
Fuzzy Signatures Organized Using S-Tree
Vaclav Snasel, Zdenek Horak, Milos Kudelka, Ajith Abraham

Department of Computer Science
FEI, VSB - Technical University of Ostrava

17. listopadu 15, 708 33, Ostrava - Poruba, Czech Republic
Email: zdenek.horak@vsb.cz, milos.kudelka@vsb.cz, vaclav.snasel@vsb.cz, ajith.abraham@ieee.org

Abstract—In this paper we explore the possibility of an efficient
organization of fuzzy signatures using the so-called S-Tree. We
illustrate the usefullnes of the presented approach on a real-
world example of a content-based image retrieval system. Images
from the dataset are described using a fuzzy set of features.
This description can be translated into a fuzzy signature and
these signatures can be stored in a tree structure – similar to
the B+tree – that allows efficient retrieval. Several variants are
considered and evaluated.

Index Terms—fuzzy sets, data processing

I. INTRODUCTION

There are many areas where objects with very complex
and sometimes interdependent features need to be classified;
similarities and dissimilarities need to be evaluated. This makes
a complex decision model difficult to construct effectively.
Images and videos will be captured, manipulated, stored,
searched, and reproduced much the way we manipulate text
today. It is extremely important to develop technology for the
management of large archives of visual information. In par-
ticular, image and video data need to be organized efficiently.
Fast query mechanisms are required to perform content based
retrieval of the stored information. The most difficult part of
the problem is to find feature vectors. This vector represent
image archives as close as possible and data structures that
organize the feature vector space efficiently (thus speeding up
the search process). In addition, a feature vector has to be
computationally inexpensive to facilitate query processing in
real time.

Signature files are one of the methods used for full text re-
trieval. While some authors suggest that their practical usage is
limited to special cases in which they outperform inverted files,
the most commonly used method, we believe that exploring the
idea of signature files can lead to interesting new techniques
for retrieval of not only text documents, but also of other types
of documents mentioned earlier.

In the context of our search for new ways of looking
at signature methods we tried to apply a fuzzy approach to
signature construction and manipulation [1], [7], [11]. Fuzzy
signatures can also be used in cases where data is missing.
Hierarchical Fuzzy Signatures are generalizations of the Vector
Valued Fuzzy Set concept which has been introduced in [5].
The results were the definition of fuzzy signatures which we
present in this paper.

This paper is a direct continuation of our previous work
published in [9]. We further develop our idea, explore new
possibilities and provide experimental results.

Fig. 1. Concept lattice constructed from color features detected in the dataset

II. MOTIVATION

In our older paper [3] we presented our content-based image
retrieval system. This system can detect multiple features in an
image and therefore create a description of such image. These
features are constructed to correspond human intuition so they
can be used for search and similarity queries.

To organize the description of images we have used a formal
concept lattice which can identify all natural groups of images
and their features which are present in the data. This approach
is suitable for investigating the inner structure of the data, but
has several practical drawbacks, which limits the use of this
method for several purposes. Figure 2 illustrates the structure
of the image dataset, with the color features detected. We have
to employ reducing methods to obtain a maintable, but still
useful, structure analysis. The structure becomes even more
complex if we consider fuzzy degrees of detected features.

Practical drawbacks
• formal concept lattice construction is a time and space

demanding task (see fig. 1), especially in the fuzzy
environment (exponential complexity)

• the complexity can be handled by reduction methods, but
most of them depend on some apriori known parameters
(see fig. 2)

• navigation (search) in the reduced lattice is not guaranteed
to provide the same results as the navigation in the
original lattice

To address these problems and obtain a structure for nav-
igation (search) in feature descriptions, we have decided to
adopt signature techniques – respectively their fuzzy extension
– in combination with a tree-like organization. The aim of our
experiment is the practical evaluation of the Fuzzy S-Tree and
its variants over the real image dataset.

III. BRIEF DESCRIPTION OF SIGNATURE FILES

Before we introduce the definition of fuzzy signatures, we
would like to mention the basic principles of all signature
methods.

