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Abstract. This paper introduces a hybrid metaheuristic, the Variable
Neighborhood Particle Swarm Optimization (VNPSO), consisting of a
combination of the Variable Neighborhood Search (VNS) and Parti-
cle Swarm Optimization(PSO). The proposed VNPSO method is used
for solving the multi-objective Flexible Job-shop Scheduling Problems
(FJSP). The details of implementation for the multi-objective FJSP and
the corresponding computational experiments are reported. The results
indicate that the proposed algorithm is an efficient approach for the
multi-objective FJSP, especially for large scale problems.

1 Introduction

Flexible Job-shop Scheduling Problems (FJSP) is an extension of the classical
JSP which allows an operation to be processed by any machine from a given
set. It incorporates all the difficulties and complexities of its predecessor JSP
and is more complex than JSP because of the additional need to determine the
assignment of operations to the machines. The scheduling problem of a FJSP
consists of a routing sub-problem, that is, assigning each operation to a machine
out of a set of capable machines and the scheduling sub-problem, which consists
of sequencing the assigned operations on all machines in order to obtain a fea-
sible schedule minimizing a predefined objective function. It is quite difficult to
achieve an optimal solution with traditional optimization approaches owing to
the high computational complexity. In the literature, different approaches have
been proposed to solve this problem. Mastrolilli and Gambardella [1] proposed
some neighborhood functions for metaheuristics. Kacem et al. [2,3] studied on
modeling genetic algorithms for FJSP. Ong et al. [4] applied the clonal selec-
tion principle of the human immune system to solve FJSP with re-circulation.
By hybridizing particle swarm optimization and simulated annealing, Xia and
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Wu [5] developed an hybrid approach for the multi-objective flexible job-shop
scheduling problem (FJSP). Because of the intractable nature of the problem
and its importance in both fields of production management and combinato-
rial optimization, it is desirable to explore other avenues for developing good
heuristic algorithms for the problem.

Particle Swarm Optimization (PSO) incorporates swarming behaviors ob-
served in flocks of birds, schools of fish, or swarms of bees, and even human
social behavior, from which the intelligence is emerged [6]. It has become the
new focus of research recently. However, its performance deteriorates as the
dimensionality of the search space increases, especially for the multi-objective
FJSP involving large scale. PSO often demonstrates faster convergence speed
in the first phase of the search, and then slows down or even stops as the
number of generations is increased. Once the algorithm slows down, it is dif-
ficult to achieve better scheduling solutions. To avoid termination at a local
minimum, we introduce a novel hybrid meta-heuristic, the Variable Neighbor-
hood Particle Swarm Optimization (VNPSO) for the multi-objective FJSP.
The basic idea is to drive those particles by a shaking strategy and get them
to explore variable neighborhood spaces for the better scheduling solutions.

2 Problem Formulation

The classical FJSP considers in general the assignment of a set of machines
M = {M1, · · · , Mm} to a set of jobs J = {J1, · · · , Jn}, each of which consists
of a set of operations Jj = {Oj,1, · · · , Oj,p}. There are several constraints on
the jobs and machines, such as (1) each machine can process only one operation
at a time; (2) operations cannot be interrupted; (3) there are no precedence
constraints among operations of different jobs; (4) setup times for the operations
are sequence-independent and included in the processing times; (5) there is only
one of each type of machine; (6) machines are available at any time.

To formulate the objective, define Ci,j,k (i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n},
k ∈ {1, 2, · · · , p}) as the completion time that the machine Mi finishes the
operation Oj,k;

∑
Ci represents the time that the machine Mi completes the

processing of all the jobs. Define Cmax = max{
∑

Ci} as the makespan, and
Csum =

∑m
i=1(

∑
Ci) as the flowtime. The problem is thus to both determine

an assignment and a sequence of the operations on all machines that minimize
some criteria. Most important optimality criteria are to be minimized: (1) the
maximum completion time (makespan): Cmax; (2) the sum of the completion
times (flowtime): Csum.

