
METHODOLOGIES AND APPLICATION

Optimal job scheduling in grid computing using efficient binary
artificial bee colony optimization

Sung-Soo Kim • Ji-Hwan Byeon • Hongbo Liu •

Ajith Abraham • Seán McLoone

! Springer-Verlag Berlin Heidelberg 2012

Abstract The artificial bee colony has the advantage of
employing fewer control parameters compared with other

population-based optimization algorithms. In this paper a

binary artificial bee colony (BABC) algorithm is developed
for binary integer job scheduling problems in grid com-

puting. We further propose an efficient binary artificial bee

colony extension of BABC that incorporates a flexible
ranking strategy (FRS) to improve the balance between

exploration and exploitation. The FRS is introduced to
generate and use new solutions for diversified search in

early generations and to speed up convergence in latter

generations. Two variants are introduced to minimize the
makepsan. In the first a fixed number of best solutions is

employed with the FRS while in the second the number of

the best solutions is reduced with each new generation.
Simulation results for benchmark job scheduling problems

show that the performance of our proposed methods is

better than those alternatives such as genetic algorithms,
simulated annealing and particle swarm optimization.

Keywords Artificial bee colony (ABC) !
Binary artificial bee colony (BABC) !
Efficient binary artificial bee colony (EBABC) !
Flexible ranking strategy (FRS) ! Job scheduling !
Grid computing

1 Introduction

A computational grid is a large scale, heterogeneous col-

lection of autonomous systems, geographically distributed
and interconnected by low-latency and high-bandwidth

networks (Foster and Kesselman 2004). It provides the

underlying infrastructure for the rapidly growing field of
cloud computing (Foster et al. 2008; Wei and Blake 2010).

The sharing of computational jobs is a major application

for grids. In a computational grid, resources are dynamic
and diverse and can be added and withdrawn at any time at

the owner’s discretion, and their performance or load can

change frequently over time. Grid resource management
provides functionality for the discovery and publishing of

resources as well as scheduling, submission and monitoring

of jobs. Scheduling is a particularly challenging problem as

Communicated by F. Herrera.

S.-S. Kim ! J.-H. Byeon
Department of Industrial Engineering, Kangwon National
University, Chunchon 200-701, Korea
e-mail: kimss@kangwon.ac.kr

J.-H. Byeon
e-mail: benjy86@nate.com

H. Liu (&)
School of Information Science and Technology, Dalian Maritime
University, Dalian 116026, China
e-mail: lhb@dlut.edu.cn

H. Liu
Institute for Neural Computation, University of California San
Diego, La Jolla, CA 92093, USA

A. Abraham
Machine Intelligence Research Labs, Scientific Network for
Innovation and Research Excellence, Auburn, WA 98071, USA
e-mail: ajith.abraham@ieee.org

A. Abraham
IT For Innovations - Center of Excellence, VSB - Technical
University of Ostrava, Ostrava - Poruba 708 33, Czech Republic

S. McLoone
Department of Electronic Engineering, National University of
Ireland Maynooth, Maynooth, Kildare, Ireland
e-mail: sean.mcloone@eeng.nuim.ie

123

Soft Comput

DOI 10.1007/s00500-012-0957-7

Author's personal copy

it is known to be NP-complete (Garey and Johnson 1979).

Dong and Akl (2006) provide a detailed analysis of the
scheduling problem as it pertains to the grid.

Swarm intelligence is an innovatively distributed intel-

ligent paradigm whereby the intelligence that emerges in
nature from the collective behaviours of unsophisticated

individuals interacting locally with their environment is

exploited to develop optimization algorithms that identify
optimum solutions efficiently in complex search spaces

(Bonabeau et al. 1999; Kennedy et al. 2001; Liu et al.
2007). Within this paradigm algorithms have been devel-

oped that mimic swarming behaviours observed in flocks of

birds, schools of fish, or swarms of bees, colonies of ants
and even human social behaviour, from which intelligence

is seen to emerge (Clerc 2006; Walker 2007; Forestiero

et al. 2008; Su et al. 2009; Banks et al. 2009; Singh and
Sundar 2011; Yang 2011; Cuevas et al. 2012; Abraham

et al. 2012; Yue et al. 2012). Recently, these algorithms

have been investigated as a means of efficiently estimating
optimal job allocation on computational grids in applica-

tion-level scheduling (Abraham et al. 2008; Izakian et al.

2010; Liu et al. 2010).
In this paper we introduce the efficient binary artificial

bee colony (EBABC) algorithm as an enhancement of the

binary artificial bee colony (BABC) algorithm (Pampara
and Engelbrecht 2011; Chandrasekaran et al. 2012) for

solving the makespan minimization problem in grid com-

puting job scheduling (an NP-complete problem). We
demonstrate theoretically that the proposed algorithm

converges with a probability of 1 towards the global opti-

mal and with the aid of benchmark job scheduling prob-
lems illustrate its operation and performance.

The rest of the paper is organized as follows: Section 2

describes related work on swarm intelligence based
approaches to optimal job scheduling. Section 3 deals with

some theoretical foundations related to job scheduling in

grid computing. In Sect. 4, we describe the proposed
EBABC algorithm in detail. Experimental results and

analysis are then presented in Sect. 5 and finally conclu-

sions are presented in Sect. 6.

2 Related work

The job scheduling problem has attracted the attention of

researchers worldwide, not only because of its practical and
theoretical importance, but also because of its complexity.

It is a NP-complete optimization problem (Garey and

Johnson 1979; Brucker 2007; Liu et al. 2009; Pinedo
2012). Different approaches have been proposed to solve

this problem. Bruker and Schlie (1990) illustrated a poly-

nomial algorithm for solving job shop scheduling problems
with two jobs. Mastrolilli and Gambardella (1999)

introduced a solution graph representation of the problem

and developed a local tabu search-based algorithm to identify
new solutions in the neighbourhood of existing solutions.

Jansen et al. (2000) provided a linear time approximation

scheme for problems where the number of machines and the
maximum number of operations per job are fixed. Because of

the intractable nature of the problem and its importance in

practical applications, it is desirable to explore other avenues
for developing heuristic algorithms.

Braun et al. (2001) investigated 11 static heuristics for
the job scheduling that try to capture different degrees of

heterogeneity of grid resources and workload of jobs and

resources. This study compared the techniques using a set
of simulated scheduling problems defined in terms of

expected time to compute (ETC) matrices and provided

insights into circumstances where one technique outper-
forms another. Genetic algorithms (GA) were investigated

for job scheduling in grid computing by Di Martino and

Mililotti (2004), Gao et al. (2005) and Xhafa et al. (2007).
They used the benchmark job scheduling problems introduced

by Braun et al. (2001) to verify their proposed method. They

considered 12 different types of ETC matrices.
Liu et al. (2010) proposed fuzzy particle swarm opti-

mization (FPSO) and verified the performance of particle

swarm optimization (PSO) compared with GA and simu-
lated annealing (SA). Their FPSO approach to scheduling

jobs on computational grids is based on using fuzzy

matrices to represent the position and velocity of the par-
ticles in PSO. Abraham et al. (2008) and Izakian et al.

(2010) proposed the discrete particle swarm optimization

(DPSO) algorithm for job scheduling in grid computing.
Laalaoui and Drias (2010) present an ant colony optimi-

zation (ACO) algorithm to search for feasible schedules of

real-time tasks on identical processors. A learning tech-
nique is introduced to detect and postpone possible pre-

emptions between tasks. Ritchie and Levine (2003, 2004)

applied local search, the ant algorithm combined with local
and tabu search for scheduling independent jobs in grid

computing. They demonstrate that the hybrid ant algorithm

can find shorter schedules on benchmark problems than
local search, tabu search or genetic algorithms. In Izakian’s

paper (Izakian et al. 2010), the scheduler seeks to minimize

makespan in the grid environment. They compare their
DPSO with GA, ACO, continuous particle swarm optimi-

zation (CPSO) and FPSO using 12 ETC matrices for 512

jobs and 16 machines (Braun et al. 2001) to illustrate that
their proposed method is more efficient. Xiao et al. (2012)

proposed a hybrid approach for solving the multi-mode

resource-constrained multi-project scheduling problem, in
which the labour division feature of ACO is employed to

establish a task priority scheduling model and improved

particle swarm optimization is used to identify the opti-
mum scheduling scheme. Vivekanandan et al. (2011)

S. Kim et al.

123

Author's personal copy

developed an artificial bee colony (ABC) algorithm for grid

computing to reduce the makespan and showed that it
outperformed ACO.

