared to using individual
approaches. The hybrid approach combines the best results from the different
individual systems resulting in more accuracy. The rest of the paper is organized as
follows. The Literature review is presented in Section 2 followed by a short theoretical
background on the machine-learning paradigms used in this research. Experimental
results and analysis is presented in Section 4 and conclusions presented at the end.
2. Related research

With the proliferation of networked computers and the Internet, their security has
become a primary concern. In 1980, James Anderson proposed that audit trails
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should be used to monitor threats (Anderson, 1980). The importance of such data
had not been comprehended at that time and all the available system security
procedures were focused on denying access to sensitive data from an unauthorized
source. Dorothy (Denning, 1997) proposed the concept of intrusion detection as a
solution to the problem of providing a sense of security in computer systems. This
intrusion detection model is independent of system, type of intrusion and application
environment. The basic idea is that intrusion behavior involves abnormal usage of
the system. This model is known as rule-based pattern matching system. Some
models of normal usage of the system could be constructed and verified against
usage of the system and any significant deviation from the normal usage is flagged as
abnormal usage. This model served as abstract model for further developments in
the field and is known as the generic intrusion detection model and is depicted in
Fig. 1. Different techniques and approaches have been used in later developments.
The main techniques used are statistical approaches, predictive pattern generation,
expert systems, keystroke monitoring, model-based Intrusion detection, state
transition analysis, pattern matching, and data mining techniques.

Statistical approaches compare the recent behavior of a user of a computer system
with observed behavior and any significant deviation is considered as intrusion. This
approach requires construction of a model for normal user behavior. Any user
behavior that deviates significantly from this normal behavior is flagged as an
intrusion. Intrusion detection expert system (IDES) (Lunt, 1993) exploited the
statistical approach for the detection of intruders. It uses the intrusion detection
model proposed by Denning (1997) and audit trails data as suggested in Anderson
(1980). IDES maintains profiles, which is a description of a subject’s normal
Fig. 1. A generic intrusion detection model (Kumar, 1995).
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behavior with respect to a set of intrusion detection measures. Profiles are updated
periodically, thus allowing the system to learn new behavior as users alter their
behavior. These profiles are used to compare the user behavior and informing
significant deviation from them as the intrusion. IDES also uses the expert system
concept to detect misuse intrusions. The advantage of this approach is that it
adaptively learns the behavior of users, which is thus potentially more sensitive than
human experts. This system has several disadvantages. The system can be trained for
certain behavior gradually making the abnormal behavior as normal, which may
make the intruders undetected. Determining the threshold above which an intrusion
should be detected is a difficult task. Setting the threshold too low results in false
positives (normal behavior detected as an intrusion) and setting it too high results in
false negatives (an intrusion undetected). Attacks, which occur by sequential
dependencies, cannot be detected, as statistical analysis is insensitive to order of
events (Lunt et al., 1992).

Predictive pattern generation uses a rule base of user profiles defined as
statistically weighted event sequences (Teng and Chen, 1990). This method of
intrusion detection attempts to predict future events based on events that have
already occurred. This system develops sequential rules of the from

E1� E2� E3! ðE4 ¼ 94%;E5 ¼ 6%Þ,

where the various E’s are events derived from the security audit trail, and the
percentage on the right-hand side of the rule represent the probability of occurrence
of each of the consequent events given the occurrence of the antecedent sequence.
This would mean that for the sequence of observed events E1 followed by E2
followed by E3, the probability of event E4 occurring is 94% and that of E5 is 6%.
The rules are generated inductively with an information theoretic algorithm that
measures the applicability of rules in terms of coverage and predictive power. An
intrusion is detected if the observed sequence of events matches the left-hand side of
the rule but the following events significantly deviate from the right-hand side of the
rule. The main advantages of this approach include its ability to detect and respond
quickly to anomalous behavior, easier to detect users who try to train the system
during its learning period. The main problem with the system is its inability to detect
some intrusions if that particular sequence of events have not been recognized and
created into the rules.

