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Summary. Peer-to-peer (P2P) topology has a significant influence on the perfor-
mance, search efficiency and functionality, and scalability of the application. In this
chapter, we investigate a multi-swarm approach to the problem of Neighbor Selec-
tion (NS) in P2P networks. Particle swarm share some common characteristics with
P2P in the dynamic socially environment. Each particle encodes the upper half of
the peer-connection matrix through the undirected graph, which reduces the search
space dimension. The portion of the adjustment to the velocity influenced by the
individual’s cognition, the group cognition from multi-swarms, and the social cogni-
tion from the whole swarm, makes an important influence on the particles’ ergodic
and synergetic performance. We also attempt to theoretically prove that the multi-
swarm optimization algorithm converges with a probability of 1 towards the global
optima. The performance of our approach is evaluated and compared with other
two different algorithms. The results indicate that it usually required shorter time
to obtain better results than the other considered methods, specially for large scale
problems.

Key words: P2P Swarming Networks, Neighbor Selection, Particle Swarm,
Genetic Algorithm, Undirected graph.

1 Introduction

Peer-to-peer computing has recently attracted great interest and attention
of the computing industry and gained popularity among computer users and
their networked virtual communities [1, 2], since it allows the implementation
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of large distributed repositories of digital information. Many peer-to-peer sys-
tems also have emerged as platforms for users to search and share information
over the Internet [3]. In essence, a peer-to-peer system can be characterized as
a distributed network system in which all participant computers/nodes have
symmetric capabilities and responsibilities. In the system, numerous nodes of
equal roles are connected through an arbitrary network and exchange data or
services directly with each other. All participants in a peer-to-peer system act
as both clients and servers to one another, thereby surpassing the conventional
client/server model and bringing all participant computers together with the
purpose of sharing resources such as content, bandwidth, CPU cycles [4]. Peer-
to-peer networks are applied to many fields, which includes communication
and collaboration, distributed computing, Internet service support, database
system, and content/data distribution, even service platform for public welfare
(e.g. providing processing power to fight cancer) [5, 6, 7, 8, 9, 10]. More specif-
ically, P2P file sharing systems set up a network or pool of peers on Internet
and provide facilities for searching and transferring files between them. Since
these systems provide a economical platform for data-sharing that is highly
scalable and robust, a great number of commercial and academic projects
have been developed using this technology. However, it is reported in a recent
survey that Peer-to-Peer applications generate one-fifth of the total Internet
traffic, and it is believed that it will continue to grow [11, 12].

In pure P2P systems, individual computers communicate directly with
each other and share information and resources without using dedicated
servers. A node cannot realistically keep the addresses of all other peers, so an
overlay network need be constructed where each node keeps addresses of a few
other peers (called its neighbors) at the application level. These connections
may be directed, may have different weights and are comparable to a graph
with nodes and vertices connecting these nodes. Defining how these nodes
are connected affects many properties of an architecture that is based on a
P2P topology, which has a significant impact on application properties such
as the performance, search efficiency, reliability and scalability of a system.
The virtual topology also determines the communication costs and efficiency
associated with running the P2P application, both at individual hosts and
in the aggregate. A common difficulty in the current P2P systems is caused
by the dynamic membership of peer hosts. The neighbor selection mechanism
and topology control become very important topics in P2P networks [13].

On the other hand, the performance and availability of these systems relies
on the voluntary participation of their users, and so they may be highly vari-
able and unpredictable, which results in a large proportion of the participants
(20 to 40% of Napster and almost 70% of Gnutella peers) share few or no files
[14]. This phenomenon is known as free-loading: peers that consume more
resources than they contribute. One of the reasons for this problem is that
those users, called free-riders, benefit largely from contributions of other users
but reduce the system performance for contributing users. And self-interested
behavior of the peers had no taken into account at the design stage. In fact,
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the P2P system’s users act rationally trying to maximize the benefits obtained
from using the system’s shared resources. Therefore, it will be necessary to
find mechanisms that provide incentives and encourage cooperative behavior
between the peers.

Particle Swarm Optimization (PSO) algorithm is inspired by social behav-
ior patterns of organisms that live and interact within large groups. In partic-
ular, PSO incorporates swarming behaviors observed in flocks of birds, schools
of fish, or swarms of bees, and even human social behavior, from which the
Swarm Intelligence (SI) paradigm has emerged [15]. It could be implemented
and applied to solve various function optimization problems, or the problems
that can be transformed to function optimization problems. As an algorithm,
the main strength of PSO is its fast convergence, which compares favorably
with many global optimization algorithms [16]. In this chapter, we explore
the neighbor-selection problem based PSO for P2P Networks. We introduce
the crossover neighborhood organization mechanism from the social networks
to improve the swarm algorithm, which results in more mutual trust, mutual
benefit, equality and cooperation among the participants.

This chapter is organized as follows. We introduce the problem and for-
mulate the objective in Section 3. Our approach based on particle swarm
algorithm is presented in Section 4. In this section, the issues about the al-
gorithm design, dynamic chaotic characteristics, and convergence theoretical
analysis are also discussed. In Section 5, experiment results and discussions
are provided in detail, followed by some conclusions in Section 6.

2 Related Research Work

P2P comprises peers and the connections between these peers. A common
difficulty in the current P2P systems is caused by the dynamic membership of
peer hosts. This results in a constant reorganization of the overlay topology
[17, 18, 19, 20]. As the size of distributed systems keeps growing, no entity
has a global knowledge of the system. As much as this property is essential to
ensure the scalability, monitoring the system under such circumstances is a
complex task [21]. Meo and Milan [22] investigated the design of content man-
agement at the nodes. They proposed criteria for the QoS design of content
management policies. And they evaluated its performance by an analytical
model based on a Markovian approach. In the application system, finding the
desired resource and constructing the efficient topology are the critical issues
in peer-to-peer networks. Risson and Moors [23] surveyed the search methods
about finding the resource in the recent research towards robust peer-to-peer
networks. In this chapter, we pay more attentions on peer selection, since it
offers a unique opportunity for P2P networks to tackle both the free-riding
and the quality-of-service (QoS) challenges [24].

