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Abstract—Based on the study of developments in many fields
of computer vision, a novel computer vision navigation system
for mobile tracking robot is presented. According to the primary
functions of this kind of robot, three irrelevant technologies,
pattern recognition, binocular vision and motion estimation, make
up of the basic technologies of our robot. The non-negative matrix
factorization (NMF) algorithm is applied to detect the target.
The application method of NMF in our robot is demonstrated.
Interesting observations on distance measurement and motion
capture are discussed in detail. The reasons resulting in error
of distance measurement are analyzed. According to the models
and formulas of distance measurement error, the error type
could be found, which is helpful to decrease the distance error.
Based on the diamond search (DS) technology applied in MPEG-
4, an improved DS algorithm is developed to meet the special
requirement of mobile tracking robot.

Index Terms—mobile robot, navigation, computer vision, non-
negative matrix factorization, binocular vision, motion estimation.

I. INTRODUCTION

A main aim of robotics research is to gain knowledge about
the nature of intelligence, to make computers more useful to
human. Creating more intelligent computers will make robots
more useful to people. Mobile tracking robot can offer some
attractive home services closely related to our life. It will be
the most useful partner in our life in future. In our project, we
try to develop a kind of mass producible, low-cost autonomous
mobile tracking robot.

Indubitably, vision navigation system is one of the most
important systems in mobile robot. Computer vision for mobile
robot navigation became a hot subject since the end of 1970s.
It has achieved great progress in the field of computer vision
in recent several decades. Many interesting technologies were
applied in this field continuously. Most research work on
mobile robot vision navigation is focused on map building,
self-localization, path planning, and obstacle avoidance.

G. N. DeSouza et al. [1] investigated the developments of
twenty years in the field of vision for mobile robot navigation.
The developments can be divided into indoor navigation and
outdoor navigation.

For the indoor navigation, it includes three broad groups:
map-based, map-building-based and mapless navigation. Map-
based navigation systems depend on user-created geometric
models or topological maps of the environment. Map-building-

based navigation systems use sensors to construct their own
geometric or topological models of the environment and then
use these models for navigation. Mapless navigation systems
use no explicit representation at all about the space in which
navigation is to take place, but other resort to recognize
objects found in the environment or to track those objects by
generating motions based on visual observations. The problem
of robotic mapping is that of acquiring a spatial model of
a robot’s environment. It is a process for robot to perceive
the outside world. Sebastian Thrun [2] surveyed major algo-
rithms of robotic mapping, including Kalman filter techniques,
approaches based on Dempster’s expectation maximization
algorithm, occupancy grid techniques, and so on.

For the outdoor navigation, which usually involves obstacle-
avoidance, land-mark detection, map-building or updating, and
position estimation, it can be divided into structured and
unstructured environments according to the level of structure of
the environment. In general, outdoor navigation in structured
environments requires some sort of road-following; while out-
door navigation in unstructured environments, which doesn’t
require regular properties used to be perceived or tracked for
navigation, can make use of at most a generic characterization
of the possible obstacles in the environment.

Each sort of those methods mentioned above has its own
technical characteristics. The central computations involved
in map-based navigation can be divided into four steps: ac-
quire sensory information, detect landmarks, establish matches
between observation and expectation and calculate position.
The map-building-based approaches try to explore the en-
vironment and build an internal representation of it for the
robot, such as 3D coordinates, occupancy grid or metric-
topological representation, etc. Mapless navigation does not
need map, in which the robot motions are determined by
observing and extracting relevant information of environment
such as walls, desks, doorways, etc. Optical flow-based and
appearance-based are two prominent techniques used in maples
navigation. Outdoor navigation is often executed by cars or
wheeled vehicles. The road-following for outdoor navigation
in structured environments means an ability to recognize the
lines that separate the lanes or separate the road from the berm,
the texture of the road surface, and the adjoining surfaces, etc.
In unstructured outdoor navigation, those techniques include



external camera observation, far-point landmark triangulation,
global positioning, etc.

Human eyes and vision navigation system take on similar
fundamentality in human and mobile robot, respectively. From
the perspective of bionics, the researches on human eyes
are referential and significant to the development of robotic
vision system. With the important functions, such as binocular
parallax, motion parallax, accommodation and convergence,
human eyes can extract depth cue out of scene, which finally
results in the ability of depth perception. Similarly, if the
robotic vision system performs similar functions to those of
human eyes, the robot will be more intelligent.