The State transition analysis approach uses the state transitions of the system to
identify intrusions. This method constructs the state transition diagram, which is the
graphical representation of intrusion behavior as a series of state changes that lead
from an initial secure state to a target compromised state. State transition diagrams
list only the critical events that must occur for the successful completion of the
intrusion. Using the audit trail as input, an analysis tool can be developed to
compare the state changes produced by the user to state transition diagrams of
known penetrations. State transition diagrams are written to correspond to the states
of an actual computer system, and these diagrams form the basis of a rule-based
expert system for detecting penetrations, called the state transition analysis tool
(STAT) (Porras, 1992). The STAT prototype is implemented in unix state transition
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analysis tool (USTAT) (Ilgun, 1992) on UNIX-based systems. The main advantage
of the method is that it detects intrusions independent of the audit trial record. It is
also able to detect cooperative attacks, variations to known attacks and attacks
spanned across multiple user sessions. This system has to be used along with some
anomaly detector, because USTAT can detect only misuse intrusions. The
disadvantages of the system are that it can only construct patterns from sequences
of events but not from more complex forms and therefore some attacks cannot be
detected, as they cannot be modeled with state transitions.

The Keystroke monitoring technique utilizes a user’s keystrokes to determine the
intrusion attempt. The main approach is to pattern match the sequence of keystrokes
to some predefined sequences to detect the intrusion. The main problems with this
approach is a lack of support from the operating system to capture the keystroke
sequences. Furthermore, there are also many ways of expressing the sequence of
keystrokes for the same attack. Some shell programs like bash, ksh have the user
definable aliases utility. These aliases make it difficult to detect the intrusion
attempts using this technique unless some semantic analysis of the commands is
used. Automated attacks by malicious executables cannot be detected by this
technique as they only analyze keystrokes.

In an expert system, knowledge about a problem domain is represented by a set of
rules. These rules consist of two parts, antecedent, which defines when the rule
should be applied and consequent, which defines the action(s) that should be taken if
its antecedent is satisfied. A rule is fired when pattern-matching techniques determine
that observed data matches or satisfies the antecedent of a rule. The rules may
recognize single auditable events that represent significant danger to the system by
themselves, or they may recognize a sequence of events that represent an entire
penetration scenario. There are some disadvantages with the expert system method.
An intrusion scenario that does not trigger a rule will not be detected by the rule-
based approach. Maintaining and updating a complex rule-based system can be
difficult. Since the rules in the expert system have to be formulated by a security
professional, the system performance would depend on the quality of the rules.

The model-based approach attempts to model intrusions at a higher level of
abstraction than audit trail records. The objective is to build scenario models that
represent the characteristic behavior of intrusions. This allows administrators to
generate their representation of the penetration abstractly, which shifts the burden of
determining what audit records are part of a suspect sequence to the expert system.
This technique differs from current rule-based expert system techniques, which
simply attempt to pattern match audit records to expert rules. The model-based
approach of (Garvey and Lunt, 1991) consists of three parts, namely, anticipator,
planner and interpreter. The anticipator generates the next set of behaviors to be
verified in the audit trail based on the current active models and passes these sets to
the planner. The planner determines how the hypothesized behavior is reflected in
the audit data and translates it into a system-dependent audit trail match. The
interpreter then searches for this data in the audit trail. The system collects the
information in this manner until a threshold is reached, and then it signals an
intrusion attempt. Some of the drawbacks are that the intrusion patterns must
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always occur in the behavior it is looking for and patterns for intrusion must always
be distinguishable from normal behavior and also easily recognizable.