Lo et al. [25] defined the supernode selection problem which has emerged
across a variety of peer-to-peer applications. Supernode selection involves se-
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lection of a subset of the peers to serve a special role. The supernodes must
be well-dispersed throughout the peer-to- peer overlay network, and must ful-
fill additional requirements such as load balance, resource needs, adaptability
to churn, and heterogeneity. The supernode selection problem must meet the
additional challenge of operating within a huge, unknown and dynamically
changing network. They describe three generic supernode selection protocols.
They developed for peer-to-peer environments: a label-based scheme for struc-
tured overlay networks, a distributed protocol for coordinate-based overlay
networks, and a negotiation protocol for unstructured overlays. Kothapalli
and Scheideler presented a general methodology for designing supervised peer-
to-peer systems [26]. It can be seen as being between server-based systems and
pure peer-to-peer systems. The supervisor has to store a constant amount of
information about the system at any time and needs to send a small con-
stant number of messages to integrate or remove a peer in a constant amount
of time. Koulouris, et al. [27] presented a framework and an implementation
technique for a flexible management of peer-to-peer overlays. The framework
provides means for self-organization to yield an enhanced flexibility in in-
stantiating control architectures in dynamic environments, which is regarded
as being essential for P2P services to access, routing, topology forming, and
application layer resource management. In these P2P applications, a central
tracker decides about which peer becomes a neighbor to which other peers.

A peer randomly choosing logical neighbors without any knowledge about
the underlying physical topology causes topology mismatch between the P2P
logical overlay network and physical underlying network. In unstructured peer-
to-peer (P2P) systems, there exists a serious topology mismatch problem be-
tween physical and logical network. Liu, et al. [28] analyzed the relationship
between the property of the overlay and the corresponding message duplica-
tions incurred by queries in a given overlay, and prove that computing an op-
timal overlay with global knowledge is an NP-hard problem. Leung and Kwok
[29] proposed a greedy server-peer selection algorithm to decide from which
peer should a client download files so that the level of fairness of the whole net-
work is increased and expected service life of the whole file sharing network is
extended. Mastronarde, et al. [30] proposed a distributed and efficient frame-
work for resource exchanges that enables peers to collaboratively distribute
available wireless resources among themselves based on their quality of service
requirements, the underlying channel conditions, and network topology. The
resource exchanges are enabled by the scalable coding of the video content and
the design of cross-layer optimization strategies, which allow efficient adapta-
tion to varying channel conditions and available resources. They compare the
designed low complexity distributed resource exchange algorithms against an
optimal centralized resource management scheme and show how their perfor-
mance varies with the level of collaboration among the peers. They measure
system utility in terms of the multimedia quality and show that collaborative
approaches achieve 50% improvement over non-collaborative approaches. Ad-
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ditionally, their distributed algorithms perform within 10% system utility of
a centralized optimal resource management scheme.

Fenner, et al. [31] presented a stochastic model for a social network, where
new actors may join the network, existing actors may become inactive and, at
a later stage, reactivate themselves. The model captures the evolution of the
network, assuming that actors attain new relations or become active accord-
ing to the preferential attachment rule. They derived the mean-field equations
for this stochastic model and shown that, asymptotically, the distribution of
actors obeys a power-law distribution. The result illustrated that the distri-
bution of user accesses was asymptotically a power-law distribution. Sacha,
et al. [32] proposed and evaluated a search algorithm. The results indicated
that it achieved significantly better performance than random walking. The
approach can be used by certain classes of applications to improve the avail-
ability and performance of system services by placing them on the most stable
peers, as well as to reduce the amount of network traffic required to discover
and use these services. They demonstrated the design of a naming service on
the gradient topology.

Bisnik, et al.[33] developed a model for random walk-based search mecha-
nisms in unstructured P2P networks. The model is used to obtain analytical
expressions for the performance metrics of random walk search in terms of
the popularity of the resource being searched for and the random walk pa-
rameters. Simulation results illustrated that the performance of the equation-
based adaptive search was significantly better than the non-adaptive random
walk and other straightforward adaptive mechanisms. Kersch, et al.[34] de-
fined a loose and stochastic long-range connection maintenance mechanism,
which can significantly reduce maintenance overhead in large networks with
high churn rates without affecting routing performance. They used Kleinberg’s
small worlds model to describe and (re)construct long-range connections. The
maintenance method scale logarithmically with the system’s size, which is the
theoretical lower bound for maintenance traffic to ensure connectivity of the
network.

Researchers have also considered clustering close peers based on their IP
addresses (e.g., [35, 36]) or probed distances [37]. Xu [38] presented a decen-
tralized and fault tolerant protocol called Alpha-Beta Cluster-based protocol,
for ABC. In ABC, a cluster of nodes work together to offer efficient greedy
routing and the size of each cluster can vary between an upper bound (Alpha)
and a lower bound (Beta). The flexible cluster scheme helps to maintain the
stability of the system. Ramaswamy, et al. [39] described a Connectivity-based
Distributed Node Clustering scheme (CDC). The scheme presented a scalable
and efficient solution for discovering connectivity-based clusters in peer net-
works. To cope with the typical dynamics of P2P networks, they provided
mechanisms to allow new nodes to be incorporated into appropriate exist-
ing clusters and to gracefully handle the departure of nodes in the clusters.
These mechanisms enable the CDC scheme to be extensible and adaptable in
the sense that the clustering structure of the network adjusts automatically
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as nodes join or leave the system. Their experiments shown that utilizing
message-based connectivity structure can considerably reduce the messaging
cost and provide better utilization of resources, which in turn improved the
quality of service of the applications executing over decentralized peer-to-
peer networks. Huang, et al. [3] proposed a cluster-based peer-to-peer system,
called PeerCluster, for sharing data over the Internet. In PeerCluster, all par-
ticipant computers are grouped into various interest clusters, each of which
contains computers that have the same interests. The intuition behind the
system design was that by logically grouping users interested in similar topics
together, it can improve query efficiency. To efficiently route and broadcast
messages across/within interest clusters, a hypercube topology was employed.
In addition, to ensure that the structure of the interest clusters is not altered
by arbitrary node insertions/deletions, they have devised corresponding JOIN
and LEAVE protocols. The experimental results shown that PeerCluster out-
performed previous approaches in terms of query efficiency, while still provid-
ing the desired functionality of keyword-based search. Tewari and Kleinrock
[40] provided mechanisms for modeling clustering in file popularity distribu-
tions and the consequent non-uniform distribution of file replicas. They de-
rived relations shown the effect of the number of replicas of a file on the search
time and on the search cost for a search for that file for the clustered demands
case in such networks for both random walk and flooding search mechanisms.
The derived relations were used to obtain the optimal search performance for
the case of flooding search mechanisms. The potential performance benefited
that clustering in demand patterns affords was captured by our results. In-
terestingly, the performance gains ware shown to be independent of whether
the search network topology reflects the clustering in file popularity (the opti-
mal file replica distribution to obtain these performance gains, however, does
depend on the search network topology).

