
BFA and BMF: What is the Difference
Alexander A. Frolov

Institute of Higher Nervous Activity
Russian Academy of Sciences, Moscow, Russia

Email: aafrolov@mail.ru

Ajith Abraham, Pavel Y. Polyakov
IT4Inovations

VSB Technical University Ostrava, Czech Republic
Email: abraham.ajith@gmail.com, pavel.mipt@mail.ru

Dušan Húsek
Institute of Computer Science

Acad. of Sci. of the Czech Rep., Prague, Czech Republic
Email: dusan@cs.cas.cz

Hana Řezanková
Department of Statistics and Probability

University of Economics, Prague, Czech Republic
Email: rezanka@vse.cz

Abstract—Studied are differences of two approaches to binary
data dimension reduction. The first one is Boolean Matrix
Factorization and the second one is Expectation Maximization
Boolean Factor Analysis. The two BMF methods are used for
comparison. First is M8 method from the BMDP statistical
software package. The second is the BMF method, as suggested
by Belohlavek and Vychodil (BVA2). These two are compared
to Expectation Maximization Boolean Factor Analysis extended
with binarization step developed here. Generated (Bars problem)
and mushroom dataset are used for(experiments. In particular,
under scrutiny was the reconstruction ability of the computed
factors and the information gain as the measure of dimension
reduction. In addition, presented are some general remarks on
all the methods being compared.

Index Terms—Dimension reduction, statistics, data mining,
Boolean factor analysis, Boolean matrix factorization, informa-
tion gain, likelihood-maximization, bars problem.

I. INTRODUCTION

A fundamental problem in many data-analysis tasks is to
find a suitable representation of the data. A useful represen-
tation typically makes latent structure in the data explicit,
and often reduces the dimensionality of the data so that
further computational methods can be applied. Dimensionality
reduction methods are able to transform a high-dimensional
space of attributes to a lower-dimensional space. There exists
high demand for such transformation in many areas of human
activity (such as engineering, computer science, biology or
economics) where one is facing a problem of efficient pro-
cessing of large datasets. So dimension reduction methods are
crucial part of our life.

Some linear methods were promising and still are very
useful for dimension reduction; let us mention Singular Value
Decomposition [2] or latent Dirichlet allocation (LDA) [3].

The main problem of unconstrained matrix factorization
methods lies in the fact that resulting representations are
hard to interpret. To solve this problem Non-negative matrix
factorization (NMF) method (see [4], [5]) was developed for
finding more natural representation. Given a non-negative data
matrix X, NMF finds an approximate factorization X = WH
into non-negative matrices W and H. The non-negativity con-
straints make the representation purely additive (allowing no

subtractions), in contrast to many other linear representations
such as principal component analysis (PCA) and independent
component analysis (ICA) [6]. These (and other) matrix de-
composition methods allow the matrices W and H to contain
arbitrary real numbers.

However, if the input matrix X is binary, it is natural to
require that W and H are also binary. In this paper, we consider
the matrix decomposition problem created by this requirement.
In this case, the combination operation of matrices W and H
is the Boolean matrix product (i.e., the matrix product in the
semiring of Boolean ⋀ and ⋁).

However as we stated, what makes the dimension reduction
process successful is the finding of latent structure of the data.
What we want to demonstrate here is that better results can be
achieved when using a model based statistical procedure for
Boolean factor analysis.

The paper is organized as follows. In Section II, we firstly
describe the problem of Boolean matrix factorization (BMF)
and Boolean factor analysis (BFA), and secondly we briefly
describe the three solving methods, Expectation-Maximization
Boolean Factor Analysis (EMBFA) which is a BFA method,
and then two BMF methods, i.e. methods which we compare
in this paper. Section III contains the description of two
measures used for estimating the methods performance. Then
Section IV contains description of databases used. Finally
the experimental comparison of the methods is presented in
Section V. Section VI contains discussion on further issues
and concludes the paper.