The job scheduling problem in grid computing is similar

to the multiprocessor scheduling problem (MSP). Hou
et al. (1994) used genetic algorithms for multiprocessor

scheduling. They assume that the multiprocessor system is

uniform and non-preemptive, that is, the processors are
identical, and a processor completes the current task before

executing a new one. Davidovic et al. (2009) used bee
colony optimization for multiprocessor systems. They also

assume that the problem of static scheduling has indepen-

dent tasks on homogeneous multiprocessors (identical
processors). The survey paper by Davis and Burns (2011)

covers research into hard real-time scheduling for homo-

geneous multiprocessor systems. The grid computing job
scheduling problem considered in this paper is one of

allocating independent jobs to different grids (different

processors in MSP). There are more specific papers of
state-of-art for MSPs (Thesen 1998; Fujita and Yamashita

2000; Wu et al. 2004).

Pan et al. (2011) proposed a discrete implementation of
the basic ABC algorithm so that it could be used to solve

the lot-streaming flow shop scheduling problem. They

developed a population initialization method and discrete
implementations of the three phases of ABC operation

(represented by employed bees, onlooker bees and scout

bees) for their discrete artificial bee colony (DABC)
algorithm. Ziarati et al. (2011) developed a bee algorithm,

artificial bee colony and bee swarm optimization for the

resource constrained project scheduling problem (RCPSP).
They considered the applicability of the bee methods for

RCPSP. Wong et al. (2010) investigated an improved bee

colony optimization algorithm with Big Valley landscape
exploitation (BCBV) to solve the job shop scheduling

problem. The BCBV algorithm mimics the bee foraging

behaviour where information of a newly discovered food
source is communicated via waggle dances. Li et al. (2011)

proposed a hybrid Pareto-based artificial bee colony

(HABC) algorithm for solving the multi-objective flexible
job shop scheduling problem to balance the exploration and

exploitation capability.

Sharma and Pant (2011) proposed intermediate ABC (I-
ABC) by suggesting some modifications to the structure of

basic ABC to further improve its performance. Bao and

Zeng (2009) proposed and compared disruptive selection,
tournament selection and rank selection strategies for

avoiding premature convergence of ABC to local optima.

Alzaqebah and Abdullah (2011) compared three selection
strategies (i.e. disruptive, tournament and rank) with the

not proportional selection strategy used by onlooker bees in

the original ABC. Mezura-Montes and Velez-Koeppel
(2010) proposed an elitist artificial bee colony for

constrained real-parameter optimization by generating

more diverse and convenient solutions using three types of
bees (employed, onlooker and scout). However, a critical

disadvantage of this method is that it increases the number of

parameters that need to be determined. Lee and Cai (2011)
proposed a diversity strategy to resolve the problem of pre-

mature convergence and difficulties escaping local optima for

the improved ABC algorithm. The main consideration with
ABC like heuristic algorithms is how to achieve the correct

balance between exploration for diversified search and
exploitation for convergence to the optimal solution.

3 Job scheduling in grid computing

In the computational grid environment, there is usually a
general framework focusing on the interaction between a grid

resource broker, domain resource manager and the grid

information server (Abraham et al. 2000). Computational
grids usually assume that the physical and virtual levels are

completely split with a mapping existing between resources

and users of the two layers (Nemeth and Sunderam 2003). Han
and Berry (2008) proposed a novel semantic-supported and

agent-based decentralized grid resource discovery mecha-

nism. Without overhead of negotiation, the algorithm allows
individual resource agents to semantically interact with

neighbour agents based on local knowledge and to dynami-

cally form a resource service chain to complete the tasks.
Chung and Chang (2009) presented a Grid Resource Infor-

mation Monitoring (GRIM) prototype to manage resources

for dynamic access, resource management in a large-scale grid
environment. In a grid environment it is usually easy to obtain

information about the speed of the available grid nodes but

quite challenging to determine the computational processing
time requirements of the user. To conceptualize the problem

as an algorithm, we need to dynamically estimate the job

lengths from user application specifications or historical data
(Liu et al. 2010).

Some key terminologies associated with job scheduling

in grid computing are discussed in Liu et al. (2010). Here,
we explain only the terminology relevant to our objective

problems. A grid node (computing unit) is a set of com-

putational resources with limited capacities. A job is con-
sidered as a single set of multiple atomic operations/tasks.

A schedule is the mapping of the tasks to specific time

intervals on the grid nodes. Consider Jj (j 2 f1; 2; . . .;Ng)
independent user jobs on Gi (i 2 f1; 2; . . .;Mg) heteroge-

neous grid nodes and an overall objective of scheduling the

jobs so as to minimize the completion time. The speed of
each node is expressed as the number of Cycles Per Unit

Time (CPUT) and the length of each job as the number of

cycles. Each job Jj has its processing requirement (cycles)
and the node Gi has its calculating speed (cycles/second).

Optimal job scheduling in grid computing using EBABC

123

Author's personal copy

Individual jobs Jj must be processed until completion on a

single grid node. To formulate our objective, we define Cij

as the time it takes grid node Gi to complete job Jj. We use
an M 9 N binary matrix X = xij to denote decision vari-

ables, with xij = 1 if job j is assigned to grid node i and

xij = 0 otherwise. As mentioned above, scheduling is an
NP-complete problem. Generally assumptions are made to

simplify, formulate and solve scheduling problems. We

also comply with the most common assumptions:

– a successor job is performed immediately after its prede-

cessor is finished (provided the machine is available);
– each machine can handle only one job at a time;

– each job can only be performed on one machine at a

time;
– there is no interruption of jobs or reworking once they

have been processed successfully;

– setup and transfer times are zero or have uniform
duration;

– jobs are independent.

The time required to complete the processing of all jobs for

a given schedule X is known as the ‘‘makespan‘‘, MS. Since all

grid nodes begin computing at the same time, the schedule
completion time is determined by the grid node that has the

longest processing time for all the jobs assigned to it; hence

MSðXÞ ¼ max
i21;2;...;M

XN

j¼1

Cij % xij ð1Þ

The objective of the binary integer programming problem

is to determine the schedule X that minimizes the
makespan MS(X) while satisfying the schedule feasibility

constraints, that is,

Y& ¼ min
X

MSðXÞ ð2Þ

subject to

xij ¼
1 if job j is assigned to grid node i
0 otherwise.

!

PM

i¼1

xij ¼ 1 8j
ð3Þ

An optimal schedule will be one that optimizes the
makespan. For example, the jobs J1, J2, J3, J6, J7, J9 and

J12 are allocated on grid node 1 in Fig. 1, C1,1 =

1.5, C1,2 = 3, C1,3 = 4, C1,6 = 7, C1,7 = 7.5, C1,9 = 10

and C1,12 = 13. For grid node 1, the single node flowtimeP
j=1
N C1j = 46. The other two grid node flowtimes are also

46. So the makespan is 46 in the schedule solution.

4 Efficient binary artificial bee colony for job
scheduling

In this section, we introduce the EBABC for solving job

scheduling problems. First, the basic artificial bee colony

(ABC) is summarized. Then the BABC is developed for job
scheduling in grid computing. The efficient BABC algo-

rithm (EBABC) is presented as an extension of BABC

incorporating a flexible ranking strategy to improve per-
formance. We also prove that the proposed algorithm con-

verges with a probability of 1 towards the global optimum.

4.1 Artificial bee colony

The ABC is an algorithm motivated by the intelligent
behaviour exhibited by honeybees when searching for

food. The performance of ABC is better than or similar to

other population-based algorithms with the added advan-
tage of employing fewer control parameters (Ma et al.

2011; Li et al. 2012). The only important control parameter

for ABC is Limit; the number of unsuccessful trials before
a food source is deemed to be abandoned (Karaboga and

Akay 2009; Karaboga and Basturk 2007, 2008). The main

steps of the basic ABC algorithm are summarized in
Algorithm 1 (Karaboga and Akay 2009).