By analyzing those functions of human eyes more carefully,
it can be found that there are three processes which are primary
and essential to robot: target recognition, distance estimation
and motion capture. Target recognition, or object recognition,
can tell robot what the target is. Distance estimation can
describe the environment; tell robot where the target is and
where robot itself is, which actually means some certain kind
of stereo vision capability. Motion capture can tell robot how to
follow the target. Based on these three primary processes, the
mobile tracking robot can possess some important capabilities.

In this paper, we present an approach of computer vision
navigation for mobile tracking robot. We try to use cheap
cameras and simple algorithm to realize the functions needed
by mobile tracking robot. The main process is summarized as
follows.

Step 1: Target Recognition. The features of target are
abstracted from images taken by the vision system of the
mobile robot. In this step, the robot can perceive the target.

Step 2: Distance Estimation. According to the images taken
by eyes of the mobile robot vision system, the distance of target
can be gotten depending on vision measurement technology.
Of course, if the map is necessary for the robot to select its
route or avoid obstacle, the robot can redraw the scene as a
map. Therefore, the robot can know the position of target and
get the environment information in this step.

Step 3: Motion Capture. When the target is moving, the
robot can compute the motion vector of target using search
algorithm. According to the target motion vector, the robot
can control its drive system to follow the target. Therefore,
the robot can know how to track the target.

The rest of this paper is organized as follows. Section 2
discusses the application of non-negative matrix factorization
in robot navigation. The data processing and an example are
demonstrated in this section. Section 3 and section 4 analyze
the distance estimation and the motion estimation, respectively.
Section 5 gives a model to validate the approach presented in
this paper, concludes the works of this paper, also discusses
some future work.

II. TARGET RECOGNITION

In this step, the essence of target recognition is the mecha-
nism of computer to cognise object. Undoubtedly, the research
on mechanism of the human brain to perceive the world is
helpful to resolve our problem.

Some researchers found psychological and physiological
evidence for parts-based representations in the brain. Conse-
quently, certain computational theories of object recognition
were presented based on such representations. According to
the parts-based representations, the objects can be represented
as

Objecti = bi1 × Part1 + bi2 × Part2 + · · ·
+bij × Partj + · · ·

where

bij =
{

1 if part j is present in object i
0 if part j is absent from object i.

Similarly, the object of image can be represented as

Imagei = bi1 × Feature1 + bi2 × Feature2 + · · ·
+bij × Featurej + · · ·

where bij ≥ 0 are the participation weight of feature j in
image i. Because each pixel is represented by its light intensity
measured by a non-negative value, the participation weight bij
is inevitably a non-negative number.

The parts-based representations offer an approach to recon-
struct or recognize the world. Object can be cognised based on
parts perceived by human brain, and image can be recognized
based on features abstracted by computer. Consequently, the
hard core of our problem becomes to find a method by which
computer abstracts features, or parts, from images.

D. D. Lee and H. S. Seung [3] demonstrated an algorithm
for non-negative matrix factorization (NMF) that could learn
parts of objects, such as parts of faces and semantic features
of text. In their opinion, the image database is regarded as an
n×m matrix V , each column of which contains n non-negative
pixel values of one of the m facial images. Then the NMF
construct approximate factorizations of the form V ≈ WH ,
or

Viµ = (WH)iµ =
r∑
a=1

WiaHaµ

The r columns of W are called basis images. Each column of
H is called an encoding and is in one-to-one correspondence
with a face in V . An encoding consists of the coefficients by
which a face is represented with a linear combination of basis
images. The dimensions of the matrix factors W and H are
n× r and r×m, respectively. The rank r of the factorization
is generally chosen so that (n+m)×r < nm, and the product
WH can be regarded as a compressed form of the data in V .

To find an approximate factorization V ≈ WH , cost
function shall be defined firstly, which quantify the quality
of the approximate. Euclidean distance and Kullback-Leibler
divergence, or relative entropy, are two useful measures. The
cost functions based on them can be expressed as follows,
respectively.

‖V −WH‖2 =
∑
ij

[Vij − (WH)ij ]
2



D(V ‖WH) =
∑
ij

[
Vij log

Vij
(WH)ij

− Vij + (WH)ij

]
The Euclidean distance ‖V −WH‖ is non-increasing under

the update rules

Haµ ← Haµ
(WTV )aµ

(WTWH)aµ

Wia ←Wia
(V HT )ia

(WHHT )ia

The divergence D(V ‖WH) is non-increasing under the
update rules

Haµ ← Haµ

∑
iWiaViµ/(WH)iµ∑

kWka

Wia ←Wia

∑
µHaµViµ/(WH)iµ∑

ν Haν

The Euclidean distance and divergence are invariant under
these respective updates if and only if W and H are at a
stationary point of the distance or divergence, respectively.