II. BMF AND BFA METHODS

Boolean Matrix Factorization [1] implies presentation of
binary matrix of observed dataset X in the form

X = S⊗ F, (1)

where each row of binary M × N matrix X is an observed
pattern, each row of binary L×N matrix F is a representation
of a factor in the signal space and each row of binary M ×L
matrix S is a set of factor scores defining which factors are
mixed in the patterns. Boolean matrix product ⊗ means that

902978-1-4673-5119-5/12/$31.00 c©2012 IEEE

each component of matrix X is obtained as xmj = L⋁
i=1Smifij .

The method implies identification of a minimal set of factors
that provide representation of the observed data in the form
(1). The number of such factors is called the Boolean rank of
X. Since the combinatorial problem of X rank identification
is NP complete [7] existing methods give reasonable, but not
obligatory optimal solutions. Optimal solution gives a brute
force search which is not suitable for high dimensional data.
On other side the classical linear methods could not take into
account non-linearity of Boolean summation and therefore are
inadequate for this task.

A. Formal Concepts Boolean Matrix Factorization

Recently authors Belohlavek and Vychodil in [1] revealed
a tight relationship between BMF and formal concept analysis
[8] and developed two simple greedy algorithms solving this
task.

1) Algorithm BVA1: This algorithm, named as “Algorithm
1” in [1], utilizes formal concepts of X as factors. Recall that
a formal concept of X [8] is any pair ⟨C;D⟩ of sets C ⊆
1, . . . ,m (rows, objects) and D ⊆ 1, . . . , n (columns, attributes)
satisfying the following property: D is the set of all attributes
j for which xij = 1 for every object i ∈ C and, vice versa, C
is the set of all objects i for which xij = 1 for every attribute
j ∈ D. Formal concepts are very well understood by domain
experts. Geometrically, they are, up to permuting rows and
columns, just maximal rectangles full of 1s in the matrix X .
If a set I of formal concepts is to be used as a set of factors
of X, the corresponding matrices SI and FI are defined the
following way: column l of SI is just the characteristic vector
of Cl and row l of FI is just the characteristic vector of Dl,
where ⟨Cl;Dl⟩ is the lth formal concept in I. It is proved in
[8] that using such factors is optimal in that the Boolean rank
of X may be achieved by using formal concepts as factors. In
algorithm BVA1, one first computes all the formal concepts
of X. The algorithm proceeds in a greedy way: In every step,
it selects the concept that covers the largest number of entries
with 1 in X that were not covered by the previously selected
concepts (⟨C;D⟩ covers Xij = 1⟩ if i ∈ C and j ∈ D, i.e. the
rectangle corresponding to ⟨C;D⟩ spans over the entry ⟨i; j⟩).

2) Algorithm BVA2: This algorithm, named as “Algorithm
2” in [1], utilizes formal concepts of X as factors the same
way as algorithm BVA1. However, algorithm BVA2 avoids
the necessity to compute all the concepts of X and browse
through them during the greedy selection. Instead, the algo-
rithm computes the candidate factors, i.e. concepts of X, on
demand the following, greedy way. Each time a new factor is
needed, one looks at the columns of X and selects the one
concept generated by a column which covers most of the yet
uncovered 1s in X. Such a concept corresponds to a narrow
but high rectangle in the data. Then one tries to see if such
rectangle may be extended to a wider (and thus not so high)
rectangle by adding some attribute and deleting the objects so
that one still has a rectangle. If so, one selects the best such
rectangle, i.e. covering most of the yet uncovered 1s in X.

One repeats the process of extension until no such extension
yields a better rectangle. This way one obtains the new factor
and eventually a set F of formal concepts—the factors of X.

For our computer comparison we used the second faster
algorithm BVA2 only.