In ABC, the colony of artificial bees contains three

groups of bees: employed bees, onlooker bees and scout
bees. For every food source (FS) there is only one

employed bee. A fitness function is used to assign a quality
or ‘nectar’ value to the food sources. Each employed bee

searches for a new food source within its own neighbour-

hood and moves to it if it has a higher nectar value.
Employed bees then share their food source information

(location and nectar value) with the onlooker bees waiting

in the hive. Each onlooker bee then selects one of the
employed bee food sources probabilistically in a process

similar to roulette wheel selection, The probability

assigned to the kth food source, Pk, is given by

Fig. 1 The scheduling solution
for (3, 13)

S. Kim et al.

123

Author's personal copy

Pk ¼
1
fkPSN
i¼1

1
fi

ð4Þ

where fk is the nectar value of the kth food source and SN is the

total number of food sources (=Number of employed bees).
After selecting its food source each onlooker bee then seeks

out one new food source within its neighbourhood and moves

to this food source if it has a higher nectar value. If the number
of active food sources outnumbers the maximum allowed,

those with the lowest nectar values are abandoned. An

employed bee for a food source that has been abandoned
becomes a scout bee and starts to search for a new food source

randomly. Thus, while onlooker bees and employed bees are

targeted at exploitation, scout bees provide a mechanism for
exploration (Karaboga and Basturk 2008).

4.2 Binary artificial bee colony

The BABC algorithm is formulated in this section for appli-
cation to job scheduling in grid computing. A job scheduling

solution can be represented as shown in Table 1. If the job j is

assigned to grid node i, then ‘‘1‘‘ is assigned. Otherwise, ‘‘0’’
is assigned. This corresponds to encoding a food source as a

matrix X defined in accordance with the constraints given in

Eq. (3). The matrix for Table 1 has 3 9 13 elements, hence
the search space has 39 dimensions.

The BABC has the following steps:

1. The algorithm begins by setting the Limit (maximum

number of unsuccessful trials when searching for an

improved food source in the vicinity of an active food
source) and SN (number of active food sources,

employed bees and onlooker bees) parameters and

initializing the population of food sources (solutions)

assigned to the employed bees randomly using the
binary solution representation for job scheduling. For

example, one grid node is selected randomly from grid

nodes 1, 2 and 3 for each job as shown in Table 1.
2. The initial population of food sources is evaluated

using the makespan objective function MS(X), as

defined in Eq. (1). Each food source k is then assigned
a score or nectar value fk = MS(Xk).

3. Employed bees New candidate solutions are then

generated in the neighbourhood of existing solutions by
swapping any two randomly selected jobs (whole

columns in X) in the current solutions (one for each

employed bee). For example, by swapping the randomly
selected jobs J4 (0 0 1) and job J8 (0 1 0) for the solution

shown in Table 1 a new neighbourhood solution is

obtained. If the two randomly selected jobs are the same,
then the random selection process is repeated.

4. Employed bees A greedy selection process is applied to

update the food sources assigned to the employed bees,
that is, for each employed bee, if its candidate neigh-

bourhood food source is better than its existing one the

employed bee adopts the new food source. This is noted
by setting the trial count variable Trial for that food

source to ‘‘0’’. Otherwise, if the employed bee does not

change its food source the trial count is incremented by 1.
5. Onlooker bees Each onlooker bee selects one of the

employer bee food sources probabilistically based on the

nectar values of the food sources. The food source
selection probabilities are computed according to Eq. (4).

6. Onlooker bees Each onlooker then generates a new solution

(food source) by swapping any two randomly selected
columns of their selected food sources. If the new food

source has a higher nectar value than the existing food

source, the corresponding employed bee updates it position
to the new food source and sets the food source trial count

variable Trial to ‘‘0’’. Otherwise, the employed bee does not

change its food source and the trial count is incremented by1.
7. Scout bees If the Trial count for a food source

(employed bee) exceeds the value defined by Limit,
the food source is abandoned and the corresponding
employed bee becomes a scout bee and generates a

new food source (solution) randomly.

8. Finally, the best solution identified by the swarm is
memorized and the algorithm repeats from step 3 until

a predetermined termination criterion is met.

4.3 Efficient binary artificial bee colony

A weakness of the BABC algorithm is that the new ran-
domly generated solutions by the scout bees in general

have poorer quality compared with existing solution groups

Table 1 An optimal schedule for (3,13)

Grid
node

Job

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13

G1 1 1 1 0 0 1 1 0 1 0 0 1 0

G2 0 0 0 0 0 0 0 1 0 1 0 0 1

G3 0 0 0 1 1 0 0 0 0 0 1 0 0

Optimal job scheduling in grid computing using EBABC

123

Author's personal copy

identified by the employee and onlooker bees. Even though

the generation of random solutions is desirable for exploration
purposes the overall performance of the algorithm can be

impacted as the number of these solutions is increased. In

order to solve this problem and to generate new solutions
whose quality is not significantly different from existing

solutions we propose a modification to the BABC algorithm

involving a flexible ranking strategy (FRS). The resulting
algorithm, referred to as the EBABC algorithm, is summa-

rized in Algorithm 2. Steps 1 to 10 of EBABC correspond to
steps 1 to 6 of the BABC algorithm as described in the pre-

vious section. The new FRS step is introduced between step 6

and 7 of the BABC algorithm and proceeds as follows:

– FRS step The food sources of the employed bee popula-

tion are arranged in order of ascending nectar value

(Makespan). Then the worst solution in the population is
removed and a new solution is generated probabilistically

as a combination of the best RSN solutions in the
population. The probability of selecting a job from the kth

solution among the RSN best solutions is computed as

Pk ¼
1
fkPRSN

i¼1
1
fi

ð5Þ

As an example of the operation of FRS, consider a

population of 20 food sources with makespans (nectar values)

as given in Table 2. If RSN = 3 the three best food sources in
the population (i.e. FS11, FS13 and FS16) are used to generate a

new food source as shown in Fig. 2. The probability of

selecting each job for the new food source FS from these three
sources is computed according to Eq. (5) as follows:

PðFS11Þ ¼
1

50:5

1

50:5
þ 1

50
þ 1

50:5

! "#
¼ 0:3311

PðFS13Þ ¼
1

50

1

50:5
þ 1

50
þ 1

50:5

! "
¼ 0:3344

#

PðFS16Þ ¼
1

50

1

50:5
þ 1

50
þ 1

50:5

! "
¼ 0:3344

#

As shown in Fig. 2, based on these probabilities jobs 4,

5, 10 and 13 in FS are selected from FS11, jobs 2, 6, 7 and 8

are selected from FS13 and jobs 1, 3, 9, 11 and 12 are
selected from FS16. The complete columns for each job in

the new solution are copied from FS11, FS13 and FS16,
ensuring that the resulting new FS is a feasible solution.

Two approaches to selecting RSN (the number of the

best solutions to be used in FRS) are considered. In the first

Fig. 2 New food source (FS)
representation and generation of
new food source using FRS with
RSN = 3

Table 2 Makespan of 20 food sources for initial population

Food source
number

1 2 3 4 5 6 7 8 9 10

Makespan 50.67 51.33 54 51 51 51 51.5 50.67 52 54

Food source
number

11 12 13 14 15 16 17 18 19 20

Makespan 50.5 55.33 50 52 55 50 54.67 51 50.67 55

S. Kim et al.

123

Author's personal copy

approach, referred to as EBABC1, RSN is a user-defined

constant value which can be optimized experimentally. In
the second approach, referred to as EBABC2, a new value

of RSN is calculated at each generation G, according to

RSN ¼ Max SN % aG
$ %

;RSNMin

& '
ð6Þ

Here, RSNMin is a lower bound on the number of best
solutions to be used with FRS, a is a real number greater

than 0 and less than 1, SN % aG
$ %

denotes rounding up to

the nearest integer and the Max() function returns the
maximum value of its arguments.

The advantage of EBABC2 is that in early generations

the new food source is generated using all SN food sources
in the swarm thereby improving the diversity of the search,

while in later generations only the few best solutions are

used improving the convergence of the algorithm.
It should be noted that EBABC1 and EBABC2 are not

guaranteed to converge to an optimal solution. However, our
experiments show that both methods are able to identify better

job scheduling solution than those obtained in earlier studies.