The pattern matching (Kumar, 1995) approach encodes known intrusion
signatures as patterns that are then matched against the audit data. Intrusion
signatures are classified using structural inter relationships among the elements of
the signatures. These structural interrelationships are defined over high level events
or activities, which are themselves, defined in terms of low-level audit trail events.
This categorization of intrusion signatures is independent of any underlying
computational framework of matching. The patterned signatures are matched
against the audit trails and any matched pattern can be detected as intrusion.
Intrusions can be understood and characterized in terms of the structure of events
needed to detect them. Model of pattern matching is implemented using colored
petrinets in IDIOT (Kumar and Spafford, 1994). This system has several advantages.
The system can be clearly separated into three parts, intrusion signatures as patterns,
the audit trails as an abstracted event stream and the detector as a pattern matcher.
This makes different solutions to be substituted for each component without
changing the overall structure of the system. Pattern specifications are declarative,
which means pattern representation of intrusion signatures can be specified by
defining what needs to be matched than how it is matched. Declarative specification
of patterns enables them to be exchanged across different operating systems with
different audit trails. Intrusion signatures can be moved across sites without
rewriting them as the representation of patterns is standardized. However, there are
few problems in this approach. Constructing patterns from attack scenarios is a
difficult problem and needs human expertise. Attack scenarios that are known and
constructed into patterns by the system can only be detected. Attacks involving
spoofing and passive methods of attack like wire-tapping cannot be detected.

The data mining approach to intrusion detection was first implemented in mining
audit data for automated models for intrusion detection (MADAMID) (Lee et al.,
1999). The data mining process of building intrusion detection models is depicted in
Fig. 2. Data mining process of building Intrusion detection models (Lee, 1999).
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Fig. 2 (Lee and Stolfo, 1998). Raw data is first converted into ASCII network packet
information, which in turn is converted into connection level information. These
connection level records contain within connection features like service, duration etc.
Data mining algorithms are applied to this data to create models to detect intrusions
(Grossman et al., 1998). Data mining algorithms used in this approach include rule-
based classification algorithm (RIPPER), meta-classifier, frequent episode algorithm
and association rules. These algorithms are applied to audit data to compute models
that accurately capture the actual behavior of intrusions as well as normal activities.
The main advantage of this system is automation of data analysis through data
mining, which enables it to learn rules inductively replacing manual encoding of
intrusion patterns. The problem is it deals mainly with misuse detection, hence some
novel attacks may not be detected. Audit data analysis and mining (ADAM)
(Barbara et al., 2001) also uses data mining methods. Combination of association
rules and classification algorithm were used to discover attacks in audit data.
Association rules are used to gather necessary knowledge about the nature of the
audit data as the information about patterns within individual records can improve
the classification efficiency. This system has two phases, training phase and detection
phase. In the training phase, a database of frequent item sets is created for the
attack-free items using only the attack-free data set. This serves as a profile against
which frequent item sets found later will be compared. Next a sliding-window, on-
line algorithm is used to find frequent item sets in the last D connections and
compares them with those stored in the attack-free database, discarding those that
are deemed normal. In this phase, the classifier is also trained to detect the attack. In
the detection phase, a dynamic algorithm is used to produce item sets that are
considered as suspicious and used by the classification algorithm already learned to
classify the item set as attack, false alarm (normal event) or as unknown. Unknown
attacks are the ones which are not able to be detected either as false alarms or as
known attacks. This method also uses the pseudo-Bayes estimator to classify the
attack to avoid the dependency on the data. This method attempts to detect only
anomaly attacks.