Empirical studies have shown free-riding (consuming resources without
contributing) to be prevalent in P2P file-sharing networks. Contributors to
the system are rewarded with flexibility and choice in peer selection, result-
ing in high quality streaming sessions. Free-riders are given limited options in
peer selection, if any, and hence receive low quality service. Idris and Altmann
[5] proposed an incentive scheme for P2P networks that motivates users to
collaborate within the system. The solution has an impact on the topology
formation of a P2P network. Using the market-managed topology formation
algorithm (IUTopForm) for P2P networks, contributing users would be clus-
tered within clubs that are different to clubs of free-riders. The differentiation
was possible because of a reputation system, which considers users’ past con-
tributions. The effect of this approach was that service requests of free-riders
will take longer to be answered (if at all) than service requests of resource-
contributing users. The results shown that their approach improved the overall
utility of the system. Habib and Chuang [24] proposed an incentive mecha-
nism that provides service differentiation in peer selection for P2P streaming
based on relative contribution of the peers. The incentive mechanism follows
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the characteristics of rank-order tournaments theory that considers only the
relative performance of the players, and the top prizes are awarded to the win-
ners of the tournament. The simulation and wide-area measurement results
illustrate that the approach can provide near optimal streaming quality to the
cooperative users until the bottleneck shifts from the streaming sources to the
network. To solve the neighbor discovery problem and network organization
problem in practical wireless P2P networks, Leung and Kwok [29] proposed a
topology control protocol, which consists of two components, namely, Adja-
cency Set Construction (ASC) and Community-Based Asynchronous Wakeup
(CAW). The protocol is able to enhance the fairness and provide an incen-
tive mechanism in wireless P2P file sharing applications. It is also capable of
increasing the energy efficiency.

Kurmanowytsch, et al. [41] developed the P2P middleware systems to pro-
vide an abstraction between the P2P topology and the applications that are
built on top of it . These middleware systems offer higher-level services such as
distributed P2P searches and support for direct communication among peers.
The systems often provide a pre-defined topology that is suitable for a certain
task (e.g., for exchanging files). Gupta et al. [42] discussed the system architec-
ture, functionality, and applications of the CompuP2P architecture. They had
implemented a Java-based prototype, and the results shown that the system
was light-weight and can provide almost a perfect speedup for applications
that contain several independent compute-intensive tasks. Zeinalipour-Yazti,
et al. [43] presented the Peer Fusion (pFusion) architecture that aims to effi-
ciently integrate heterogeneous information that was geographically scattered
on peers of different networks. The approach built on work in unstructured
P2P systems and uses only local knowledge. Our empirical results, using the
pFusion middleware architecture and data sets from Akamai’s Internet map-
ping infrastructure (AKAMAI), the Active Measurement Project (NLANR),
and the Text REtrieval Conference (TREC) show that the architecture we
propose is both efficient and practical.

Ghanea-Hercock, et al. [44] presented an algorithm based on P2P agent
application in which each agent has a goal to maintain a preferred num-
ber of connections to a number of service providing agents. The agents up-
dated a weight value associated with each connection, based on the perceived
utility of the connection to the corresponding agent. This utility function
can be a combination of several node or edge parameters, or frequency of
the message response from the node. The weight is updated using a set of
Hebbian-style learning rules, such that the network as a whole exhibits adap-
tive self-organizing behavior. The result was the finding that by limiting the
connection neighborhood within the overlay topology, the resulting P2P net-
work can be made highly resilient to targeted attacks on high-degree nodes,
while maintaining search efficiency.

To get some insights into the performance of different peer organization
strategies, Biersack, et al. [45] analytically three different distribution mod-
els: linear chain architecture, tree architecture, and forest architecture. The
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results indicated that the service capacity of these systems grew exponentially
with the number of chunks a file consists of. Therefore, several heuristics and
meta-heuristics have been proposed to solve the problems within the feasi-
ble runtime. Koo et al. [19] investigated the neighbor-selection process in the
P2P networks, and proposed an efficient neighbor-selection strategy based on
Genetic Algorithm (GA).

Networks seem to be the natural way chosen by nature to organize individ-
uals, resources and interactions in an effective and robust structure. Studies
about natural networks focused on the central role of emerging structures
in distributed environments, and pointed out some properties such as small-
world effect and communities which are of the most importance to guarantee
a fast and efficient communication among nodes. Carchiolo et al. [46] pro-
posed a model for P2P networks which mimics behaviours of peers in social
and biological networks and naturally evolves to a robust graph of peers with
some interesting properties, including small-world effect and community de-
composition. Zhuge and Li [47] proposed three improved gossip mechanisms
by mapping links into metric space and dynamically adapting the number
of selected neighbors to disseminate messages. Experiments and comparisons
shown that these mechanisms can improve the performance of gossip in peer-
to-peer networks. It was the effect of mapping a network into a metric space
that differentiates nodes and links according to linking characteristics and
controlling local information flow with knowing such differences. An intrinsic
rule is found by experimental comparisons and analysis: The performance of a
P2P network can be improved by designing an appropriate mapping from the
network into metric space or semantic space. These research works indicated
the neighbor selection in P2P would be improved further by matching social
characteristics of P2P system.