4.4 Convergence analysis

To analyse the convergence of the algorithm we first
introduce some definitions and lemmas (Guo and Tang

2001; He et al. 2005; Chung and Erdös1952) and then

theoretically prove that our EBABC algorithm converges
with probability 1 (or strongly) to the global optimum.

Consider the problem (P):

ðPÞ ¼ minf ðxÞ
x 2 X ¼ ½)s; s*n

!
ð7Þ

where x ¼ ðx1; x2; . . .; xnÞT . Denoting x& as the global

optimal solution to the problem (P), s as the limit of the

solution space and f & ¼ f ðx&Þ; we can define

D0 ¼ fx 2 Xjf ðxÞ) f &\eg ð8Þ

D1 ¼ X n D0

for every e [0.
As described above, the algorithm produces new solu-

tions by swapping any two randomly selected columns of

jobs. Let u be a uniformly distributed random number in

the interval [-s, s], and g a positive constant scaling factor
that controls the domain of oscillation in the solution space.

Therefore, the oscillation of the new solution ŝ is uniformly
distributed. During the iterated procedure from time t to

t ? 1, let qij denote that xðtÞ 2 Di and xðt þ 1Þ 2 Dj:
Accordingly, the positions of food sources in the colony
can be assigned to one of four states: q00, q01, q10 and q01.

Obviously q00 ? q01 = 1, q10 ? q11 = 1.

Optimal job scheduling in grid computing using EBABC

123

Author's personal copy

Definition 1 (Convergence in terms of probability) Let nn

be a sequence of random variables, and n a random vari-

able, all defined on the same probability space. The
sequence nn converges with a probability of n if

lim
n!1

Pðjnn) nj\eÞ ¼ 1 ð9Þ

for every e [0.

Definition 2 (Convergence with a probability of 1) Let nn

be a sequence of random variables, and n a random vari-

able, all defined on the same probability space. The

sequence nn converges almost surely or almost everywhere
or with probability 1 or strongly to n if

P

(
lim

n!1
nn ¼ n

)
¼ 1; ð10Þ

or

P

(\1

n¼1

[

k+ n

½jnn) nj+ e*
)
¼ 0 ð11Þ

for every e [0.

Lemma 1 (Borel-Cantelli Lemma) Let fAkg1k¼1be a
sequence of events occurring with a certain probability
distribution, and letAbe the event consisting of the occur-
rences of a finite number of eventsAk for k ¼ 1; 2; . . .:Then

P

(\1

n¼1

[

k+ n

Ak

)
¼ 0 ð12Þ

if

X1

n¼1

PðAnÞ\1; ð13Þ

and

P

(\1

n¼1

[

k+ n

Ak

)
¼ 1 ð14Þ

if the events are totally independent and

X1

n¼1

PðAnÞ ¼1: ð15Þ

Theorem 1 (Bee State Transference) q01 = 0; q00 = 1;

q11, c 2 ð0; 1Þand q10+ 1) c 2 ð0; 1Þ:

Proof In the algorithm, the best solution is updated and

saved during the complete iterated procedure. So q01 = 0

and q00 = 1. Let x̂ be the position with the best fitness
identified by the colony up to and including time t. In

accordance with Eq. (8), A r [0, when kx) x̂k1, r; we

have jf ðxÞ) f &j\e: Denote Qx̂;r ¼ fx 2 Xjkx) x̂k1, rg:
Accordingly

Qx̂;r - D0 ð16Þ

Then

Pfðxþ DxÞ 2 Qx̂;rg ¼
Yn

i¼1

Pfjxi þ Dxi) x̂ij, rg

¼
Yn

i¼1

Pfx̂i) xi) r,Dxi, x̂i) xi þ rg
ð17Þ

where xi, Dxi and x̂i are the i-th dimensional values of x;Dx
and x̂; respectively. Moreover, ŝ.U½) s

g ;
s
g*; so that

Pððxþ DxÞ 2 Qx̂;rÞ ¼
Yn

i¼1

Zx̂i)xiþr

x̂i)xi)r

g
2s

ð18Þ

Denote P1ðxÞ ¼ Pfðxþ DxÞ 2 Qx̂;rg and C is the convex

closure of the level set for the initial bee colony. According
to Eq. (18), 0\P1ðxÞ\1 (x 2 C). Again, since C is a

bounded closed set, 9ŷ 2 C;

P1ðŷÞ ¼ min
x2C

P1ðxÞ; 0\P1ðŷÞ\1: ð19Þ

Combining Eqs. (16) and (19) gives

q10+P1ðxÞ+P1ðŷÞ ð20Þ

Let c ¼ 1) P1ðŷÞ; thus,

q11 ¼ 1) q10, 1) P1ðŷÞ ¼ c ð0\c\1Þ ð21Þ

and

q10+ 1) c 2 ð0; 1Þ ð22Þ

h

Theorem 2 Assume that the EBABC algorithm provides
a series of solution positions piðtÞði ¼ 1; 2; . . .; nÞat timetby
the iterated procedure. Let p&be the best position in the
colony explored so far, i.e.,.

p&ðtÞ ¼ arg min
1, i, n

ðf ðp&ðt) 1ÞÞ; f ðpiðtÞÞÞ ð23Þ

Then,

P

(
lim
t!1

f ðp&ðtÞÞ ¼ f &
)
¼ 1 ð24Þ

Proof For 8e [0; let pk ¼ Pfjf ðp&ðkÞÞ) f &j+ eg; then

pk ¼
0 if 9T 2 f1; 2; . . .; kg; p&ðTÞ 2 D0

!pk if p&ðtÞ 62 D0; t ¼ 1; 2; . . .; k

!
ð25Þ

According to Theorem 1,

!pk ¼ Pfp&ðtÞ 62 D0; t ¼ 1; 2; . . .; kg ¼ qk
11, ck: ð26Þ

Hence,

X1

k¼1

pk ,
X1

k¼1

ck ¼ c

1) c
\1: ð27Þ

S. Kim et al.

123

Author's personal copy

According to Lemma 1,

P

(\1

t¼1

[

k+ t

jf ðp&ðkÞÞ) f &j+ e
)
¼ 0 ð28Þ

Therefore, as defined in Definition 2, the sequence f ðp&ðtÞÞ
converges almost surely or almost everywhere or with
probability 1 or strongly towards f*. The theorem is

proven. h

5 Experiments and analysis

5.1 Experimental settings

In the following sections we present experimental results
for the BABC, EBABC1 and EBABC2 algorithms applied

to a serious of benchmark job scheduling problems as defined

in Liu et al. (2010). The experiments were conducted on a

desktop computer with an IntelrCoreTM2 Duo 2.66GHz CPU
and 2G RAM. In total seven different dimensions of job

scheduling problem were investigated, namely (3, 13), (5,

100), (8, 60), (10, 50), (10, 100), (60, 500) and (100, 1000).
Here the notation (G, J) is employed to indicate the number of

computing nodes on the grid (G) and number of jobs (J) to be

scheduled for each problem. The specific parameter settings
employed with BABC, EBABC1 and EBABC2 for each

problem are given in Table 3.