Artificial neural network (ANN) is another data mining approach taken in
Intrusion detection (Fox et al., 1990). An ANN consists of a collection of processing
elements that are highly interconnected and transform a set of inputs to a set of
desired outputs. Neural networks have been used both in anomaly intrusion
detection as well as in misuse intrusion detection. In Debar et al. (1992), the system
learns to predict the next command based on a sequence of previous commands
input by a user. Here a shifting window of w recent commands is used. The predicted
command of the user is compared with the actual command of the user and any
deviation is signaled as intrusion. The window size w places an important role,
because if w is too small, there will be many false positives and if it is too big some
attacks may not be detected. Neural network intrusion detector (NNID) (Ryan et
al., 1998) identifies intrusions based on the distribution of commands used by the
user. This system has three phases. In the first phase it collects training data from the
audit logs for each user for some period and constructs a vector from the collected
data to represent the command execution distribution for each user. In the second
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phase, the neural network is trained to identify the user based on these command
distribution vectors. In the final phase the network identifies the user for each new
command distribution vector. If the networks identify a user as being different from
the actual user, an anomaly intrusion is signalled. A neural network for misuse
detection is implemented in two ways (Cannady, 1998). The first approach
incorporates the neural network component into the existing or modified expert
system. This method uses the neural network to filter the incoming data for
suspicious events and forwards them to the expert system. This improves the
effectiveness of the detection system. The second approach uses the neural network
as a stand alone misuse detection system. In this method, the neural network receivse
data from the network stream and analyzes it for misuse intrusion. There are several
advantages to this approach. It has the ability to learn the characteristics of misuse
attacks and identify instances that are unlike any which have been observed before
by the network. It has a high degree of accuracy to recognize known suspicious
events. Neural networks work well on noisy data. The inherent speed of neural
networks is very important for real time intrusion detection. The main problem is in
the training of neural networks, which is important for obtaining efficient neural
networks. The training phase also requires a very large amount of data.

SVM are learning machines that plot the training vectors in high-dimensional
feature space, labeling each vector by its class. SVMs classify data by determining a
set of support vectors, which are members of the set of training inputs that outline a
hyper plane in the feature space. SVM have proven to be a good candidate for
intrusion detection because of their speed. SVM are scalable as they are relatively
insensitive to the number of data points. Therefore the classification complexity does
not depend on the dimensionality of the feature space; hence, they can potentially
learn a larger set of patterns and scale better than neural networks (Mukkamala
et al., 2003).

Neuro-fuzzy (NF) computing combines fuzzy inference with neural networks
(Abraham, 2001). Knowledge expressed in the form of linguistic rules can be used to
build an FIS, With data, ANNs can be built. For building an FIS, the user has to
specify the fuzzy sets, fuzzy operators and the knowledge base. Similarly for
constructing an ANN for an application the user needs to specify the architecture
and learning algorithm. An analysis reveals that the drawbacks pertaining to these
approaches are complementary and therefore it is natural to consider building an
integrated system combining these two concepts. While the learning capability is an
advantage from the viewpoint of FIS, the formation of linguistic rule base is an
advantage from the viewpoint of ANN. An Adaptive neuro-fuzzy IDS is proposed in
Shah et al. (2004).

MARS is an innovative approach that automates the building of accurate
predictive models for continuous and binary-dependent variables. It excels at finding
optimal variable transformations and interactions, and the complex data structure
that often hide in high-dimensional data. An IDS based on MARS technology is
proposed in Mukkamala et al. (2004b).

LGP is a variant of the conventional genetic programming (GP) technique that
acts on linear genomes. Its main characteristics in comparison to tree-based GP lies
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in the fact that computer programs are evolved at the machine code level, using
lower level representations for the individuals. This can tremendously hasten up the
evolution process as, no matter how an individual is initially represented. It always
has to be represented as a piece of machine code finally, as fitness evaluation requires
physical execution of the individuals. An LGP-based IDS is presented in
Mukkamala et al. (2004a).

Intrusion detection systems based on the human immunological system have been
proposed in Esponda et al. (2004), Hofmeyr and Forrest (1999). Forrest et al.
(Esponda et al., 2004) propose a formal framework for anomaly detection in
computer systems, inspired by the characteristics of the natural immune system.
Hofmeyr and Forrest (1999) applied the concepts derived from natural immune
system to design and test an artificial immune system to detect network intrusion.
They specifically mentioned 4 important characteristics of natural immune system
that they think define immunity. They are diversity, distributed nature, error
tolerance and dynamic nature. They designed the detector analogous to the T and
B-lymphocytes that are found in the human immunological system.
3. Hybrid approaches for intrusion detection