3 Neighbor-Selection Problem

In a P2P system, all participating peers form a P2P network on top of an
underlying physical network. A P2P network is an abstract, logical network
called an overlay network. Based on existing research [11, 28, 4, 44, 48], we
formulate the neighbor-selection problem for P2P overlay networks in this
Section. As given by Liu, et al. [28], a P2P network can be modeled based on
the following assumptions:

• An overlay connection between a pair of peering nodes consists of a number
of physical links which form a shortest path between the pair of end nodes
in the physical topology, and Internet paths are relatively stable.

• The same size packets traversing the same physical link in a short period
of time will have similar delay, as assumed by many other measurement
applications.



Neighbor Selection in P2P Overlay Networks 9

3.1 Modeling P2P Networks

The P2P overlay networks can be modeled by an undirected graph G = (V, E)
where the vertex set V represents units such as hosts and routers, and the edge
set E represents physical links connecting pairs of communicating unit. And
f : V → {1, · · · , n} be a labeling of its nodes, where n = |V |. For instance,
G could model the whole or part of the Internet. Given an undirected graph
G = (V, E) modeling an interconnection network, and a subset X ⊆ V (G)
of communicating units (peers), we can construct a corresponding weighted
graph D = (V, E), where V (D) = X, and the weight of each uv ∈ E(D)
is equal to the length of a shortest path between peer u and peer v in G.
D includes the connected edges, and is referred to as the distance graph of
G. Usually we start with a physical network G (perhaps representing the
Internet), and then choose a set of communicating peers X. The resulting
distance graph D is the basis for constructing a P2P overlay graph H = (V, E),
which is done as follows. The vertex set V (H) will be the same as V (D),
and edge set E(H) ⊆ D(G). The key issue here is how to select E(H). If
E = [eij ]n×n is such that eij = 1 if (i, j) ∈ E, and 0 otherwise, i.e., E is
the incidence matrix of G, then the neighbor-selection problem is to find a
permutation of rows and columns which brings all non-zero elements of E into
the optimal possible interconnection around the diagonal.

3.2 Metrics

In P2P file sharing, an interested file is divided into many fragments. The size
of each fragment ranges from several hundred kilobytes to several megabytes.
When a new peer joins the network, it begins to download fragments from
other peers. As long as it obtains one fragment of the file, the new peer can
start to serve other peers by uploading fragments. Since peers are downloading
and uploading at the same time, when the network becomes large, although
the demands increase, the service provided by the network also increases [49].
Given N peers, a graph G = (V,E) can be used to denote an overlay network,
where the set of vertices V = {v1, · · · , vN} represents the N peers and the
set of edges E = {eij ∈ {0, 1}, i, j = 1, · · · , N} represents their connectivities
: eij = 1 if peers i and j are connected, and eij = 0 otherwise. For an
undirected graph, it is required that eij = eji for all i 6= j, and eij = 0 when
i = j. Let C be the entire collection of content fragments, and {ci ⊆ C, i =
1, · · · , N} denotes the collection of the content fragments each peer i has. The
disjointness of contents from peer i to peer j is denoted by ci \ cj , which can
be calculated as:

ci \ cj = ci − (ci ∩ cj). (1)

where \ denotes the intersection operation on sets. This disjointness can be
interpreted as the collection of content fragments that peer i has but peer j
does not. In other words, it denotes the fragments that peer i can upload to
peer j. Moreover, the disjointness operation is not commutative, i.e., ci \ cj 6=
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cj \ ci. Let |ci \ cj | denote the cardinality of ci \ cj , which is the number of
content fragments peer i can contribute to peer j. In order to maximize the
disjointness of content, we maximize the number of content fragments each
peer can contribute to its neighbors by determining the connections eij ’s.
Define εij ’s to be sets such that εij = C if eij = 1, and εij = ∅ (null set)
otherwise.

In an overlay network, every node is a potential neighbor of each other
node since the network’s topology is a logical one. So the full connection is
an ideal solution for the peer’s connectivity. For the networks, we have to
consider some constraints [20, 48]:

• based on the underlying network characteristics, i.e., delay or capacity of
actual links;

• based on location of data and services;
• based on the nodes’s capabilities of managing peers, e.g., the number of

direct neighbors a node can maintain. some peers are tied down since they
possess relative more content fragments. This resource constraint can be
independent of the underlying network.

In the environment, the maximum number of each peer need to be consid-
ered, i.e., each peer i will be connected to a maximum of di neighbors, where
di < N . Therefore we have the following optimization problem:

max
E

N∑

j=1

∣∣∣
N⋃

i=1

(ci \ cj) ∩ εij

∣∣∣ (2)

Subject to

N∑

j=1

eij ≤ di for all i

N∑

i=1

eij ≤ dj for all j

(3)

4 Particle Swarm Heuristic for Neighbor-Selection

For applying the particle swarm algorithm successfully for any problem, one
of the key issues is how to map the problem solution to the particle space,
which affects its feasibility and performance [50]. The constraint conditions
have to be satisfied, and the particle would search the solutions in as efficient
a search space as possible. In this section, a new approach to the problem
space mapping is depicted for particle swarm optimization with reference to
the neighbor-selection problem. For solving the problem, the upper half of the
peer-connection matrix through the undirected graph is encoded to the par-
ticle’s position, which reduces the search space dimension significantly. Since
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particle swarm shares some common characteristics with P2P in the dynamic
socially environment, a multi-swarm interactive pattern is introduce to match
the corresponding mechanism. We analyze the dynamic characteristic of the
single particle in the swarm, and then illustrate theoretically the convergence
of our algorithm.