B. Boolean Matrix Factorization; the M8 Procedure in BMDP

The second approach of Boolean matrix factorization is
implemented in statistical package BMDP [9], which was
originally developed at the UCLA for biomedical applications.
The method even if it is solving BMF task is called Boolean
factor analysis and the procedure is denoted as M8. The M8
procedure is effective enough despite being based on brute
force search approach. The algorithm behind M8 works as
follows. To compute L factors of X (and thus the correspond-
ing M ×L and L×N matrices S and F), the algorithm starts
k < L candidate rows of F (candidate factor loadings). These
are either supplied by the user or computed from X using a
heuristic based on inclusion of the columns of X. From this
set of k vectors of factor loadings, the algorithm computes
k vectors of factor scores (candidate columns of S); from
the k vectors of scores, the algorithm tries to find better k
vectors of factor loadings, etc. until no change occurs or three
such cycles are completed. Such tuning of factor loadings and
scores is called refinement (the details are too technical to
be included here). The algorithm then iteratively adds further
factors as follows. Suppose l factors have been obtained. Then,
one adds new factor l + 1, refines the loadings and scores of all
the factors as above, adds new factor l + 2 and refines again.
Then the lth factor is removed and the remaining factors are
refined. Consequently, the process is repeated, i.e. two new
factors are added, one is removed, etc. For example, starting
with k = 2 factors, we obtain 2, 3, 4, 3, 4, 5, 4, 5, 6, 7, 6, 7,
8, etc. factors. The process stops when the required number
L of factors is obtained the second time. For example, with
k = 2 and L = 6, one computes 2, 3, 4, 3, 4, 5, 4, 5, 6, 7,
6 factors and the last six ones are the final factors output by
the algorithm. By default, k = L − 2 but k may be set by a
user. A new factor is added based on the matrix describing the
error committed by the factors obtained so far. In particular,
one uses the column of X which contains the largest number
of 1s uncovered by the previously computed factors.

C. Boolean Factor Analysis based on the Expectation-
Maximization method

The Expectation-Maximization method for Boolean Factor
Analysis was developed for analysis of data of statistical origin
[10]. Similar to BMF, in terms of BFA, each observation is
a binary row vector x = [x1, . . . , xN], each common factor
fi = [fi1, . . . , fiN] is a binary row vector of dimension N .
Unlike BMF, BFA is a statistical method that assumes the
existence of a probabilistic generative model. The parameters
of the generative model are Θ = (pij , qj ,πi, i = 1, . . . , L, j =
1, . . . ,N). Parameter pij is the probability of the presence
of jth attribute in an observation due to the ith factor. For
attributes constituting the factor, i.e., for attributes with fij = 1,

2012 12th International Conference on Intelligent Systems Design and Applications (ISDA) 903

the probability pij is high, and for the other attributes (with
fij = 0), it is zero. Thus the contribution of ith common factor
is defined by binary row vector f ′i = [f ′i1, . . . , f ′iN] which is
a distorted version of the vector of factor loadings fi. Factor
distortion implies that entries of fi having value equal to One
can change their values to Zero with probability 1 − pij but
none of the entries of fi equal to Zero can change value to
One.

Parameter qj is the probability of the presence of the jth
attribute in an observation due to specific factor ηj . It is
assumed that each specific factor influences only one attribute,
in contrast to common factor fi, which influences more than
one attribute. The contribution of all specific factors is defined
by a binary row vector η = [η1, . . . ,ηN].

As a result, any observation x can be presented in the form

xj = [L⋁
i=1 si ∧ f ′ij] ∨ ηj ,

where s = [s1, . . . , sL] is a binary row vector of factor scores
of dimension L, L being the total number of factors.

Parameter πi (i = 1, . . . , L) is the probability that the ith
factor appears in an observation.

We assume that factors are distorted independently of other
factors and specific factors, factor’s components are distorted
independently of other components, and specific factors are
independent of each other and of the common factors.

In contrast to BMF, which is aimed to find exact or
approximate decomposition of a given dataset, the aim of BFA
is to find the parameters of a generative model Θ and factor
scores for all patterns of the dataset. Moreover, it is supposed
that the factors found could also be detected in any arbitrary
pattern x, if generated by the same BFA model. Note that
in the case pij = fij and qj = 0 BFA provides the exact
decomposition of a given dataset equivalent to BMF solution
given by (1).