D. D. Lee and H. S. Seung also gave two examples of
applications of NMF on facial images and semantic analysis.
In the facial images application, the grey intensities of each
image were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the
range [0, 1]. NMF was performed with the iterative algorithm,
starting with random initial conditions for W and H . The
algorithm was mostly converged after less than 50 iterations
in their example. In fact, they have proved the convergence [4]
of the NMF update rules.

According to the algorithm and application on facial im-
ages, it is obvious that the NMF can be applied to recognize the
object in our problem, no matter it is face, back or something
else. Because the NMF has the ability to learn the parts-based
features of object, the robot can recognize target if only it has
this kind of ability.

A feasible process of target recognition for our mobile
tracking robot may be is

Step 1: The robot captures the image of target multi-
angularly, such as from head to toe, from the front to the back,
from far to near, etc.

Step 2: Linear scale all these images. Construct matrix V
by converting each image to a column vector and combining
them.

Step 3: Process the matrix V by implementing NMF algo-
rithm, and then get the basis images W and encoding matrix
H .

Step 4: For a new image matrix U that includes the parts of
target features or some columns of matrix W , new encoding
matrix J can be extracted by W−1U .

Step 5: Find the part in matrix J that is with the shortest
distance to another part in matrix H . This part in Matrix J
contains the position information of target in matrix U . It
means we have found the target in the new image.
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Fig. 1. Data processing by using NMF. (a) hand-aligned grey images, each
of them corresponds to a column of matrix V ; (b) the parts-based images
corresponding to basis matrix W .

Fig. 1 shows briefly the main procedure of data processing.
Firstly, the color images are converted to grey images, see
Fig. 1(a). To facilitate comparison with the matrix V , the nine
frontal views are aligned by hand, each of them corresponds
to a column of matrix V . Fig. 1(b) shows the parts-based faces
transformed by the basis image matrix W .

In the NMF algorithm, the rank r is an important parameter
that decides the dimension of characteristic subspace. The
determining of r shall be helpful to reduce the dimension of
image matrix, but also to express target features effectively.
However, there is no good way to determine it nowadays.
In [5], N.D. Ho indicated that the problem of determining
the non-negative rank can be solved in finite time by looping
through r = 1, 2, · · ·, min(n,m), since the upper bound of the
non-negative rank is min(n,m). Additionally, N.D. Ho et al.
[6] compared the convergence speed of different algorithms,
which can be a reference to the determining of r value.

III. MEASURE OF DISTANCE

Binocular stereo triangulation, see Fig. 2(a), is a simple and
effective approach in computational stereo [7]. It also can be
regarded as a special case of two-view geometry [8]. Given
the distance between aperture diaphragm OL and OR, called
baseline B, and the focal length f of the cameras, object
distance D may be computed by similar triangles as

D =
fB

xl + xr
= K

fB

npixel
(1)

where xl and xr are the absolute horizontal distance between
image point and the left and right image center respectively, K
is constant, npixel is displacement of pixels. Indeed binocular
stereo triangulation is outdated. But if used appropriately, it
will be very effective.

According to (1), the maximum estimated object distance
depends on maximum focal length f , baseline B and minimum
pixel displacement npixel. Obviously, the maximum value is
Dmax = KfmaxBmax, where Dmax, fmax and Bmax are
maximum value of D, f and B, respectively.

It should be noticed that the lens model in Fig. 2(a) is
pinhole model. The image of the object on the image plane
is top-bottom inverted and left-right inverted. And camera can
revise these inversions in real picture automatically. Finally,
the point on image plane lying at lower left corner may lie
at upper right corner in the real picture. Therefore, these
automatic revisions should be considered in measuring the
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Fig. 2. Three cases of object position in image plane: the object lies (a)
between two centers, (b) at the left of the left camera center, and (c) at the
right of the right camera center.

distance between image point and image center in the real
picture.

As shown in Fig. 2(b) and (c), if the object lies at the left
of left camera or right of right camera, the object distance D
may be computed respectively as

D =
fB

xr − xl
(2)

D =
fB

xl − xr
(3)

In our experiment, we select two pan-tilt-zoom webcams as
the cameras of the mobile robot vision navigation system. The
webcams are very cheap. In practice, it is difficult to build
ideal binocular stereo system with nonverged geometry. For
example, as shown in Fig. 3(a) and (b), the two optical axes
of left and right camera may not parallel, or the focal lengths
of two cameras may not equal, which result in two kinds of
errors.