5.2 Results and discussion

For the small scale job scheduling problem (3,13), the
speeds of the three grid nodes are 4, 3 and 2 CPUT, and the

Table 3 Parameter settings for the algorithms

Algorithm Parameter name Parameter value

(3,13) Other
problems

BABC Number of FSa 20 20

Limitb 100 8000

EBABC1 Number of FSa 20 20

Limitb 100 8000

Number of FSa for FRS 3 3

EBABC2 Number of FSa 20 20

Limitb 100 8000

Persistency rate of Number of FSa

for FRS(a)
0.99 0.999

a Food source
b Number of trials after which a food source is assumed to be
abandoned

0 0.5 1 1.5 2

x 10
4

42

42.5

43

43.5

44

Generation

M
ak

es
pa

n
BABC
EBABC1
EBABC2

Fig. 5 Convergence trend for (8, 60) using BABC, EBABC1 and
EBABC2

0 0.5 1 1.5 2
x 10

4

85.5

85.55

85.6

85.65

85.7

85.75

85.8

85.85

85.9

85.95

86

Generation

M
ak

es
pa

n

BABC
EBABC1
EBABC2

Fig. 4 Convergence trend for (5, 100) using BABC, EBABC1 and
EBABC2

0 10 20 30 40 50 60 70 80
45.5

46

46.5

47

47.5

48

48.5

49

Generation

M
ak

es
pa

n

BABC
EBABC1
EBABC2

Fig. 3 Convergence trend for (3, 13) using BABC, EBABC1 and
EBABC2

Optimal job scheduling in grid computing using EBABC

123

Author's personal copy

job lengths of the 13 jobs are 6, 12, 16, 20, 24, 28, 30, 36,

40, 42, 48, 52 and 60 cycles. Figure 3 shows the conver-
gence trend for job scheduling (3, 13) using BABC,

EBABC1 and EBABC2. In the best job scheduling solution

jobs 1, 2, 3, 6, 7, 9 and 12 are assigned to grid node 1, jobs
8, 10 and 13 are assigned to grid node 2 and the jobs 4, 5

and 11 are assigned to node 3 as shown in Fig. 1. The

optimal makespan is 46. This is computed by dividing the
total job length on each grid node by its speed and selecting

the largest value. Thus, grid node 1 gives (6 ? 12 ?

16 ? 28 ? 30 ? 40 ? 52)/4 = 46, grid node 2 gives
(36 ? 42 ? 60)/3=46 and grid node 3 gives (20 ? 24 ?

48)/2 = 46. Since all grid nodes have identical computation

times this is the global optimum solution. All ten algorithm

runs of BABC, EBABC1 and EBABC2 identify optimum

solutions (makespan = 46) within 1000 generations. This

compares to success rates of 2, 3 and 4 out of 10 runs
within 2000 generations when using GA, SA and PSO as

reported in Liu et al. (2010).

The performances of the BABC, EBABC1 and
EBABC2 algorithms on the six larger job scheduling

problems (i.e. (5,100), (8, 60), (10, 50), (10, 100), (60, 500)

and (100,1000)) is summarized in Figs. 4, 5, 6, 7, 8 and 9.
The best solutions for the (5, 100), (8, 60) and (10, 50)

job scheduling problems obtained with each algorithm

are shown in Tables 4, 5 and 6, respectively. The corre-
sponding optimal makespans are 85.5286 (using

EBABC2), 41.5908 (using EBABC1) and 35.1718 (using

BABC).

0 0.5 1 1.5 2

x 10
4

100

150

200

250

300

350

400

450

Generation

M
ak

es
pa

n
BABC
EBABC1
EBABC2

Fig. 9 Convergence trend for (100, 1000) using BABC, EBABC1
and EBABC2

0 0.5 1 1.5 2

x 10
4

50

100

150

200

250

Generation

M
ak

es
pa

n

BABC
EBABC1
EBABC2

Fig. 8 Convergence trend for (60, 500) using BABC, EBABC1 and
EBABC2

0 0.5 1 1.5 2

x 10
4

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

64

Generation

M
ak

es
pa

n

BABC
EBABC1
EBABC2

Fig. 7 Convergence trend for (10, 100) using BABC, EBABC1 and
EBABC2

0 0.5 1 1.5 2

x 10
4

35.2

35.3

35.4

35.5

35.6

35.7

35.8

35.9

36

Generation

M
ak

es
pa

n
BABC
EBABC1
EBABC2

Fig. 6 Convergence trend for (10, 50) using BABC, EBABC1 and
EBABC2

S. Kim et al.

123

Author's personal copy

The performance of BABC, EBABC1 and EBABC2 are
compared in Tables 7, 8, 9 and 10 for four different

instances of the seven benchmark problems as given in Liu
et al. (2010). The notation Pij is used to denote the jth

instance of the ith problem. Here P1j = (3, 13), P2j = (5,

100), P3j = (8, 60), P4j = (10, 50), P5j = (10, 100), P6j = (60,
500) and P7j = (100, 1000). The results show that EBABC1

and EBABC2 are similar to BABC for job scheduling
problems (3, 13), (5,100), (8, 60), (10, 50) and (10, 100) are

better than BABC for (60, 500) and substantially better

than BABC for (100, 1000). This suggests that EBABC1
and EBABC2 are superior to BABC when the size of job

scheduling problems is large enough.

Finally, Table 11 provides a comparison between sim-
ulation results using EBABC2 and an earlier study by Liu

et al. (2010) which evaluated genetic algorithm (GA),

simulated annealing (SA) and particle swarm optimization
(PSO) based job scheduling algorithms. The average value

and standard deviation of the makespan achieved using

EBABC2 are superior in all cases.
In order to assess the statistical significance of the per-

formance differences between BABC, EBABC1 and

EBABC2 as shown in Table 12 or between GA, SA, PSO
and EBABC2 as shown in Table 13, the results were

evaluated using the Kruskal–Wallis (1952) and Mann–

Whitney (1947) tests. The Kruskal–Wallis test evaluates

Table 6 Best solutions for job scheduling problem (10, 50) using
BABC

Grid node Assigned job number dataset

1 11, 13, 18, 28, 31

2 12, 23, 37

3 1, 21, 26, 38, 45, 49

4 5, 16, 20, 24, 40, 41, 48

5 4, 10, 33, 39

6 3, 22, 35, 42

7 17, 19, 36, 46, 47

8 7, 15, 25, 27

9 6, 8, 9, 29, 30, 32, 34, 50

10 2, 14, 43, 44

Table 4 Best solutions for job scheduling problem (5, 100) using
EBABC2

Grid
node

Assigned job number dataset

1 3, 13, 16, 26, 29, 35, 45, 47, 49, 53, 54, 57, 59, 60, 61, 63,
66, 67,

72, 77, 79, 83, 89, 92

2 8, 11, 15, 17, 20, 25, 30, 36, 69, 75, 94, 95

3 1, 4, 9, 12, 14, 18, 22, 33, 34, 37, 40, 43, 50, 64, 65, 68, 74,
80, 82,

88, 96, 99, 100

4 2, 7, 19, 21, 27, 28, 39, 42, 46, 48, 52, 56, 62, 73, 78, 81,
84, 85,

86, 93

5 5, 6, 10, 23, 24, 31, 32, 38, 41, 44, 51, 55, 58, 70, 71, 76,
87, 90,

91, 97, 98

Table 5 Best solutions for job scheduling problem (8, 60) using
EBABC1

Grid node Assigned job number dataset

1 14, 25, 28, 34, 40, 42, 45, 48, 49, 51, 59, 60

2 36, 38, 41, 44, 55

3 8, 11, 12, 16, 19, 21, 31, 35, 54, 58

4 5, 7, 17, 18, 26, 53, 57

5 1, 6, 9, 10, 13, 43, 47, 50

6 4, 24, 27, 30, 32, 33, 37, 52

7 2, 20, 22, 29, 39, 46, 56

8 3, 15, 23

Table 7 Performance comparison of BABC, EBABC1 and EBABC2
using Liu et al. (2010) data (P11–P71)

Pa Algorithms minb !Sc rd

P11 BABC 46 46 0

EBABC1 46 46 0

EBABC2 46 46 0

P21 BABC 85.5288 85.5303 0.0009

EBABC1 85.5287 85.53 0.0008

EBABC2 85.5286 85.5298 0.0006

P31 BABC 41.6057 41.6179 0.0114

EBABC1 41.5908 41.7287 0.3895

EBABC2 41.592 41.5975 0.0028

P41 BABC 35.1718 35.2031 0.026

EBABC1 35.1729 35.2715 0.2599

EBABC2 35.174 35.1896 0.0089

P51 BABC 59.1846 59.2107 0.0505

EBABC1 59.1768 59.1833 0.004

EBABC2 59.1745 59.1815 0.0041

P61 BABC 58.7357 61.0432 1.9377

EBABC1 51.8877 53.4156 1.3144

EBABC2 52.1308 52.9459 0.6648

P71 BABC 91.5027 99.4408 5.6058

EBABC1 65.1085 70.66 4.4817

EBABC2 68.2587 71.0863 2.9236

a Scheduling problem
b Minimum
c Average
d Standard deviation

Optimal job scheduling in grid computing using EBABC

123

Author's personal copy

whether the population median of a dependent variable is
the same across a given factor, while the Mann–Whitney

test is generallly used to evaluate two different data pop-

ulations, such as performance results from two separate
algorithms (Garcı́a et al. 2009; Lahoz-Beltra and Perales-

Gravan 2010; Derrac et al. 2011).