4.1 Algorithm Design

Given a P2P state S = (N, C,M, f), in which N is the number of peers, C
is the entire collection of content fragments, M is the maximum number of
the peers which each peer can connect steadily in the session, f is to goal the
number of swap fragments, i.e. to maximize Eq.(2). It is to be noted that the
routing and connection between peers must satisfy the constraint in Eq.(3)
because of bandwidth, etc. To apply the particle swarm algorithm success-
fully for the NS problem, one of the key issues is the mapping of the problem
solution into the particle space, which directly affects its feasibility and per-
formance. Usually, the particle’s position is encoded to map each dimension
to one directed connection between peers, i.e. the dimension is N ∗N . But the
neighbor topology in P2P networks is an undirected graph, i.e. eij = eji for
all i 6= j, and eij ≡ 0 for all i = j. To reduce the space complexity, we set up
a search space of D dimension as N ∗ (N − 1)/2. Accordingly, each particle’s
position is represented as a binary bit string of length D. Each dimension of
the particle’s position maps one undirected connection. The domain for each
dimension is limited to 0 or 1.

The particle swarm model consists of a swarm of particles, which are ini-
tialized with a population of random candidate solutions. They move itera-
tively through the D-dimension problem space to search the new solutions,
where the fitness f can be measured by calculating the number of swap frag-
ments in the potential solution. Each particle has a position represented by a
position-vector pi (i is the index of the particle), and a velocity represented
by a velocity-vector vi. Each particle remembers its own best position so far
in a vector p#

i , and its j-th dimensional value is p#
ij . The best position-vector

among the swarm so far is then stored in a vector p∗, and its j-th dimensional
value is p∗j . When the particle moves in a state space restricted to zero and
one on each dimension, the change of probability with time steps is defined
as follows:

P (pij(t) = 1) = f(pij(t− 1), vij(t− 1),

p#
ij(t− 1), p∗j (t− 1)).

(4)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (5)
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At each time step, each particle updates its velocity and moves to a new
position according to Eqs.(6) and (7):

vij(t) = wvij(t− 1) + c1r1(p
#
ij(t− 1)− pij(t− 1))

+ c2r2(p∗j (t− 1)− pij(t− 1))
(6)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(7)
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Fig. 1. Sigmoid function for PSO

Where c1 is a positive constant, called as coefficient of the self-recognition
component, c2 is a positive constant, called as coefficient of the social compo-
nent. r1 and r2 are the random numbers in the interval [0,1]. The variable w is
called as the inertia factor, which value is typically setup to vary linearly from
1 to near 0 during the iterated processing. ρ is random number in the closed
interval [0,1]. From Eq.(6), a particle decides where to move next, considering
its current state, its own experience, which is the memory of its best past
position, and the experience of its most successful particle in the swarm. The
particle has a priority levels according to the order of peers. The sequence of
the peers will be not changed during the iteration. Each particle’s position
indicates the potential connection state.

The particle swarm algorithm can be described generally as a population
of vectors whose trajectories oscillate around a region which is defined by each
individual’s previous best success and the success of some other particle. Some
previous studies have discussed the trajectory of particles and its convergence
[51, 52, 53, 54]. It has been shown that the trajectories of the particles oscillate
as different sinusoidal waves and converge quickly, sometimes prematurely.
Various methods have been used to identify some other particle to influence
the individual. Eberhart and Kennedy called the two basic methods as “gbest
model” and “lbest model” [55]. In the gbest model, the trajectory for each
particle’s search is influenced by the best point found by any member of
the entire population. The best particle acts as an attractor, pulling all the
particles towards it. Eventually all particles will converge to this position.
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In the lbest model, particles have information only of their own and their
nearest array neighbors’ best (lbest), rather than that of the whole swarm.
Namely, in Eq.(6), gbest is replaced by lbest in the model. The lbest model
allows each individual to be influenced by some smaller number of adjacent
members of the population array. The particles selected to be in one subset
of the swarm have no direct relationship to the other particles in the other
neighborhood. Typically lbest neighborhoods comprise exactly two neighbors.
When the number of neighbors increases to all but itself in the lbest model,
the case is equivalent to the gbest model. Some experiment results testified
that gbest model converges quickly on problem solutions but has a weakness
for becoming trapped in local optima, while lbest model converges slowly on
problem solutions but is able to “flow around” local optima, as the individuals
explore different regions [56]. Some related research and development during
the recent years are reported in [57, 58, 59, 60].

As mentioned above, one of the most important applications is to share
files, distribute content in corporate networks by the dynamic membership of
peer hosts. Those users usually share some common interests in some virtual
spaces. They are apt to cluster into different groups. Sometime they are also
the members of several groups at the same time [61]. To match the social
characteristics, we introduce a multi-swarm search algorithm for neighbor-
selection problem in P2P networks. In the algorithm, all particles are clustered
spontaneously into different sub-swarms of the whole swarm. Every particle
can connect more than one sub-swarm, and a crossover neighborhood topology
is constructed between different sub-swarms. The particles in the same sub-
swarm would carry some similar functions as possible and search their optimal.
Each sub-swarm would approach to its appropriate position (solution), which
would be helpful for the whole swarm to keep in a good balance state. Figure
2 illustrates a multi-swarm topology. In the swarm system, a swarm with 30
particles is organized into 10 sub-swarms, which one consists of 5 particles.
Particles 3 and 13 have the maximum membership level, 3. During the iterated
process, the particle updates its velocity following by the location of the best
fitness achieved so far by the particle itself and by the location of the best
fitness achieved so far across all its neighbors in all sub-swarms it belongs
to. The process makes an important influence on the particles’ ergodic and
synergetic performance.

Since the positions of all the particles indicate the potential assigned so-
lutions, the binary bit strings of length D can be “decoded” to the feasible
solution. “1” denotes the two corresponding peers are selected in the neigh-
borhood. On the contrary, “0” denotes the two corresponding peers are dis-
connected. The position may violate the constraint (3) after some iterations.
We scan each column and row before the decoding procedure. The latest bi-
nary bits are set to “0” if

∑N
j=1 eij > di or

∑N
i=1 eij > dj . The scan direction

are reversed after each scan. The pseudo-code for the multi-swarm search al-
gorithm is illustrated as follows:
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Fig. 2. A multi-swarm topology.