3.1. Support vector machines (SVM)

An SVM maps input (real-valued) feature vectors into a higher-dimensional feature
space through some nonlinear mapping. SVMs are developed on the principle of
structural risk minimization (Vapnik, 1995). Structural risk minimization seeks to find
a hypothesis h for which one can find lowest probability of error whereas the
traditional learning techniques for pattern recognition are based on the minimization
of the empirical risk, which attempt to optimize the performance of the learning set.
Computing the hyper plane to separate the data points i.e. training an SVM leads to a
quadratic optimization problem. SVM uses a linear separating hyper plane to create a
classifier but all the problems cannot be separated linearly in the original input space.
SVM uses a feature called kernel to solve this problem. The Kernel transforms linear
algorithms into nonlinear ones via a map into feature spaces. There are many kernel
functions; including polynomial, radial basis functions, two layer sigmoid neural nets
etc. The user may provide one of these functions at the time of training the classifier,
which selects support vectors along the surface of this function. SVMs classify data by
using these support vectors, which are members of the set of training inputs that
outline a hyper plane in feature space (Joachims, 1998).

3.2. Decision trees (DT)

DT induction is one of the classification algorithms in data mining. The
classification algorithm is inductively learned to construct a model from the pre-
classified data set (Brieman et al., 1984). Inductive learning means making general
assumptions from the specific examples in order to use those assumptions to classify
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unseen data. The inductively learned model of classification algorithm is known as
classifier. Classifier may be viewed as mapping from a set of attributes to a particular
class. Data items are defined by the values of their attributes and X is the vector of
their values {x1, x2,y,xn}, where the value is either numeric or nominal. Attribute
space is defined as the set containing all possible attribute vectors and is denoted by
Z. Thus X is an element of Z (XAZ). The set of all classes is denoted by C ¼ {c1,

c2,y,cn}. A classifier assigns a class cAC to every attribute of the vector XAZ. The
classifier can be considered as a mapping f, where f: X-C. This classifier is used to
classify the unseen data with a class label. A DT classifies the given data item using
the values of its attributes. The DT is initially constructed from a set of pre-classified
data. Each data item is defined by values of the attributes. The main issue is to select
the attributes which best divides the data items into their classes. According to the
values of these attributes the data items are partitioned. This process is recursively
applied to each partitioned subset of the data items. The process terminates when all
the data items in the current subset belongs to the same class. A DT consists of
nodes, leaves and edges. A node of a DT specifies an attribute by which the data is to
be partitioned. Each node has a number of edges, which are labeled according to a
possible value of edges and a possible value of the attribute in the parent node. An
edge connects either two nodes or a node and a leaf. Leaves are labeled with a
decision value for categorization of the data. Induction of the DT uses the training
data, which is described in terms of the attributes. The main problem here is deciding
the attribute, which will best partition the data into various classes. The ID3
algorithm uses the information theoretic approach to solve this problem.
Information theory uses the concept entropy, which measures the impurity of data
items. Entropy specifies the number of bits required to encode the classification of a
data item. The value of entropy is small when the class distribution is uneven, that is
when all the data items belong to one class. The entropy value is higher when the
class distribution is more even, that is when the data items have more classes.
Information gain is a measure on the utility of each attribute in classifying the data
items. It is measured using the entropy value. Information gain measures the
decrease of the weighted average impurity (entropy) of the attributes compared with
the impurity of the complete set of data items. Therefore, the attributes with the
largest information gain are considered as the most useful for classifying the data
items. To classify an unknown object, one starts at the root of the DT and follows
the branch indicated by the outcome of each test until a leaf node is reached. The
name of the class at the leaf node is the resulting classification. DT induction has
been implemented with several algorithms. Some of them are ID3 (Quinlan, 1986)
and later on it was developed into C4.5 (Quinlan, 1993) and C5.0. C4.5 is an
extension of the basic ID3 algorithm. C4.5 handles continuous attributes and is able
to choose an appropriate attribute selection measure. It also deals with missing
attribute values and improves computation efficiency. C4.5 builds the tree from a set
of data items using the best attribute to test in order to divide the data item into
subsets and then it uses the same procedure on each subset recursively. The best
attribute to divide the subset at each stage is selected using the information gain of
the attributes. For nominal valued attributes, a branch for each value of the attribute



ARTICLE IN PRESS

S. Peddabachigari et al. / Journal of Network and Computer Applications 30 (2007) 114–132124
is formed, whereas for numeric valued attributes, a threshold is found, thus forming
two branches.