Minimizing Csum asks the average job finishes quickly, at the expense of the
largest job taking a long time, whereas minimizing Cmax, asks that no job takes
too long, at the expense of most jobs taking a long time. Minimization of Cmax

would result in maximization of Csum. The weighted aggregation is the most
common approach to the problems. According to this approach, the objectives,
F1 = min{Cmax} and F2 = min{Csum}, are summed to a weighted combination:
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F = w1min{F1} + w2min{F2} (1)

where w1 and w2 are non-negative weights, and w1 + w2 = 1. These weights
can be either fixed or adapt dynamically during the optimization. The dynamic
weighted aggregation [7] was used in the paper. Alternatively, the weights can be
changed gradually according to the Eqs. (2) and (3). The variation for different
values of w1 and w2 (R = 200) are illustrated in Fig. 1.

w1(t) = |sin(2πt/R)| (2)

w2(t) = 1 − w1(t) (3)
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Fig. 1. Dynamic weight variation

3 The VNPSO Heuristic for FJSP

The classical PSO model consists of a swarm of particles, which are initialized
with a population of random candidate solutions. They move iteratively through
the d-dimensional problem space to search the new solutions, where the fitness,
f , can be calculated as the certain qualities measure. Each particle has a po-
sition represented by a position-vector xi (i is the index of the particle), and
a velocity represented by a velocity-vector vi. Each particle remembers its own
best position so far in a vector x#

i , and its j-th dimensional value is x#
ij . The

best position-vector among the swarm so far is then stored in a vector x∗, and
its j-th dimensional value is x∗

j . During the iteration time t, the update of the
velocity from the previous velocity to the new velocity is determined by Eq.(4).
The new position is then determined by the sum of the previous position and
the new velocity by Eq.(5).

vij(t) = wvij(t−1)+c1r1(x
#
ij(t−1)−xij(t−1))+c2r2(x∗

j (t−1)−xij(t−1)) (4)

xij(t) = xij(t − 1) + vij(t) (5)
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The particle swarm algorithm can be described generally as a population
of vectors whose trajectories oscillate around a region which is defined by each
individual’s previous best success and the success of some other particle. The best
particle acts as an attractor, pulling its neighborhood particles towards it. Some
previous studies has been shown that the trajectories of the particles oscillate
in different sinusoidal waves and converge quickly [8]. During the iteration, the
particle is attracted towards the location of the best fitness achieved so far by
the particle itself and by the location of the best fitness achieved so far across
the swarm. The algorithm has faster convergence. But very often for multi-
modal problems involving high dimensions it tends to suffer from premature
convergence.

Variable Neighborhood Search (VNS) is a relatively recent metaheuristic
which relies on iteratively exploring neighborhoods of growing size to identify
better local optima with shaking strategies [9,10]. More precisely, VNS escapes
from the current local minimum x∗ by initiating other local searches from start-
ing points sampled from a neighborhood of x∗, which increases its size iteratively
until a local minimum is better than the current one is found. These steps are
repeated until a given termination condition is met. The metaheuristic method
we propose, the VNPSO, was originally inspired by VNS. In PSO, if a particle’s
velocity decreases to a threshold vc, a new velocity is assigned using Eq.(6):

vij(t) = wv̂ + c1r1(x
#
ij(t − 1) − xij(t − 1)) + c2r2(x∗

j (t − 1) − xij(t − 1)) (6)

Algorithm 1. Variable Neighborhood Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. Set the flag of iterations without improvement Nohope = 0.
04. While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle;
07. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
08. If x∗ is improved then Nohope = 0, else Nohope = Nohope + 1.
09. For i= 1 to n
10. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
11. For j = 1 to d
12. If Nohope < 10 then
13. Update the j-th dimension value of xi and vi

14. according to Eqs.(4),(5)
15. else
16. Update the j-th dimension value of xi and vi

17. according to Eqs.(7),(6).
18. Next j
19. Next i
20. End While.
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v̂ =

{
vij if |vij | ≥ vc

u(−1, 1)vmax/ρ if |vij | < vc

(7)

Our algorithm scheme is summarized as Algorithm 1. The performance of
the algorithm is directly correlated to two parameter values, vc and ρ. A large
vc shortens the oscillation period, and it provides a great probability for the
particles to leap over local minima using the same number of iterations. But
a large vc compels the particles in the quick “flying” state, which leads them
not to search the solution and forcing them not to refine the search. The
value of ρ changes directly the variable search neighborhoods for the parti-
cles. It is to be noted that the algorithm is different from the multi-start
technique and the turbulence strategy [11]. We also implemented the Multi-
Start PSO (MSPSO) and Velocity Turbulent PSO (VTPSO) to compare their
performances.