Information retrieval methods are used to separate a subset
of relevant documents within the finite set of all documents
D = {D1, D2, . . . , Dk}. The extracted documents are said to

978-1-4577-0653-0/11/$26.00 ©2011 IEEE 633

Fig. 2. Concept lattice constructed from color features detected in the dataset,
reduced to rank 3

be relevant to a given query Q. A certain amount of work
may be required before any query can be evaluated. During
this phase, auxiliary data structures are created on disk. These
structures enable later evaluation of any given query. In
signature methods, signatures are auxiliary structures and are
stored in a signature file on disk.

An ordinary signature is a bit string s1s2 . . . sn, of a fixed
length n. Signatures of all documents in a set are created and
can be used for query evaluation as the signature of the query
is compared with them. The lengths of the document signature
Si and the query signature SQ are the same. Document Di is
relevant only if its signature Si contains ones in all positions
in which ones are encountered in the query signature SQ.

An important issue is the way the signatures are created.
There are two basic possibilities: superimposed coding and
concatenation. Since superimposed coding is the only way
actually used, we only describe this method. The signature
of a document is created in the following way:

In the beginning, the bit string of signature Si contains
zeros in all positions. Let’s assume that document Di contains
a finite number of distinct words {w1, w2, . . . , wl}. Then m
positions in the signature bit string are selected for each
word. If the bit string contains zeros in these positions, they
are replaced with ones. These positions should be distributed
evenly throughout the full length of the signature. They are
typically chosen as a result of a hash function which takes
the word wj as an argument. The resulting effect is the same
as if one signature Swj

was created for each word wj . This
signature would contain up to m ones. The signature of the
whole document would be the result of superimposing all
signatures Sw1 , Sw2 , . . . , Swl

.
The query signature is created in the same way. The

query contains a finite number of words which are used as

arguments for the same hash function which was used for the
construction of document signatures.

Another important issue is the organization of signatures in
the signature file. It affects the efficiency of query evaluation.
We will discuss possible organizations in the part devoted to
fuzzy signature files.

IV. FUZZY SIGNATURES

As hash functions are for signature extraction, collisions
are bound to occur. This results in the selection of the same
position p for the distinct words wi, wj . The bit in the
position p, set to one, indicates the presence of the word wp

in the corresponding document. The word wp belongs in the
set M of all words, for which the hash function has the same
result p. That is why the value in position p is the truth value
of the statement that the corresponding document belongs to
the set of all documents containing any word from the set
M . This value is expressed using two numeric values, 0 and 1.

The ideal situation for signature methods occurs when each
position in the signature corresponds to exactly one word. In
this case, the set M contains just one word.

This interpretation of values in signature string positions
is just one step from using fuzzy sets and fuzzy logic for
signature extraction. Assuming that the values in signature
positions represent degrees of membership in certain sets, we
can extend these degrees using numbers from the interval
〈0, 1〉.

Definition The fuzzy signature F is a vector (f1, f2, . . . , fn),
where fi ∈ 〈0, 1〉∀i = 1, 2, . . . , n.

Provided that we have created fuzzy signatures for all
documents in the set D and that we have the fuzzy signature
FQ of the query Q, we can use the operation of conjunction
to find the relevant documents. The operation is defined in
the same way as in fuzzy logic.

Definition The conjunction of fuzzy signatures Fi and Fj is
the fuzzy signature

Fi

∧
Fj = (fi1 ∧ fj1 , fi2 ∧ fj2 , . . . , fin

∧ fjn
)

The operation ∧ is defined for all elements of the fuzzy
signature as

fir ∧ fjr = min{fir , fjr}

In order to find all documents relevant to the given query
Q we have to find all documents Di which satisfy the formula
Fi

∧
FQ = FQ. This actually means that for a document to be

relevant to the query, all the elements of its signature must be
equal to or greater than all the corresponding elements in the
query signature.