3.3. Hybrid decision tree– SVM (DT– SVM) approach

A hybrid intelligent system uses the approach of integrating different learning or
decision-making models. Each learning model works in a different manner and
exploits different set of features. Integrating different learning models gives better
performance than the individual learning or decision-making models by reducing
their individual limitations and exploiting their different mechanisms. In a
hierarchical hybrid intelligent system each layer provides some new information to
the higher level (Abraham, 2002). The overall functioning of the system depends on
the correct functionality of all the layers. Fig. 3 shows the architecture of the hybrid
intelligent system with DT and SVM.

The data set is first passed through the DT and node information is generated.
Node information is determined according to the rules generated by the DT.
Terminal nodes are numbered left to right starting with 1 as shown in the Fig. 4. All
the data set records are assigned to one of the terminal nodes, which represent the
particular class or subset. The terminal nodes show either red or blue color
representing either normal or attack. This node information (as an additional
attribute) along with the original set of attributes is passed through the SVM to
obtain the final output. The key idea here is to investigate whether the node
information provided by the DT will improve the performance of the SVM.

3.4. Ensemble approach

Empirical observations show that different classifiers provide complementary
information about the patterns to be classified. Although for a particular problem
Fig. 3. Hybrid decision tree–SVM model.
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one classifier works better than the other, a set of misclassified patterns would not
necessarily overlap. This different information combined together yields better
performance than individual classifiers. The idea is not to rely on a single classifier
for decision on an intrusion; instead information from different individual classifiers
is combined to take the final decision, which is popularly known as the ensemble
approach. The effectiveness of the ensemble approach depends on the accuracy and
diversity of the base classifiers.

We used the highest scored class as the final output among the base classifier
outputs (DT, SVM and DT–SVM). According to the performance on the training
data each classifier is assigned different weights. Using these weights and the outputs
of the classifiers, scores were calculated. For example, for class 1 if the DT works
best, followed by the DT–SVM and SVM model, the DT is assigned the highest
weight, followed by the hybrid DT–SVM model and SVM is assigned the lowest
weight. For five different classes each classifier has different weights depending on
their performance on the training data. So for a particular data record if all of them
have different opinions, their scores are considered and the highest score is declared
as the actual output of the ensemble approach. The architecture of the ensemble
approach is depicted in Fig. 5.
4. Experiment setup and performance evaluation

The KDD Cup 1999 Intrusion detection contest data (KDD cup 99 Intrusion
detection data set) is used in our experiments. This data was prepared by the 1998
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DARPA Intrusion Detection Evaluation program by MIT Lincoln Labs (MIT
Lincoln Laboratory). Lincoln labs acquired nine weeks of raw TCP dump data. The
raw data was processed into connection records, which consist of about 5 million
connection records. The data set contains 24 attack types. These attacks fall into
four main categories:
1.
 Denial of service (DOS): In this type of attack an attacker makes some computing
or memory resources too busy or too full to handle legitimate requests, or denies
legitimate users access to a machine. Examples are Apache2, Back, Land,
Mailbomb, SYN Flood, Ping of death, Process table, Smurf, Teardrop.
2.
 Remote to user (R2L): In this type of attack an attacker who does not have an
account on a remote machine sends packets to that machine over a network and
exploits some vulnerability to gain local access as a user of that machine.
Examples are Dictionary, Ftp_write, Guest, Imap, Named, Phf, Sendmail, Xlock.
3.
 User to root (U2R): In this type of attacks an attacker starts out with access to a
normal user account on the system and is able to exploit system vulnerabilities to
gain root access to the system. Examples are Eject, Loadmodule, Ps, Xterm, Perl,
Fdformat.
4.
 Probing: In this type of attacks an attacker scans a network of computers to
gather information or find known vulnerabilities. An attacker with a map of
machines and services that are available on a network can use this information to
look for exploits. Examples are Ipsweep, Mscan, Saint, Satan, Nmap.