If the distance error is defined as the difference between
real and measured distance, for the case shown in Fig. 3(a),
the object distance error caused by unparallel optical axes,
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Fig. 3. Two cases causing error of distance estimation: (a) two optical axes
are unparallel, and (b) the focal lengths of two cameras are unequal.

denoted as errD1, may computed as

errD1 =
f(B − f tanα)
xl + xr + f tanα

− fB

xl + xr
(4)

Similarly, for the case of Fig. 2(b) and (c), the object
distance error caused by unparallel optical axes may computed
respectively as

errD1 =
f(B − f tanα)

xr − xl + 2f tanα
− fB

xr − xl
(5)

errD1 =
f(B − f tanα)

xl − xr + 2f tanα
− fB

xl − xr
(6)

For the case shown in Fig. 3(b), the object distance error
caused by unequal focal length, denoted as errD2, may
computed as

errD2 =
fB

xl + f
f ′xr

− fB

xl + xr

=
f ′fB

f ′xl + fxr
− fB

xl + xr
(7)

where f ′ is the unequal focal length of the right camera shown
in 3(b).

Similarly, for the case of Fig. 2(b) and (c), the object
distance error caused by unequal focal length may computed
respectively as

errD2 =
f ′fB

fxr − f ′xl
− fB

xr − xl
(8)

errD2 =
f ′fB

fxl − f ′xr
− fB

xl − xr
(9)

According to (4), (5) and (6), the distance error caused by
unparallel optical axes can be drawn, see Fig. 4. Obviously,
when the object lies between two centers, the object distance
error is less than that when the object lies aside. Similarly,
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Fig. 4. The object distance error caused by unparallel optical axes. Baseline
is 8 cm, and reference focal length is 4 cm.

according to (7), (8) and (9), the distance error caused by
unequal focal length can be drawn, see Fig. 5. Obviously, when
the object lies between two centers, the object distance error is
less than that when the object lies aside. Therefore, it is better
to measure the object distance while the object lies between
two centers.

Based on the error analysis above, the unparallel optical
axis and unequal focal length can be corrected. Fig. 6 shows
the distance curves at different baseline after correction.

Equation (1) shows that the estimation range of distance is
directly proportional to f and B. If the robot wants to adjust
the distance range, it just need to increase or decrease focal
length f or baseline B. It is an effective way for the robot to
observe the object at very far or very close distance. But the
increase of f or B may also increase the object distance error,
which is a matter of course, because the further the object, the
larger the distance error.

IV. MOTION CAPTURE

If the robot can compute the object’s motion vector from
every frame taken by its eyes, it can know the object motion,
and then can track it. An effective and popular method, called
block-matching motion estimation, has been widely applied
in various video coding standards, such as H.261, H.263,
MPEG-1, MPEG-2 and MPEG-4, and in motion-compensated
video coding technique. Many fast block-matching algorithms
have been developed, for example, 2-D logarithmic search,
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Fig. 5. The object distance error caused by unequal focal length. Baseline
is 8 cm, and reference focal length is 4 cm.
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Fig. 6. The distance curves at different baseline after correcting the errors.

three-step search, conjugate direction search, cross search, new
three-step search, four-step search, block-based gradient de-
scent search, etc. These fast block-matching algorithms exploit
different search patterns and search strategies for finding the
optimum motion vector with drastically reduced number of
search points as compared with the full search algorithm that
test all the candidate blocks within the search window.

Shan Zhu and Kai Kuang Ma proposed a simple, robust
and efficient fast block-matching motion estimation algorithm,
called diamond search (DS) [9]. The DS algorithm employs
two search patterns, called large diamond search pattern
(LDSP) and small diamond search pattern (SDSP). We applied
the DS algorithm to compute the object’s motion vector in our
experiment.
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Fig. 7. Search path example which leads to the motion vector (-4, -2) in five
search steps-four times of LDSP and one time SDSP at the final step. There
are 24 search points in total-taking nine, five, three, three, and four search
points at each step, sequentially.
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Fig. 8. Search path example which leads to the motion vector (-2, 0) in three
search steps: once combination of LDSP and SDSP, once LDSP and once
SDSP at the last step. There are 21 search points in total: taking thirteen, five
and three search points at each step, sequentially.

In contrast, it is necessary to repeat briefly the DS algorithm
firstly. After discussing it in detail, the improved DS algorithm
used in mobile tracking robot will be introduced.

The DS algorithm is summarized as follows, as shown in
Fig. 7.

Step 1: The initial LDSP is centered at the origin of the
search window, and the 9 checking points of LDSP are tested.
If the minimum block distortion (MBD) point calculated is
located at the center position, go to Step 3; otherwise, go to
Step 2.