The operation of disjunction can be defined in a similar
way:

634

Fig. 3. Illustration of the feature extraction and fuzzy generation process

Definition The disjunction of fuzzy signatures Fi and Fj is
the fuzzy signature

Fi

∨
Fj = (fi1 ∨ fj1 , fi2 ∨ fj2 , . . . , fin ∨ fjn)

The operation ∨ is defined for all elements of the fuzzy
signature as

fir
∨ fjr

= max{fir
, fjr
}

These definitions of logical operations with fuzzy signatures
reflect the common definitions of logical operations in fuzzy
logic. The definitions can be found in [4].

We have described the method of evaluating a query by
examining the fuzzy signatures of individual documents and
the signature of the query itself, but we have not discussed
how fuzzy signatures are actually constructed. We assume that
the elements fi of the string F are degress of membership
of the feature Mi. But if the number of features is too
large, we may need the signatures to be shorter. We can
cluster the documents, according to their features, to some
predefined number of clusters (equal to the required length of
the signature). The fuzzy signature of one particular document
is then given by a vector, whose components are distances
from the calculated clusters (see fig. 3).

The application of fuzzy signatures is not limited just to text
documents but that they could also be applied to multimedia
databases. It is possible to use this method for describing
geometrical objects. We could specify certain features of these
objects then check for the presence of these features in each
object. The elements of the fuzzy signatures would express our
degree of confidence that a particular feature is present in a
particular drawing.

V. ORGANIZATION OF FUZZY SIGNATURES

Another issue to be resolved is the way fuzzy signatures
are organized in the signature file. The simplest way would be
to store the fuzzy signatures in sequential order. This method
is not efficient if the time required for query evaluation is
concerned. That is why we have modified the data structure
called S-tree, which is traditionally used to store ordinary
signatures. In the next section we will sum up the specification
of the original S-tree. Following that we will present the
modification which enables to use this data structure to store
fuzzy signatures. An alternate way of considering weights in
signatures is discussed in [8].

A. Fuzzy S-tree

We can obtain a data structure for the storing of fuzzy
signatures by a modification of the S-tree.
Fuzzy signatures of documents will be stored in leaf pages
rather than ordinary signatures. In the non-leaf pages there
will be fuzzy signatures too but each fuzzy signature in a
non-leaf page will correspond to another page at the lower
level. These signatures are created as disjuctions of all fuzzy
signatures in the corresponding pages. The operation of
disjunction was defined in IV.

S-tree is a balanced tree which uses similar principles as
the well known B-tree or its variation, the B+-tree. S-tree is
a data structure which allows to search for, insert and remove
signatures.

Fuzy signatures are created using a feature extraction
function applied to some objects in the database. They are
then stored in the leaf pages of the tree. Each signature is
accompanied by a link which points to the object described
by the signature, or by the object itself. The pages at higher
levels contain signatures too, but these signatures are created
by superimposing all signatures in the pages of their corre-
sponding successors. This means that each record in a non-leaf
page has one whole page assigned at the lower level. In the
non-leaf pages there are links to successor pages rather than
database objects. Several rules similar to B-tree are defined,
for the implementation of the above operations.

1) Each path from the root to any leaf has the same length
h.

2) The root page contains the minimum of 2 records and
the maximum of K records, except for the cases when
it is a leaf page at the same time.

3) Each page except for the root page contains the minimum
of k records and the maximum of K records.

k and K are constants.

The major advantage of the S-tree structure is the reduction
of the number of signatures which must be searched during the
evaluation of a query. In an ideal case, this number would be
proportional to the height of the tree. However, this situation
is very unlikely as we will explain in the section devoted to
splitting of tree pages.

635

B. Operations enabled by S-tree

1) Searching: Searching is the most common operation. It
gives the possibility to identify signatures which are relevant to
a given query. The query is transferred into a query signature
using the same hash function which was used for the extraction
of object signatures. The query signature is used for navigation
through the tree from the root to a leaf in the following way:
All signatures In the current page are examined to identify all
signatures which contain ones in all positions in which there
are ones in the query signature.

There can be more than one signature which satisfies this
condition. If the current page is a leaf page, objects described
by the signatures identified are added to the result of the whole
search. If it is not a leaf page, the search continues in the pages
of all successors corresponding to the signatures identified.