The data set has 41 attributes for each connection record plus one class label. R2L
and U2R attacks don’t have any sequential patterns like DOS and Probe because the
former attacks have the attacks embedded in the data packets whereas the later
attacks have many connections in a short amount of time. Therefore, some features
that look for suspicious behavior in the data packets like number of failed logins are
constructed and these are called content features. Our experiments have two phases,
namely, a training and a testing phase. In the training phase the system constructs a
model using the training data to give maximum generalization accuracy (accuracy on
unseen data). The test data is passed through the constructed model to detect the
intrusion in the testing phase. Besides the four different types of attacks mentioned
above we also have to detect the normal class. The data set for our experiments
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contained 11982 records (KDD cup 99 Intrusion detection data set), which were
randomly generated from the MIT data set. Random generation of data include the
number of data from each class proportional to its size, except that the smallest class
is completely included. This data set is again divided into training data with 5092
records and testing data with 6890 records. All the intrusion detection models are
trained and tested with the same set of data. As the data set has five different classes
we perform a 5-class classification. The normal data belongs to class1, probe belongs
to class2, denial of service (DoS) belongs to class3, user to root (U2R) belongs to
class4 and remote to local (R2L) belongs to class5. Experiments were performed
using an AMD Athlon, 1.67GHz processor with 992MB of RAM.
4.1. Decision tree

Although DT are capable of handling a 5-class classification problem, we used a
binary DT classifier in this work so that comparisons with the SVM classifier which
is a binary classifier, would make sense. We constructed five different classifiers. The
data is partitioned into the two classes of ‘‘Normal’’ and ‘‘Attack’’ patterns where
Attack is the collection of four classes (Probe, DOS, U2R, and R2L) of attacks. The
objective is to separate normal and attack patterns. We repeat this process for all the
five classes. First a classifier was constructed using the training data and then testing
data was tested with the constructed classifier to classify the data into normal or
attack. Table 1 summarizes the results of the test data. It shows the training and
testing times of the classifier in seconds for each of the five classes and their accuracy.
4.2. Support vector machines

The Kernel option defines the feature space in which the training set examples will
be classified. Our trial and error experiments and a previous study (Ali and
Abraham, 2002) showed that a polynomial kernel option often performs well on
most data sets. We therefore used the polynomial kernel for our experiments. From
our experiments, we observed that for different classes of data, different polynomial
degrees gave different performance and the empirical results using test data set are
presented in Table 2.
Table 1

Performance of decision trees

Attack type Training time (s) Testing time (s) Accuracy (%)

Normal 1.53 0.03 99.64

Probe 3.09 0.02 99.86

DOS 1.92 0.03 96.83

U2R 1.16 0.03 68.00

R2L 2.36 0.03 84.19



ARTICLE IN PRESS

Table 2

Classification accuracy for different polynomial kernel degrees

Attack type Polynomial degree

1 2 3

Normal 99.64 99.64 99.64

Probe 98.57 64.85 61.72

DOS 70.99 99.92 99.78

U2R 40.00 40.00 40.00

R2L 33.92 31.44 28.06

Table 3

Performance of the SVM

Attack type Training time (s) Testing time (s) Accuracy (%)

Normal 5.02 0.13 99.64

Probe 1.33 0.13 98.57

DOS 19.24 2.11 99.92

U2R 3.05 0.95 40.00

R2L 2.02 0.13 33.92
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As SVMs handle binary class classification problems, we employed five SVMs for
detecting the five types of attacks. The classifier learns from the training data and is
used on the test data to classify the data into normal or attack patterns. This process
is repeated for all classes. The results are summarized in Table 3.