Step 1. Initialize the size of the particle swarm n, and other parameters.
Initialize the positions and the velocities for all the particles randomly.
Step 2. Multiple sub-swarms n are organized into a crossover neighborhood
topology. A particle can join more than one sub-swarm. Each particle has the
maximum membership level l, and each sub-swarm accommodates default
number of particles m.
Step 3. Decode the positions and evaluate the fitness for each particles.

3.01 For s = 1 to n
3.02 If ( reverse )
3.03 For i = 0 to N − 1
3.04 e = 0
3.05 For j = 0 to N − 1
3.06 If (j == i) eij = 0;
3.07 If (j < i) a = j; b = i;
3.08 If (j > i) a = i; b = j;
3.09 If (e > dj) p[a∗N+b−(a+1)∗(a+2)/2] = 0
3.10 else
3.11 If (p[a∗N+b−(a+1)∗(a+2)/2]),
3.12 Calculate ci \ cj ; e + +;}
3.13 End if
3.14 Next j
3.15 Next i
3.16 else
3.17 For i = N − 1 to 0
3.18 e = 0
3.19 For j = N − 1 to 0
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3.20 If (j == i) eij = 0;
3.21 If (j < i) a = j; b = i;
3.22 If (j > i) a = i; b = j;
3.23 If (e > dj) p[a∗N+b−(a+1)∗(a+2)/2] = 0
3.24 else
3.25 If (p[a∗N+b−(a+1)∗(a+2)/2]),
3.26 Calculate ci \ cj ; e + +;}
3.27 End if
3.28 Next j
3.29 Next i
3.30 End if
3.31 Calculate f = f +

∣∣∣ ⋃N
i=1(ci \ cj) ∩ εij

∣∣∣;
3.32 If ( rand(0, 1) < 0.5 ) reverse = 0
3.33 else reverse = 1;
3.34 Next s

Step 4. Find the best particle in the swarm, and find the best one in each
sub-swarms. If the “global best” of the swarm is improved, noimprove = 0,
otherwise, noimprove = 1. Update velocity and position for each particle at
the iteration t.

4.01 For m = 1 to subs
4.02 p∗ = argminsubsm

i=1 (f(p∗(t− 1)), f(p1(t)),
4.02 f(p2(t)), · · · , f(pi(t)), · · · , f(psubsm(t)));
4.03 For ss = 1 to subsm

4.04 p#
i (t) = argmin(f(p#

i (t− 1)), f(pi(t));
4.05 For d = 1 to D
4.06 Update the d-th dimension value of pi and vi

4.06 according to Eqs.(6) and (7);
4.07 Next d
4.08 Next ss
4.09 Next m

Step 5. If noimprove = 1, goto Step 2, the topology is re-organized. If the
end criterion is not met, goto Step 3. Otherwise, output the best solution, the
fitness.

4.2 Dynamic Ergodic Characteristics

Clerc and Kennedy have stripped the particle swarm model down to a most
simple form [51, 54]. If the self-recognition component c1 and the coefficient of
the social-recognition component c2 in the particle swarm model are combined
into a single term c, i.e. c = c1 + c2, the best position pi can be redefined as
follows:

pi ← (c1pi + c2pg)
(c1 + c2)

(8)

Then, the update of the particle’s velocity is defined by:
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vi(t) = vi(t− 1) + c(pi − xi(t− 1)) (9)

The system can be simplified even further by using yi(t− 1) instead of pi −
xi(t− 1). Thus, the reduced system is then:

{
v(t) = v(t− 1) + cy(t− 1)
y(t) = −v(t− 1) + (1− c)y(t− 1)

This recurrence relation can be written as a matrix-vector product, so that
[
v(t)
y(t)

]
=

[
1 c
−1 1− c

]
·
[
v(t− 1)
y(t− 1)

]

Let

Pt =
[
vt

yt

]

and

A =
[

1 c
−1 1− c

]

we have an iterated function system for the particle swarm model:

Pt = A ·Pt−1 (10)

Thus, the system is completely defined by A. Its norm ‖A‖2 (also written
‖A‖) is determined by c. The relationship of A and its dependence on c is
illustrated in Figure 3.
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Fig. 3. Norm of A

IFS is sensitive to the values of c. It is possible to find different trajectories
of the particle for various values of c. Figure 4(a) illustrates the system for
a torus when c=2.9; Figure 4(b), a hexagon with spindle sides when c=2.99;
Figure 4(c), a triangle with spindle sides when c=2.999; Figure 4(d), a simple
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triangle when c=2.9999. As depicted in Figure 4, the iteration time step used
is 100 for all the cases. Another system sensitivity instance is illustrated in Fig-
ure 5. It is to be noted that Figures 4 and 5 illustrate only some 2-dimensional
representations of the iterated process. In multi-dimensional search space, the
particle displays the characteristics of ergodicity, which will be analyzed the-
oretically in Subsection 4.3.
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Fig. 4. Trajectory of the particle (a) c = 2.9, (b) c = 2.999, (c) c = 2.999, (d)
c = 2.9999.

4.3 Convergence Analysis of Multi-Swarm Algorithm

For analyzing the convergence of the multi-swarm algorithm, we first introduce
the definitions and lemmas [62, 63, 64], and then theoretically prove that
the algorithm converges with a probability 1 or strongly towards the global
optimal.

Xu, et al [65] analyzed the search capability of an algebraic crossover
through classifying the individual space of genetic algorithms, which is helpful
to comprehend the search of genetic algorithms such that premature conver-
gence and deceptive problems [66] could be avoided. In this subsection, we
also attempt to theoretically analyze the performance of the multi-swarm al-
gorithm with crossover neighborhood topology. For the sake of convenience,
let crossover operator |c denote the wheeling-round-the-best-particles process.

Consider the problem (P ) as
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Fig. 5. Trajectory of the particle (a) c = 3.7321, (b) c = 3.8, (c) c = 3.9, (d)
c = 3.999.