– Kruskal–Wallis test for Table 12:

– H0: There is no performance difference between

BABC, EBABC1 and EBABC2.
– H1: There is a performance difference between

BABC, EBABC1 and EBABC2.

– Mann–Whitney test for Table 12:

– H0: There is no performance difference between

two of three algorithms (BABC, EBABC1 and
EBABC2).

– H1: There is a performance difference between

two of three algorithms (BABC, EBABC1 and
EBABC2).

– Kruskal–Wallis test for Table 13:

– H0: There is no performance difference between

GA, SA, PSO and EBABC2.

– H1: There is a performance difference between GA,
SA, PSO and EBABC2.

– Mann–Whitney test for Table 13:

– H0: There is no performance difference between
two of four algorithms (GA, SA, PSO and

EBABC2).

– H1: There is a performance difference between two
of four algorithms (GA, SA, PSO and EBABC2).

The results of the non-parametric tests for a 95% sig-
nificance level (p \ 0.05) are shown in Table 12. These

indicate that there are no statistically significant perfor-

mance difference between BABC, EBABC1 and EBABC2
for the P11, P21 and P41. The difference in performance

between BABC and EBABC2 is statistically significant for

P31 and P51, but the difference in performance between
BABC and EBABC1 and between EBABC1 and EBABC2

are not significant for these problems. There are

Table 8 Performance comparison of BABC, EBABC1 and EBABC2
using P12–P72

Pa Algorithms minb !Sc rd

P12 BABC 84.7500 84.7750 0.0791

EBABC1 84.7500 84.8750 0.1318

EBABC2 84.7500 84.7750 0.0791

P22 BABC 96.9140 96.9154 0.0008

EBABC1 96.9141 96.9152 0.0006

EBABC2 96.9139 96.9151 0.0008

P32 BABC 35.8166 35.8281 0.0054

EBABC1 35.8187 35.8247 0.0052

EBABC2 35.8165 35.8216 0.0046

P42 BABC 39.6781 39.7057 0.0177

EBABC1 39.6712 39.6905 0.0198

EBABC2 39.6741 39.6874 0.0144

P52 BABC 68.6468 68.6854 0.0616

EBABC1 68.6314 68.6439 0.0136

EBABC2 68.6338 68.6384 0.0043

P62 BABC 51.8034 53.3231 1.1443

EBABC1 46.8856 48.5896 1.2013

EBABC2 47.2847 48.4512 1.1581

P72 BABC 91.5892 96.3269 3.4105

EBABC1 68.2272 70.5031 1.9065

EBABC2 70.0744 75.5895 4.3780

a Scheduling problem
b Minimum
c Average
d Standard deviation

Table 9 Performance comparison of BABC, EBABC1 and EBABC2
using P13–P73

Pa Algorithms minb !Sc rd

P13 BABC 77.2500 77.2500 0.0000

EBABC1 77.2500 77.2667 0.0351

EBABC2 77.2500 77.2583 0.0263

P23 BABC 99.3544 99.3563 0.0011

EBABC1 99.3545 99.3557 0.0007

EBABC2 99.3550 99.3557 0.0005

P33 BABC 35.3846 35.3961 0.0070

EBABC1 35.3834 35.4925 0.3341

EBABC2 35.3830 35.3878 0.0031

P43 BABC 38.1283 38.1757 0.0387

EBABC1 38.1237 38.1388 0.0133

EBABC2 38.1313 38.1510 0.0167

P53 BABC 63.1832 63.2041 0.0161

EBABC1 63.1651 63.1731 0.0057

EBABC2 63.1705 63.1744 0.0039

P63 BABC 52.1126 54.8725 1.5633

EBABC1 48.0351 50.2229 1.6019

EBABC2 48.4923 49.6881 0.8955

P73 BABC 95.9524 103.0042 4.9146

EBABC1 69.5606 74.3598 3.8114

EBABC2 71.6904 78.8660 5.2703

a Scheduling problem
b Minimum
c Average
d Standard deviation

S. Kim et al.

123

Author's personal copy

statistically significant differences in performance between
BABC, EBABC1 and EBABC2 for problems P61 and P71,

but the difference between EBABC1 and EBABC2 is not

significant. We have slightly different results for the P12–
P72, P13–P73, P14–P74 as shown in Table 12. The overall

trend is differences become significant as job scheduling

problems increase in sizes. We also do the statistical tests

to compare the performance difference of our proposed
EBABC2 with genetic algorithm (GA), simulated

annealing (SA) and particle swarm optimization (PSO)

proposed by Liu and et al. (2010) as shown in Table 13.
PSO is better than GA and SA. There are statistically

significant performance differences between EBABC2

and PSO. It means that our proposed EBABC2 is better
than PSO.

In the ABC paradigm each bee finds a food source
(solution) which represents a position in the problem space.

Since the positions identified by each bee are in general

different, the colony has the capability to explore the space
searching for better solutions. The term Diversity is intro-

duced to quantify the diversity of the colony and is defined

as follows:

Diversity ¼ 1

n

Xn

i¼1

ffi
1

d

Xd

j¼1

ðxij) !xjÞ2
vuut ð29Þ

Here, n is the colony population size, d is the dimension of

the search space (coordinates of the food sources), !x is the
centre point of the colony, and its j-th dimension is denoted

by !xj: Figure 10 shows the typical evolution of colony

diversity for each of the three algorithms during an opti-

mization run. In the EBABC1 algorithm the diversity

undergoes a fluctuating decrease phase before stabilizing at
a very low value after 300 generations. Two different

phases can be observed with the EBABC2 algorithm. The

diversity decreases, but stabilizes after 900 generations at a
low state of diversity. In contrast, the BABC algorithm

maintains colony diversity at its initial value throughout the

optimization run. Considering Fig. 10, it can be seen that
our algorithms initially provide large colony diversity

facilitating exploration of the global solution space and

then focuses on the current best solution with a refining
step to achieve local exploitation. Experimental results

Table 10 Performance comparison of BABC, EBABC1 and
EBABC2 using P14–P74

Pa Algorithms minb !Sc rd

P14 BABC 66.2500 66.2500 0.0000

EBABC1 66.2500 66.2833 0.0805

EBABC2 66.2500 66.2500 0.0000

P24 BABC 99.5365 99.5374 0.0006

EBABC1 99.5363 99.5372 0.0006

EBABC2 99.5362 99.5371 0.0006

P34 BABC 38.5805 38.5965 0.0095

EBABC1 38.5705 38.5766 0.0041

EBABC2 38.5701 38.5792 0.0052

P44 BABC 39.0014 39.0408 0.0372

EBABC1 38.9816 39.0363 0.0415

EBABC2 38.9832 39.0071 0.0151

P54 BABC 70.1070 70.3677 0.5835

EBABC1 70.0963 70.1059 0.0056

EBABC2 70.1010 70.1065 0.0039

P64 BABC 56.2268 59.1725 2.3682

EBABC1 50.9021 53.1753 1.7575

EBABC2 51.4135 53.1212 0.8952

P74 BABC 96.0631 101.4588 3.0691

EBABC1 69.0543 72.4296 3.0645

EBABC2 70.7003 75.7897 3.8641

a Scheduling Problem
b Minimum
c Average
d Standard deviation

Table 11 Comparative study of EBABC2 with GA, SA and PSO using Liu et al. (2010) data (P11–P71)

Pa GA SA PSO EBABC2

!Sb rc !Sb rc !Sb rc !Sb rc

P11 47.1166 0.7700 46.6000 0.4855 46.2667 0.2855 46.0000 0.0000

P21 85.7431 0.6218 90.7338 6.3834 84.0544 0.5030 85.5298 0.0006

P31 42.9270 0.4151 55.4594 2.0605 41.9489 0.6944 41.5975 0.0028

P41 38.0428 0.6613 41.7889 8.0772 37.6668 0.6068 35.1896 0.0089

P51 63.1487 0.3726 70.5490 7.4141 62.0333 0.8810 59.1815 0.0041

P61 55.5866 0.6068 65.4885 7.0464 54.7943 0.8517 52.9459 0.6648

P71 73.1050 0.3690 83.7621 7.1029 72.9697 0.6057 71.0863 2.9236

a Scheduling problem
b Average
c Standard deviation

Optimal job scheduling in grid computing using EBABC

123

Author's personal copy

illustrate that the algorithm achieves the best balance

between global exploration and local exploitation.