The EMBFA maximizes the likelihood of the observed data
by maximizing the free energy

F = M∑
m=1{∑s gm(s) log(P (xm∣s,Θ)P (s∣Θ)) +H(gm(s))} ,

where gm(s) is the expected distribution of factor scores for
the mth pattern, H(gm(s)) is the Shannon entropy of gm(s),

P (x∣s,Θ) = N∏
j=1

P (xj ∣s,Θ),
where

P (xj ∣s,Θ) = xj − (2xj − 1)(1 − qj) L∏
i=1
(1 − pij)si , (2)

P (s∣Θ) = ∏
i=1,L

πsi
i (1 − πi)1−si .

The iterations of EM alternatively increase F with respect to
the distributions gm, while holding Θ fixed (the E-step), or
with respect to parameters of the model Θ, while holding gm
fixed (the M-step).

At the E-step, the distributions gm maximizing F are
calculated according to the following equation

gm(s∣Θ) = P (xm∣s,Θ)P (s∣Θ)∑s P (xm∣s,Θ)P (s∣Θ) .
The obtained distributions gm provide the expected likelihood
of the observed data over the factor scores for the given set
of parameters of the generative model.

At the M-step, πi can be obtained as

πi = (1/M) M∑
m=1 smi,

where

smi =∑
s

gm(s∣Θ)si.
Respectively, pij and qj can be obtained by steepest ascent
maximization of F :

∆pij = γij ∂F
∂pij

, ∆qj = γj ∂F
∂qj

, (3)

where γij and γj are learning rates,

∂F
∂pij

= M∑
m=1∑s gm(s∣Θ)P (xmj ∣s,Θ)−1 ∂P (xmj ∣s,Θ)

∂pij

∂F
∂qj

= M∑
m=1∑s gm(s∣Θ)P (xmj ∣s,Θ)−1 ∂P (xmj ∣s,Θ)

∂qj

and according to (2)

∂P (xmj ∣sm,Θ)
∂pij

= (xmj − P (xmj ∣sm,Θ)) smi

1 − pij
∂P (xmj ∣sm,Θ)

∂qj
= (xmj − P (xmj ∣sm,Θ)) 1

1 − qj
.

At each iteration cycle of step M, we put pij = 0 if

pij < 1 −∏
l≠i
(1 − πlplj),

where the right side of the inequality is the probability that the
jth attribute appears in the pattern due to other factors besides
fi.

In our computer experiments, we set the learning rates in
(3) to be

γij = pij(1 − pij)/(Mπi), γj = qj(1 − qj)/M.

The iterative procedure (3) at each step M continues until∑ij ∣∆pij ∣/LN become smaller than ε2 = 10−3.
The obtained values of pij , qj and πi are used as the input

for the next E–step. EM iterative procedure terminates once
values ∑ij ∣∆pij ∣/LN remained smaller than ε1 = 10−3 where
∆pij is the change of the model parameters pij comparing to
the previous E–step.

After the convergence of the procedure, the resulting values
smi are the estimates of the factor scores which are not binary
but gradual. To satisfy the generative model, we binarized
those values. The binarization threshold was chosen to maxi-
mize the BFA information gain [11], [12] (see below).

904 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)

We restricted the EMBFA algorithm to the case of sparse
scores, when only a small number of factors (no more than
three) are supposed to be mixed in the observed patterns. In
this case, summation over s in the above formulas is reduced
to

∑
s

(. . .) = (. . .)s=0 +∑
i

(. . .)s=si +∑
i<j
(. . .)s=sij (4)

+ ∑
i<j<k
(. . .)s=sijk ,

where si is the vector of factor scores with all zeros except
si, sij is the vector of factor scores with all zeros except si
and sj , and sijk is the vector of factor scores with all zeros
except si, sj and sk. An increase of the number of terms in
(4) leads to a considerable rise in computational complexity.

To start the EM procedure we set πi = 1/L, where L is
expected number of factors that have to be set in advance; we
also initialized qj = 0 and pij with random values uniformly
distributed in the range from 0.2 to 0.7.