(P ) = min{f(x) : x ∈ D} (11)

where x = (x1, x2, · · · , xn)T , f(x) : D → R is the objective function and D is
a compact Hausdorff space. Applying our algorithm the problem (P ), it can
be transformed to P ′ as

(P ′) =

{
minf(x)
x ∈ Ω = [−s, s]n

(12)

where Ω is the set of feasible solutions of the problem. A swarm is a set, which
consists of some feasible solutions of the problem. Assume S as the encoding
space of D. A neighborhood function is a mapping N : Ω → 2Ω , which
defines for each solution S ∈ Ω a subset N (S) of Ω, called a neighborhood.
Each solution in N (S) is a neighbor of S. A local search algorithm starts off
with an initial solution and then continually tries to find better solutions by
searching neighborhoods [67]. Most generally said, in swarm algorithms the
encoding types S of particles in the search space D are often represented as
strings of a fixed-length L over an alphabet. Without loss of generality, S can
be described as

S = zm × · · · × zm︸ ︷︷ ︸
L

(13)

where zm is a finite field about integer number mod m. Most often, it is the
binary alphabet, i.e. m = 2.
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Proposition 1. If k alleles are ‘0’s in the nontrivial ideal Ω, i.e. L−k alleles
are uncertain, then θΩ partitions Ω into 2k disjoint subsets as equivalence
classes corresponding to Holland’s schema theorem [68, 69], i.e., each equiva-
lence class consists of some ‘1’s which k alleles in Ω with ‘0’ are replaced by
‘1’s. Let A ∈ S/θΩ, then there is an minimal element m of A under partial
order (S,∨,∧,¬), such that A = {m ∨ x | x ∈ Ω}.
Theorem 1. Let A, B, C are three equivalence classes on θΩ, where θΩ is
the congruence relation about Ω. ∃ x ∈ A, y ∈ B, and x |c y ∈ C, then
C = {x |c y | x ∈ A, y ∈ B}.
Proof. Firstly, we verify that for any d1, d2 ∈ Ω, if x |c y ∈ C, then (x∨ d1) |c
(y ∨ d2) ∈ C. In fact,

(x ∨ d1) |c (y ∨ d2) =(x ∨ d1)c ∨ (y ∨ d2)c̄
(xc ∨ yc̄) ∨ (d1c ∨ d2c̄)
(x |c y) ∨ (d1c ∨ d2c̄)

(14)

Obviously, (d1c ∨ d2c̄) ∈ Ω, so (x ∨ d1) |c (y ∨ d2) ≡ (x |c y)( mod θΩ), i.e.
(x ∨ d1) |c (y ∨ d2) ∈ Ω.

Secondly, from Proposition 1, ∃m,n, d3, d4 ∈ Ω of A, B, such that x =
m ∨ d3, y = n ∨ d4. As a result of analysis in Eq.(14), x |c y ≡ (m |c n)(
mod θΩ), i.e., m |c n ∈ C.

Finally, we verify that m |c n is a minimal element of C and (m |c n)∨d =
(m ∨ d) |c (n ∨ d). As a result of analysis in Eq.(14), if d1 = d2 = d, then
m |c n ∨ d = (m ∨ d) |c (n ∨ d). Therefore m |c n is a minimal element of C.

To conclude, C = {(m |c n) ∨ d | d ∈ Ω} = {x |c y | x ∈ A, y ∈ B}. The
theorem is proven.

Proposition 2. Let A, B are two equivalence classes on θΩ, and there exist
x ∈ A, y ∈ B, such that x |c y ∈ C, then, x |c y makes ergodic search C while
x and y make ergodic search A and B, respectively.

Definition 1 (Convergence in terms of probability). Let ξn a sequence
of random variables, and ξ a random variable, and all of them are defined on
the same probability space. The sequence ξn converges with a probability of ξ
if

lim
n→∞

P (|ξn − ξ| < ε) = 1 (15)

for every ε > 0.

Definition 2 (Convergence with a probability of 1). Let ξn a sequence
of random variables, and ξ a random variable, and all of them are defined on
the same probability space. The sequence ξn converges almost surely or almost
everywhere or with probability of 1 or strongly towards ξ if

P

(
lim

n→∞
ξn = ξ

)
= 1; (16)
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or

P

( ∞⋂
n=1

⋃

k≥n

[|ξn − ξ| ≥ ε]
)

= 0 (17)

for every ε > 0.

Theorem 2. Let x∗ is the global optimal solution to the problem (P ′), and
f∗ = f(x∗). Assume that the clubs-based multi-swarm algorithm provides po-
sition series xi(t) (i = 1, 2, · · · , n) at time t by the iterated procedure. p∗ is
the best position among all the swarms explored so far, i.e.

p∗(t) = arg min
1≤i≤n

(f(p∗(t− 1)), f(pi(t))) (18)

Then,

P

(
lim

t→∞
f(p∗(t)) = f∗

)
= 1 (19)

Proof. Let

D0 = {x ∈ Ω|f(x)− f∗ < ε} (20)
D1 = Ω \D0

for every ε > 0.
While the different swarm searches their feasible solutions by themselves,

assume ∆p is the difference of the particle’s position among different club
swarms at the iteration time t. Therefore −s ≤ ∆p ≤ s. Rand(−1, 1) is a
normal distributed random number within the interval [-1,1]. According to
the update of the velocity and position by Eqs.(6)∼(7), ∆p belongs to the
normal distribution, i.e. ∆p ∼ [−s, s]. During the iterated procedure from the
time t to t+1, let qij denote that x(t) ∈ Di and x(t+1) ∈ Dj . Accordingly the
particles’ positions in the swarm could be classified into four states: q00, q01,
q10 and q01. Obviously q00+q01 = 1, q10+q11 = 1. According to Borel-Cantelli
Lemma and Particle State Transference [59], proving by the same methods,
q01 = 0; q00 = 1; q11 ≤ c ∈ (0, 1) and q10 ≥ 1− c ∈ (0, 1).