Step 2: The MBD point found in the previous search step
is re-positioned as the center point to form a new LDSP. If the
new MBD point obtained is located at the center position, go
to Step 3; otherwise, recursively repeat this step.

Step 3: Switch the search pattern from LDSP to SDSP. The
MBD point found in this step is the final solution of the motion
vector which points to the best matching block.

Firstly, the DS algorithm computes every block’s motion

vector; however, for mobile robot, it just need to only compute
the motion vector of interested one rather than every block.

Secondly, the DS algorithm has perfect performance if the
object moves to one of the 9 positions at LDSP in next frame;
but if the object moves outside of LDSP or to one of the
five positions at SDSP in next frame, it cannot find the object
any more. Considering what the robot track is human, general
movement is forward or backward, and rarely very fast left or
right, so the moving outside of LDSP in next frame could be
neglected. At the same time, the initial search should include
LDSP and SDSP.

In our experiment, we found that the block size has impor-
tant effect to the search result. The perfect situation is that the
search block has the same size to the object in image. If the
block is greater than the object, search is not very good.

Based on the discussion above, the improved DS algorithm
could be summarized as follows, as shown in Fig. 8.

Step 1: According on the object feature, set the block size
equals to the object size. The initial search including LDSP
and SDSP is centered at the origin of the search window, and
the 13 checking points are tested. If the MBD point calculated
is located at the center position, go to Step 3; otherwise, go
to Step 2.

Step 2: The MBD point found in the previous search step
is re-positioned as the center point to form a new LDSP. If the
new MBD point obtained is located at the center position, go
to Step 3; otherwise, recursively repeat this step.

Step 3: Switch the search pattern from LDSP to SDSP. The
MBD point found in this step is the final solution of the motion
vector which points to the best matching block.

Fig. 9(a) and (b) are two frames of a video. It shows
the movement of a circle and a square object. In fact, the
square one is the target, the method presented in this paper can
estimate the object’s distance and compute its motion vector,
see Fig. 10.

V. CONCLUSION

An ease way to validate the approach of vision-based
navigation system discussed in this paper is to connect we-
bcams with computer; after receiving data from webcams and
calculating the target’s distance and motion vector, computer
send control parameters to robot. LEGO Mindstorms NXT is a
good choice for the robot. It’s not necessary to fix the webcams
on LEGO robot in this verification model. The final purpose
of this model is to control the left and right wheel of LEGO
robot rotate correctly according to the movement of target.

Fig. 11 shows the flow of the verification model. The
webcams capture frames and send these data to computer,
computer then recognizes target and calculates its distance and
motion vector to control robot’s speed and direction so as to
follow the target.

In sum, the vision-based system of computer vision nav-
igation for mobile tracking robot mentioned in this paper
consists of three main parts called target recognition, distance
measurement and motion capture, respectively.
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Fig. 9. Two frames of a video. (a) is the reference frame, and (b) is the next
frame. The motion vector is computed according to these adjacent frames.
The black square is target. The circle one is disturbing object. Both of them
are moved.
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Fig. 10. The motion vector of square target. The upper left corner is the origin
of image. The vector means motion vector that shows the target’s displacement
from start to end point.

The NMF algorithm is applied in recognition part to per-
ceive target. Because NMF is a parts-based algorithm, it can
recognize the target after learning the parts-based features.
The NMF is an important development of the research on
perception, which provides a feasible approach for machine
to simulate the cognitive methods in human brain. However,
NMF is not a perfect algorithm. For example, its localization
performance of basis image is not satisfied; when it finds
projecting basis vector to compress high dimensional data
to low dimensional data, it ignores an important information
that original data samples belong to different categories; also,
there is no clear requirements of statistical relationship of the
data after dimension reduction. Accordingly, many improved
algorithms were developed, such as local non-negative matrix
factorization (LNMF) [10], [11], sparseness non-negative ma-
trix factorization [12], [13], [14], fisher non-negative matrix
factorization (FNMF) [15], etc. It’s necessary to optimize the
NMF according to the requirements of mobile tracking robot;
to find a method to determine the optimized rank r; to simplify
the recognition steps.

The reasons resulting in object distance error and its cor-
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Fig. 11. The flow of the verification model.

rection methods are discussed in detail. When the object lies
between two optical axes, the distance error is less than that
when object lies aside. An improved DS algorithm is developed
to meet the special requirement of mobile tracking robot. In
future, the distance estimation model should be developed. It
will be very good for the robot if it can fitting the distance
curves at different focal length f and baseline B easily.
Additionally, simpler and faster search algorithm should be
developed. Of course, all of these should be realized by cheap
hardware.
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