6 Conclusions

The artificial bee colony (ABC) is relatively new and has

the advantage of employing fewer control parameters

compared with competing population-based algorithms. A
binary implementation of ABC (BABC) is developed in

this paper to solve the job scheduling problem for grid

computing applications. We also develop EBABC, an
extension of BABC that incorporates a flexible ranking

strategy (FRS). Two variants of EBABC (namely,

EBABC1 and EBABC2) are proposed that seek to achieve
a balance between diversification and convergence of the

search process, i.e. the exploration versus exploitation

trade-off. Simulation results for a number of benchmark

Table 12 Statistical analysis of the difference between BABC,
EBABC1 and EBABC2 using the Kruskal–Wallis and Mann–Whit-
ney tests

Pa Kruskal–
Wallis test

Mann–Whitney test

BABC,
EBABC1

BABC,EBABC2 EBABC1,
EBABC2

P11 accept H0

P21 accept H0

P31 accept H1 accept H0 accept H1 accept H0

P41 accept H0

P51 accept H1 accept H0 accept H1 accept H0

P61 accept H1 accept H1 accept H1 accept H0

P71 accept H1 accept H1 accept H1 accept H0

P12 accept H0

P22 accept H0

P32 accept H1 accept H0 accept H1 accept H0

P42 accept H0

P52 accept H1 accept H1 accept H1 accept H0

P62 accept H1 accept H1 accept H1 accept H0

P72 accept H1 accept H1 accept H1 accept H1

P13 accept H0

P23 accept H0

P33 accept H1 accept H1 accept H1 accept H0

P43 accept H1 accept H1 accept H1 accept H0

P53 accept H1 accept H1 accept H1 accept H0

P63 accept H1 accept H1 accept H1 accept H0

P73 accept H1 accept H1 accept H1 accept H0

P14 accept H0

P24 accept H0

P34 accept H1 accept H1 accept H1 accept H0

P44 accept H0

P54 accept H1 accept H1 accept H1 accept H0

P64 accept H1 accept H1 accept H1 accept H0

P74 accept H1 accept H1 accept H1 accept H1

a Scheduling problem

Table 13 Statistical analysis of the difference between GA, SA, PSO and EBABC2 for P11–P71 using the Kruskal–Wallis and Mann–Whitney
tests

Pa Kruskal–Wallis test Mann–Whitney test

GA, SA GA, PSO GA,EBABC2 SA, PSO SA, EBABC2 PSO, EBABC2

P11 accept H1 accept H0 accept H1 accept H1 accept H0 accept H1 accept H0

P21 accept H1 accept H0 accept H1 accept H1 accept H1 accept H0 accept H1

P31 accept H1 accept H1 accept H1 accept H1 accept H1 accept H1 accept H0

P41 accept H1 accept H0 accept H0 accept H1 accept H0 accept H1 accept H1

P51 accept H1 accept H1 accept H1 accept H1 accept H1 accept H1 accept H1

P61 accept H1 accept H1 accept H0 accept H1 accept H1 accept H1 accept H1

P71 accept H1 accept H1 accept H0 accept H1 accept H1 accept H1 accept H1

a Scheduling problem

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Generation

D
iv

er
si

ty

BABC
EBABC1
EBABC2

Fig. 10 Comparison of the evolution of colony diversity

S. Kim et al.

123

Author's personal copy

job scheduling problems show that EBABC1 and EBABC2

outperform BABC for larger job scheduling problems and
that in general they provide superior results to competing

genetic algorithm, simulated annealing and particle swarm

optimization based job scheduling algorithms.
An analysis of the dynamical diversity of the bee col-

onies further illustrates that the proposed algorithms, and in

particular EBABC2, delivers a good balance between
global exploration and local exploitation.

Acknowledgments The authors would like to thank Zhihua Cui for
his scientific collaboration in this research work. This work is sup-
ported partly by the Kangwon National University, the National
Natural Science Foundation of China (Grant No. 61173035,
61105117), the Fundamental Research Funds for the Central Uni-
versities (Grant No. 2012TD027), the Program for New Century
Excellent Talents in University (Grant No. NCET-11-0861), and the
Dalian Science and Technology Fund (Grant No. 2010J21DW006).

References

Abraham A, Buyya R, Nath B (2000) Nature’s heuristics for
scheduling jobs on computational grids. In: The 8th IEEE
international conference on advanced computing and communi-
cations (ADCOM 2000), pp 45–52

Abraham A, Liu H, Zhao M (2008) Particle swarm scheduling for
work-flow applications in distributed computing environments.
Metaheuristics for scheduling in industrial and manufacturing
applications. Stud Comput Intell 128:327–342

Abraham A, Jatoth R, Rajasekhar A (2012) Hybrid differential
artificial bee colony algorithm. J Comput Theor Nanosci
9(2):249–257

Alzaqebah M, Abdullah S (2011) Comparison on the selection
strategies in the artificial bee colony algorithm for examination
timetabling problems. Int J Soft Comput Eng 1:158–163

Banks A, Vincent J, Phalp K (2009) Natural strategies for search. Nat
Comput 8(3):547–570

Bao L, Zeng J (2009) Comparison and analysis of the selection
mechanism in the artificial bee colony algorithm. In: Ninth
international conference on hybrid intelligent systems, 2009,
HIS’09, vol 1. IEEE, pp 411–416

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from
natural to artificial systems. Oxford University Press, Oxford

Braun T, Siegel H, Beck N, Boloni L, Maheswaran M, Reuther A,
Robertson J, Theys M, Yao B (2001) A comparison of eleven
static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems. J Parallel Distrib
Comput 61(6):810–837

Brucker P (2007) Scheduling algorithms. Springer, Berlin
Brucker P, Schlie R (1990) Job-shop scheduling with multi-purpose

machines. Comput Lett 45(4):369–375
Chandrasekaran K, Hemamalini S, Simon S, Padhy N (2012) Thermal

unit commitment using binary/real coded artificial bee colony
algorithm. Electric Power Syst Res 84(1):109–119

Chung K, Erdös P (1952) On the application of the Borel-Cantelli
lemma. Trans Am Math Soc 72:179–186

Chung W, Chang R (2009) A new mechanism for resource monitoring in
grid computing. Future Gen Comput Syst 25(1):1–7

Clerc M (2006) Particle swarm optimization. Wiley-ISTE
Cuevas E, Sención-Echauri F, Zaldivar D, Pérez-Cisneros M (2012)

Multi-circle detection on images using artificial bee colony (abc)
optimization. Soft Comput 16(2):1–16

Davidovic T, Selmic M, Teodorovic D (2009) Scheduling indepen-
dent tasks: bee colony optimization approach. In: 17th Mediter-
ranean conference on control and automation, 2009, MED’09.
IEEE, pp 1020–1025

Davis R, Burns A (2011) A survey of hard real-time scheduling for
multiprocessor systems. ACM Comput Surveys 43(4):35

Derrac J, Garcı́a S, Molina D, Herrera F (2011) A practical tutorial on
the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms.
Swarm Evol Comput 1:3–18

Di Martino V, Mililotti M (2004) Sub optimal scheduling in a grid
using genetic algorithms. Parallel Comput 30(5-6):553–565

Dong F Akl S (2006) Scheduling algorithms for grid computing: state
of the art and open problems. Technical report, School of
Computing, Queen’s University, Kingston, Ontario

Forestiero A, Mastroianni C, Spezzano G (2008) So-grid: a self-
organizing grid featuring bio-inspired algorithms. ACM Trans
Auton Adapt Syst 3(2):1–37

Foster I, Kesselman C (2004) The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann

Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid
computing 360-degree compared. In: Grid computing environ-
ments workshop, 2008, GCE’08. IEEE, pp 1–10

Fujita S, Yamashita M (2000) Approximation algorithms for multi-
processor scheduling problem. IEICE Trans Inf Syst 83(3):
503–509

Gao Y, Rong H, Huang J (2005) Adaptive grid job scheduling with
genetic algorithms. Future Gen Comput Syst 21(1):151–161

Garcı́a S, Molina D, Lozano M, Herrera F (2009) A study on the use
of non-parametric tests for analyzing the evolutionary algorithms
behaviour: a case study on the cecn2005 special session on real
parameter optimization. J Heuristics 15(6):617–644

Garey M, Johnson D (1979) Computers and intractability: a guide to
the theory of NP-completeness. WH Freeman & Co

Guo C, Tang H (2001) Global convergence properties of evolution
stragtegies. Math Numer Sin 23(1):105–110

Han L, Berry D (2008) Semantic-supported and agent-based decen-
tralized grid resource discovery. Future Gen Comput Syst
24(8):806–812

He R, Wang Y, Wang Q, Zhou J, Hu C (2005) Improved particle
swarm optimization based on self-adaptive escape velocity. Chin
J Softw 16(12):2036–2044

Hou E, Ansari N, Ren H (1994) A genetic algorithm for multipro-
cessor scheduling. IEEE Trans Parallel Distrib Syst
5(2):113–120

Izakian H, Ladani B, Abraham A, Snášel V (2010) A discrete particle
swarm optimization approach for grid job scheduling. Int J Innov
Comput Inf Control 6:1–15

Jansen K, Mastrolilli M, Solis-Oba R (2000) Approximation
algorithms for flexible job shop problems. In: Lecture notes in
computer science. LATIN 2000: theoretical informatics, vol
1776, pp 68–77

Karaboga D, Akay B (2009) A comparative study of artificial bee
colony algorithm. Appl Math Comput 214(1):108–132

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (abc)
algorithm. J Global Optim 39(3):459–471

Karaboga D, Basturk B (2008) On the performance of artificial bee
colony (abc) algorithm. Appl Soft Comput 8(1):687–697

Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Springer,
Germany

Kruskal W, Wallis W (1952) Use of ranks in one-criterion variance
analysis. J Am Stat Assoc 47:583–621

Laalaoui Y, Drias H (2010) Aco approach with learning for
preemptive scheduling of real-time tasks. Int J Bio-Inspired
Comput 2(6):383–394

Optimal job scheduling in grid computing using EBABC

123

Author's personal copy

Lahoz-Beltra R, Perales-Gravan C (2010) A survey of nonparametric
tests for the statistical analysis of evolutionary computational
experiments. Int J Inf Theor Appl 17(1):41–61

Lee W, Cai W (2011) A novel artificial bee colony algorithm with
diversity strategy. In: 2011 Seventh international conference on
natural computation (ICNC), vol 3. IEEE, pp 1441–1444

Li J, Pan Q, Xie S, Wang S (2011) A hybrid artificial bee colony
algorithm for flexible job shop scheduling problems. Int J
Comput Commun Control 6(2):286–296

Li G, Niu P, Xiao X (2012) Development and investigation of
efficient artificial bee colony algorithm for numerical function
optimization. Appl Soft Comput 12(1):320–332

Liu H, Abraham A, Clerc M (2007) Chaotic dynamic characteristics
in swarm intelligence. Appl Soft Comput 7(3):1019–1026

Liu H, Abraham A, Wang Z (2009) A multi-swarm approach to multi-
objective flexible job-shop scheduling problems. Fundam Inf
95(4):465–489

Liu H, Abraham A, Hassanien A (2010) Scheduling jobs on
computational grids using a fuzzy particle swarm optimization
algorithm. Future Gen Comput Syst 26(8):1336–1343

Ma M, Liang J, Guo M, Fan Y, Yin Y (2011) Sar image segmentation
based on artificial bee colony algorithm. Appl Soft Comput
11(8):5205–5214

Mann H, Whitney D (1947) On a test of whether one of two random
variables is stochastically larger than the other. Ann Math Stat
18(1):50–60

Mastrolilli M, Gambardella L (1999) Effective neighborhood func-
tions for the flexible job shop problem. J Sched 3(1):3–20

Mezura-Montes E, Velez-Koeppel R (2010) Elitist artificial bee colony
for constrained real-parameter optimization. In: 2010 IEEE Con-
gress on evolutionary computation (CEC). IEEE, pp 1–8

Nemeth Z, Sunderam V (2003) Characterizing grids: attributes,
definitions, and formalisms. J Grid Comput 1(1):9–23

Pampara G, Engelbrecht A (2011) Binary artificial bee colony
optimization. In: Proceedings of 2011 IEEE symposium on
swarm intelligence (SIS). IEEE, pp 1–8

Pan Q, Fatih Tasgetiren M, Suganthan P, Chua T (2011) A discrete
artificial bee colony algorithm for the lot-streaming flow shop
scheduling problem. Inf Sci 181(12):2455–2468

Pinedo M (2012) Scheduling: theory, algorithms, and systems.
Springer, Berlin

Ritchie G, Levine J (2003) A fast, effective local search for
scheduling independent jobs in heterogeneous computing

environments. Technical report, Centre for Intelligent Systems
and their Applications, University of Edinburgh

Ritchie G, Levine J (2004) A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments. In:
Proceedings of 23rd workshop of the UK Planning and
Scheduling Special Interest Group, PLANSIG 2004

Sharma T, Pant M (2011) Enhancing the food locations in an artificial
bee colony algorithm. In: 2011 IEEE symposium on swarm
intelligence (SIS). IEEE, pp 1–5

Singh A, Sundar S (2011) An artificial bee colony algorithm for the
minimum routing cost spanning tree problem. Soft Comput
15(12):1–11

Su M, Su S, Zhao Y (2009) A swarm-inspired projection algorithm.
Pattern Recogn Lett 42(11):2764–2786

Thesen A (1998) Design and evaluation of tabu search algorithms for
multiprocessor scheduling. J Heuristics 4(2):141–160

Vivekanandan K, Ramyachitra D, Anbu B (2011) Artificial bee
colony algorithm for grid scheduling. J Converg Inf Technol
6:328–339

Walker R (2007) Purposive behavior of honeybees as the basis of an
experimental search engine. Soft Comput 11(8):697–716

Wei Y, Blake M (2010) Service-oriented computing and cloud
computing: challenges and opportunities. IEEE Internet Comput
14(6):72–75

Wong L, Puan C, Low M, Wong Y (2010) Bee colony optimisation
algorithm with big valley landscape exploitation for job shop
scheduling problems. Int J Bio-Inspired Comput 2(2):85–99

Wu A, Yu H, Jin S, Lin K, Schiavone G (2004) An incremental
genetic algorithm approach to multiprocessor scheduling. IEEE
Trans Parallel Distrib Syst 15(9):824–834

Xhafa F, Carretero J, Abraham A (2007) Genetic algorithm based
schedulers for grid computing systems. Int J Innov Comput Inf
Control 3(5):1–19

Xiao R, Chen W, Chen T (2012) Modeling of ant colony’s labor
division for the multi-project scheduling problem and its solution
by pso. J Comput Theor Nanosci 9(2):223–232

Yang X (2011) Nature-inspired metaheuristic algorithms. Luniver
Press

Yue B, Liu H, Abraham A (2012) Dynamic trajectory and conver-
gence analysis of swarm algorithm. Comput Inf 31(2):371–392

Ziarati K, Akbari R, Zeighami V (2011) On the performance of bee
algorithms for resource-constrained project scheduling problem.
Appl Soft Comput 11:3720–3733

S. Kim et al.

123

Author's personal copy

	Optimal job scheduling in grid computing using efficient binary artificial bee colony optimization
	Abstract
	Introduction
	Related work
	Job scheduling in grid computing
	Efficient binary artificial bee colony for job scheduling
	Artificial bee colony
	Binary artificial bee colony
	Efficient binary artificial bee colony
	Convergence analysis

	Experiments and analysis
	Experimental settings
	Results and discussion

	Conclusions
	Acknowledgments
	References