For ∀ε > 0, let pk = P{|f(p∗(k))− f∗| ≥ ε}, then

pk =

{
0 if ∃T ∈ {1, 2, · · · , k}, p∗(T ) ∈ D0

p̄k if p∗(t) /∈ D0, t = 1, 2, · · · , k
(21)

According to Particle State Transference Lemma,

p̄k = P{p∗(t) /∈ D0, t = 1, 2, · · · , k} = qk
11 ≤ ck. (22)

Hence,
∞∑

k=1

pk ≤
∞∑

k=1

ck =
c

1− c
< ∞. (23)
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According to Borel-Cantelli Lemma,

P

( ∞⋂
t=1

⋃

k≥t

|f(p∗(k))− f∗| ≥ ε

)
= 0 (24)

As defined in Definition 2, the sequence f(p∗(t)) converges almost surely or
almost everywhere or with probability 1 or strongly towards f∗. The theorem
is proven.

5 Algorithm Performance Demonstration

To illustrate the effectiveness and performance of the particle swarm opti-
mization algorithm, we illustrate an execution trace of the algorithm for the
NS problem. A file of size 7 MB is divided into 14 fragments (512 KB each)
to distribute, 6 peers download from the P2P networks, and the connecting
maximum number of each peer is 3, which is represented as (6, 14, 3) problem.
In some session, the state of distributed file fragments is as follows:




1 0 0 4 0 6 7 8 0 10 0 12 0 14
0 0 0 4 5 0 7 0 9 0 11 0 13 0
0 2 0 0 0 6 0 0 0 0 11 12 0 14
0 2 3 4 0 6 0 0 0 0 11 0 0 0
0 2 0 0 0 0 7 8 0 10 0 12 0 14
1 2 0 0 5 0 0 0 9 10 11 0 13 14




The optimal result search by the multi-swarm algorithm is 31, and the
neighbor selection solution is illustrated below:




1 2 3 4 5 6
1 0 0 0 1 1 1
2 0 0 0 0 1 1
3 0 0 0 1 1 1
4 1 0 1 0 0 0
5 1 1 1 0 0 0
6 1 1 1 0 0 0




We also tested other three representative instances (problem (25,1400,12),
problem (30,1400,15), problem (35,1400,17) and problem (100,1400,20)) fur-
ther. In our experiments, the algorithms used for comparison were mainly
SPSO (standard PSO) ([55]) and GA (Genetic Algorithm) ([70]). These algo-
rithms share many similarities. GA is powerful stochastic global search and
optimization methods, which are also inspired from the nature like the PSO.
Genetic algorithms mimic an evolutionary natural selection process. Gener-
ations of solutions are evaluated according to a fitness value and only those
candidates with high fitness values are used to create further solutions via
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crossover and mutation procedures. Both methods are valid and efficient meth-
ods in numeric programming and have been employed in various fields due to
their strong convergence properties. The considered algorithms were repeated
4 times with different random seeds. Each trial had a fixed number of 50 or 80
iterations. Other specific parameter settings of the algorithms are described
in Table 1, where D is the dimension of the position. The average fitness val-
ues of the best solutions throughout the optimization run were recorded. The
average and the standard deviation were calculated from the 4 different trials.

Table 1. Parameter settings for the algorithms.

Algorithm Parameter name Value

Size of the population (even)(int)(10 + 2 ∗ sqrt(D))
GA Probability of crossover 0.8

Probability of mutation 0.01
Swarm size (even)(int)(10 + 2 ∗ sqrt(D))
Self coefficient c1 0.5 + log(2)

PSO(s) Social coefficient c2 0.5 + log(2)
Inertia weight w 0.91
Clamping Coefficient ρ 0.5

Figures 6, 7, 8 and 9 illustrate the performances during the search pro-
cesses using the considered algorithms to solve the NS problems. The best
values, mean values, the standard deviations for 4 trials are shown in Table
2. As evident, the multi-swarm algorithm obtained better results much faster
than other algorithms, especially for large scale problems. The multi-swarm
algorithm offered the advantages of steady performance, since it has the least
standard deviations.

Table 2. Performance comparison of the three algorithms.

Instance Item GA SPSO MPSO

Best 8716.00 8717.00 8721.00
(25, 1400, 12) Mean 8.714.30 8716.00 87192.00

Std. dev. 1.7078 1.1547 1.3292
Best 10513.00 10514.00 10515.00

(30, 1400, 15) Mean 10504.00 10512.00 10514.00
Std. dev. 6.3443 1.2990 1.2910
Best 12321.00 12332.00 12332.00

(35, 1400, 17) Mean 12319.00 12329.00 12330.00
Std. dev. 1.7078 2.5166 1.1690
Best 35047.00 35057.00 35061.00

(100, 1400, 20) Mean 35042.25 35055.00 35059.25
Std. dev. 3.6996 1.2247 1.0897
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6 Conclusion

In this chapter, we investigated to solve the class of the neighbor-selection
problem in peer-to-peer networks by using a swarm intelligence approach.
We encoded the particles using the upper half matrix of the peer connection
through the undirected graph, through which we accomplished the mapping
between the problem and the particle. It is feasible to reduce the dimension of
the particle’s search space. Since particle swarm shares some common char-
acteristics with P2P in the dynamic socially environment, a multi-swarm in-
teractive pattern was introduced to match the corresponding mechanism. We
designed a crossover neighborhood multi-swarm algorithm based on discrete
particle swarm optimization for the neighbor-selection problem in peer-to-peer
networks. We analyzed the dynamic characteristic of the single particle in the
swarm. The multi-swarm algorithm performance was illustrated theoretically
that it converges with a probability of 1 towards the global optimum. We
evaluated the performance of the proposed approach and compared it with
Genetic Algorithm (GA) and SPSO (standard PSO). The results indicated
that multi-swarm approach usually obtained better results much faster than
GA and SPSO, specially for large scale problems and the multi-swarm al-
gorithm offered the advantages of steady performance. The crossover neigh-
borhood multi-swarm algorithm could be an ideal approach for solving the
neighbor-selection problem in peer-to-peer networks. Compared to the previ-
ous algorithms proposed in P2P file sharing systems, the proposed algorithm
has a low communication overhead.
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