2) Inserting a signature: Insertion of a record is the next
most commonly used operation in most applications. The
record contains the signature of the inserted object and a link
to the object, or the object itself. The record must be placed
in a leaf page and the procedure of insertion must follow the
defined rules. The algorithm of insertion starts in the root page
again and continues down the tree until it reaches a leaf page.
In each step, the algorithm selects one page from the successors
of the current page. The signatures in the selected page must be
as similar to the inserted signature as possible. To specify the
similarity, several measures can be used. Two most commonly
used methods are as follows:

1) Hamming metrics δ

δ(S, S
′
) = γ(S ∨ S

′
)− γ(S ∧ S

′
)

where S and S
′

are signatures of the page and of the
inserted object,
L is the length of the signatures
γ(S) =

∑L
i=1 si is the weight of the signature S

2) increase of weight ε

γ(S ∨ S
′
) = γ(S) + ε(S, S

′
)

ε(S, S
′
) = γ(S ∨ S

′
)− γ(S)

This measure is not commutative and therefore it is not
a metric. Nevertheless, it proves to be more suitable for
our purposes because we try to minimize the number of
ones in the signature of the whole page as described in
detail in the following paragraph.

3) Splitting of pages: If the page selected for insertion of
a new record is already full (i.e. it contains K records), then it
is necessary to split this page into two new pages containing k
and (k+1) records. The record of the original page is replaced
in the page of the predecessor by two records of the newly
created pages. In case the predecessor page is also full, the
splitting continues until it eventually reaches the root page. If
the root page is split, the height of the tree will increase by
one. This is the only way how the tree can grow.

To preserve the logarithmical class of all operations, it is
important that the number of pages which must be searched

Signature size Splitting method Distance measure Seek Page ratio
16 PairSplit WeightIncrease 1,42
32 PairSplit WeightIncrease 1,29
16 PairSplit Hamming 2,17
32 PairSplit Hamming 1,94
16 PivotSplit WeightIncrease 1,31
32 PivotSplit WeightIncrease 1,23
16 PivotSplit Hamming 1,90
32 PivotSplit Hamming 1,65

TABLE I
SUMMARIZED RESULTS OF EXPERIMENT OVER DATASET WITH 1,600

ITEMS AND 62 FEATURES

after the the current page is left is as close to one as possible.
That is why we try to maintain the weight of all pages at
minimum. The higher the number of ones in the signature of
a page, the more likely it is that the signature will match the
query signature even though its combination of ones resulted
from superimposing several signatures with a lower weight.

It is our aim to find a way of splitting pages which would
preserve low weight of the newly created pairs of pages while
maintaining high Hamming distance between the pages in the
pairs. There is no optimum algorithm at the moment and that
is why heuristic approach is used. The simplest choice is to
split the page into half w.r.t. some signature order (we call it
PivotSplit in the rest of the text). The following way of splitting
the pages is suggested by Depisch in [2].
The signature with the highest weight is identified among
the signatures within the original page, including the newly
inserted signature. The record of this signature is marked as
seed α and it is stored in the first of the two new pages.
The record whose signature has the largest distance from α
is marked as seed β and it is stored in the second page.
The remaining records are divided between the new pages
depending on whether their distance to seed α is larger than
the distance to seed β (we call it PairSplit in the rest of the
text).

4) Deletion of a record: The operation of deletion is
relatively rare and can be implemented in the following way.
First we find the leaf page which contains the record to be
removed. The record is deleted from the page. If the number
of records in the page has not dropped below the constant k, the
operation is completed. Otherwise it is necessary to reconstruct
the whole tree to make sure that it satisfies the defined rules.
This can be achieved by removing the whole affected leaf page
and inserting its records back using the usual procedure for
inserting records into the tree. The only exception is that the
reinserted records must stay at the same level where they had
been before they were removed from the tree.