Our experiments show that the DT gives better accuracy for Probe, R2L and U2R
classes compared to SVM and it gives the worst accuracy for detecting DoS class of
attacks. For Normal class both methods give the same performance. There is only a
small difference in the accuracy for Normal, Probe and DOS classes for DT and
SVM but there is a significant difference for U2R and R2L classes. Since these two
classes have small training data compared to other classes it seems that DT gives
good accuracy with small training data sets. The training time and testing times are
also less for the DT compared to the SVM.

4.3. Hybrid decision tree– SVM

A hybrid DT–SVM model has two steps for constructing the classifier. The data
sets were first passed through the DT and the node information was generated.
Training and test data along with the node information is given to the SVM. SVM
gives the final output of the hybrid DT–SVM.

The performance of the hybrid DT–SVM is illustrated in Table 4 and 5. Hybrid
DT–SVM works better than the individual DT and SVM for normal class. For
Probe, U2R and R2L classes it performed better than an individual SVM approach.
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Table 5

Performance of ensemble approach

Attack type Accuracy (%)

Decision trees SVM Hybrid decision tree–SVM Ensemble approach

Normal 99.64 99.64 99.70 99.70

Probe 99.86 98.57 98.57 100.00

DOS 96.83 99.92 99.92 99.92

U2R 68.00 40.00 48.00 68.00

R2L 84.19 33.92 37.80 97.16

Table 4

Performance comparisons of three classifiers

Attack type Decision tree

accuracy (%)

SVM accuracy (%) Hybrid decision tree—SVM

accuracy (%)

Normal 99.64 99.64 99.70

Probe 99.86 98.57 98.57

DOS 96.83 99.92 99.92

U2R 68.00 40.00 48.00

R2L 84.19 33.92 37.80
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From the above results we can conclude that although the node information
generated by the DT did enhance the performance of SVM, on the whole the hybrid
DT–SVM model did not give the expected performance.

4.4. Ensemble approach

In this approach, we first construct DT, SVM and hybrid DT–SVM classifiers
individually to obtain a good generalization performance (optimizing the model for
performance on unseen data rather than the training data). Test data is passed
through each individual model and the corresponding outputs are used to decide the
final output. The performance of the ensemble approach is presented in Table 5.
Empirical results depict that the proposed ensemble approach gives better
performance for detecting probes and U2R attacks than all the three individual
models.

The Ensemble approach classifies most of them correctly by picking up all the
classes, which are correctly classified by all the three classifiers. As expected
the ensemble approach exploits the differences in misclassification and improves the
overall performance. As evident from Table 5, all the classifiers considered so far
could not perform well for detecting all the attacks. To take advantage of the
performance of the different classifiers a hierarchical hybrid intelligent system is
proposed as depicted in Fig. 6. The hybrid IDS model makes uses of individual,
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Fig. 6. IDS based on a hierarchical intelligent system.
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hybrid and ensemble approaches to maximize the computational efficiency and
detection accuracy for each class. The proposed model (Fig. 6) would therefore give
the overall best performance accuracy for the individual attacks as depicted in
Table 5.
5. Conclusions

In this research, we have investigated some new techniques for intrusion detection
and evaluated their performance based on the benchmark KDD Cup 99 Intrusion
data. We have explored DT and SVM as intrusion detection models. Next we
designed a hybrid DT–SVM model and an ensemble approach with DT, SVM and
DT–SVM models as base classifiers. Empirical results reveal that DT gives better or
equal accuracy for Normal, Probe, U2R and R2L classes. The hybrid DT–SVM
approach improves or delivers equal performance for all the classes when compared
to a direct SVM approach.

The Ensemble approach gave the best performance for Probe and R2L classes.
The ensemble approach gave 100% accuracy for Probe class, and this suggests that if
proper base classifiers are chosen 100% accuracy might be possible for other classes
too. Finally, we propose a hierarchical intelligent IDS model to make optimum use
of the best performances delivered by the individual base classifiers and the ensemble
approach.
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