For applying PSO successfully for the FJSP problem, we setup a search space
of O dimension for a (m−Machines, n−Jobs, O−Operations) FJSP problem.
Each dimension was limited to [1, m + 1). Each dimension of the particle’s po-
sition maps one operation, and the value of the position indicates the machine
number to which this task is assigned to during the course of PSO. The particle’s
position may appear real values such as 1.4, etc. We usually round off the real
optimum value to its nearest integer number.

4 Experiment Settings and Results

To illustrate the effectiveness and performance of the proposed algorithm, three
representative instances based on practical data have been selected. Three
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Fig. 2. The performance of the algoriths for (J8, O27, M8) FJSP
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Fig. 3. The performance of the algoriths for (J10, O30, M10) FJSP
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Fig. 4. The performance of the algoriths for (J15, O56, M10) FJSP

problem instances ((J8, O27, M8), (J10, O30, M10) and (J15, O56, M10) are
taken from Kacem et al. [2,3]. In our experiments, the algorithms used for com-
parison were MSPSO (Multi-start PSO), VTPSO (Velocity Turbulent PSO) and
VNPSO (Variable Neighborhood PSO). The parameters c1 and c2 were set to
1.49 for all the PSO algorithms. Inertia weight w was decreased linearly from 0.9
to 0.1. In VTPSO and VNPSO, ρ and vc were set to 2 and 1e-7 before 15,000
iterations, while they were set to 5 and 1e-10 after 15,000 iterations. The swarm
size in all the algorithms were set to 20. The average fitness values of the best
solutions throughout the optimization run were recorded. The averages (F ) and
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Table 1. Comparing the results for FJSPs

Instance Items MSPSO VTPSO VNPSO
Best makespan 30 26 24
Best flowtime 168 155 152

(8, 27, 8) average 39.9087 28.3853 28.8000
std ±5.7140 ±2.3146 ±3.8239
time 184.0620 181.2500 181.2970
Best makespan 19 13 11
Best flowtime 96 92 75

(10, 30, 10) average 19.4612 15.2000 15.0000
std ±1.8096 ±1.3166 ±1.8257
time 1.7145e+003 1.5891e+003 1.5908e+003
Best makespan 36 30 29
Best flowtime 231 241 220

(15, 56, 10) average 37.2000 31.9000 30.8000
std ±1.0328 ±1.2867 ±1.7512
time 2.0497e+003 12.0816e+003 2.0703e+003

the standard deviations (std) were calculated from the 10 different trials. The
standard deviation indicates the differences in the results during the 10 different
trials. Usually another emphasis will be to generate the schedules at a minimal
amount of time. So the completion time for 10 trials were used as one of the cri-
teria to improve their performance. Figs. 2, 3 and 4 illustrate the performance for
the three algorithms during the search processes for the three FJSPs. Empirical
results are illustrated in Table 1. In general, VNPSO performs better than the
other two approaches, although its computational time is worse than VTPSO for
the low dimension problem, (J8, O27, M8). VNPSO could be an ideal approach
for solving the large scale problems when other algorithms failed to give a better
solution.

5 Conclusions

In this paper,we introduce ahybridmetaheuristic, theVariableNeighborhoodPar-
ticle Swarm Optimization (VNPSO), consisting of a combination of the Variable
Neighborhood Search (VNS) and Particle Swarm Optimization(PSO), and con-
sidered its application for solving the multi-objective Flexible Job-shop Schedul-
ing Problems (FJSP). The details of implementation for the multi-objective FJSP
are provided and its performance was compared using computational experiments.
The empirical results have shown that the proposed algorithm is an available and
effective approach for the multi-objectiveFJSP, especially for large scale problems.
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