VI. EXPERIMENT

To evaluate the presented approach, we have used an image
dataset containing 1,600 images. Using our content-based
image retrieval system, we have detected 62 fuzzy features
in these images. For each image, we have therefore obtained
a vector vi = (vi,1, . . . , vi,j , . . . , vi,62), where vi,j ∈ 〈0, 1〉
denotes the presence of j-th feature in the i-th image. These

636

vectors have been clustered (with the number of constructed
clusters equal to the length of the signature) and the fuzzy
signature of the corresponding vector has been created as a
coordinate in the vector space induced by the clusters (the
whole process is illustrated in fig. 3). These signatures have
then been inserted into the Fuzzy S-Tree (with different param-
eters and measures). Then we performed several search queries
and recorded the process of searching in the constructed tree.

Results of this experiment are summarized in table I. In the
classical B+ tree, there is always, at maximum, one way to
navigate when searching for an element. As mentioned before,
this is not generally true in the S-Tree, nor in the Fuzzy S-
Tree. The efficiency of this type of tree is given by the number
of alternate ways which must be searched in each step – the
closer the number is to one, the better.

In the experiment we have tested the two aforementioned
distance measures (Hamming distance and WeightIncrease)
and two page-splitting strategies (PivotSplit and PairSplit).
From the presented results it is evident that the Weight-
Increase measure provides better results than the Hamming
distance. Contrary to this, the improvement expected by using
the more sophisticated PairSplit page-splitting method (which
was proved to be useful for binary signatures) has not been
observed in our experiment. This fact should be further inves-
tigated.

VII. CONCLUSION AND FUTURE WORKS

The presented results indicate the viability and usefulness
of our approach. Due the limited scope of this paper, we are
unable to present further details, applications and evaluation
of this approach.

In future work we would like to focus on adopting and eval-
uating more page-splitting approaches from binary signatures
(e.g. approaches mentioned in [10]).

ACKNOWLEDGMENT

This research is partially supported by the Grant Agency of
the Czech Republic under the grants No. GA 102/09/1494.

REFERENCES

[1] A. Ballagi and L. T. Koczy, Robot cooperation by fuzzy signature sets
rule base, Applied Machine Intelligence and Informatics (SAMI), 2010
IEEE 8th International Symposium on Applied Machine Intelligence and
Informatics, pp.37-42, 28-30, 2010.

[2] U. Deppisch, S-tree: A Dynamic Balanced Signature Index for Office
Retrieval, Proc. of ACM Research and Development in Information
Retrieval, pp. 77–87, 1996.

[3] Z. Horak, M. Kudelka and V. Snasel, FCA as a Tool for Inaccuracy De-
tection in Content-Based Image Analysis, IEEE International Conference
on Granular Computing, pp. 223–228, 2010.

[4] G. J. Klir, S. U. Clair and B. Yuan, Fuzzy set theory: foundations and
applications, Prentice-Hall, 1997.

[5] L. T. Koczy, Vector Valued Fuzzy Set, Busefal, pp. 1–57, 1980.
[6] W. Y. Ma and B. S. Manjunath, Pictorial queries: Combining feature

extraction with database search, Technical Report 18, University of
California at Santa Barbara, Dept. of Electrical Engineering, 1994.

[7] B. S. U. Mendis, T. D. Gedeon, J. Botzheim, L. T. Koczy, Gen-
eralised Weighted Relevance Aggregation Operators for Hierarchical
Fuzzy Signatures, Computational Intelligence for Modelling, Control and
Automation, 2006 and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce, pp. 198, 2006.

[8] P. Moravec, J. Pokorny and V. Snasel, Vector query with signature
filtering, Proceedings of 6th BIS conference, 2003.

[9] V. Snasel, Fuzzy Signatures for Multimedia Databases, Advances in
Information Systems, pp. 257–264, Springer, 2000.

[10] E. Tousidou, A. Nanopoulos and Y. Manolopoulos, Improved methods
for signature-tree construction, The Computer Journal, vol. 43, 2000.

[11] T. Vamos, L. T. Koczy and G. Biro, Fuzzy signatures in data mining,
IFSA World Congress and 20th NAFIPS International Conference, vol. 5,
pp. 2842–2846, 2001.

637

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