In terms of BMF, matrix of factor scores S whose rows are
vectors of factor scores si (i = 1, . . . ,M) is the object-factor
matrix S. To estimate factor-attribute matrix F we binarized
probabilities pij assuming that fij = 1 if pij ≥ pth and fij =
0 if pij < pth where pth is the binarization threshold. The
binarization threshold was chosen to maximize the coverage
quality (see below).

III. ESTIMATION OF THE METHODS PERFORMANCE

To compare the efficiency of the three methods we used two
measures for estimating their performance: information gain
and coverage quality. The first measure is based on statistics
of the input data and relates to BFA while the second one
relates to BMF.

A. Information gain
Information gain is a general information theoretic measure

of BFA efficiency, which is a difference of two entropies. The
first is the entropy of a dataset when its hidden factor structure
is unknown and the second is the entropy when it is revealed
and taken into account [11].

If factor structure of the signal space is unknown, then
representing the jth component of vector X requires h(pj) bits
of information, where h(x) = −x log2 x−(1−x) log2(1−x) is
Shannon function and pj is probability of the jth component
to take One. Representing the whole dataset requires

H0 =M N∑
j=1

h(pj)
bits of information. If the hidden factor structure of the signal
space is detected that is all generative model parameters and
all factor scores in the dataset are found, then representing the
whole dataset requires

H =H1 +H2

bits of information. Here

H1 =M L∑
i=1

h(πi)

defines information required to represent factor scores and

H2 = M∑
m=1

N∑
j=1

h(P (xmj ∣Θ,Sm)) (5)

defines information required to represent all patterns of the
dataset when factor scores are given. In (5) P (xmj ∣Θ,Sm) is
the probability of the jth component of mth signal xm to take
the value xmj . This probability is given by (2).

We defined the relative information gain as

G = (H0 −H)/H0.

As shown in [11], information gain decreases when both
the noise in dataset increases and the errors in BFA solution
increases. Thus it is a reliable measure of BFA quality and
propriety of BFA to given dataset at all.

B. Coverage quality

According to (1), the product S ⊗F should approximately
cover the input matrix X. The error between X and its
coverage by S ⊗ F is a natural measure of BMF quality.
The error E(X,S⊗F) may be seen as being the sum of two
components, Eu corresponding to 1s in X that are 0s in S⊗F
(uncovered) and Eo corresponding to 0s in X that are 1s in
S⊗F (overcovered):

E(X,S⊗F) = Eu(X,S⊗F) + Eo(X,S⊗F)
with

Eu(X,S⊗F) = ∣{⟨i, j⟩∣xij = 1, (S⊗F)ij = 0}∣
Eu(X,S⊗F) = ∣{⟨i, j⟩∣xij = 0, (S⊗F)ij = 1}∣

Note that in the BMDP manual on the M8 method [9],
Eu and Eo are called the positive and negative discrepancy,
respectively. For convenience, we use the functions measuring
a kind of a relative error of S⊗F with respect to X, and

Q(X,S⊗F) = 1 − E(X,S⊗F)
∣∣X∣∣

which may be thought of as measuring coverage quality.
Clearly, Q(X,S ⊗ F) = 1 if and only if X = S ⊗ F (exact
decomposition). Furthermore, Q(X,S ⊗ F) decreases with
increasing error, i.e. with increasing E(X,S⊗F).

IV. DATASETS USED

We compare the efficiency of methods using the artificial
signals which are random mixtures of horizontal and vertical
bars and with the Mushroom dataset taken from the UCI
Machine Learning Repository [13]

2012 12th International Conference on Intelligent Systems Design and Applications (ISDA) 905

Fig. 1. A Sixteen vertical and horizontal bars in 8-by-8 pixel images.
B Examples of images in the standard bars problem. Each image contains
two bars on average.

A. Bars Problem
Bars Problem (BP) was introduced in [14] and in various

modifications has been considered in many papers (see [15]
for references) as a benchmark for learning of objects from
complex patterns. In this problem, each pattern of the dataset
is n-by-n binary pixel image containing several of L = 2n
possible (one-pixel wide) bars (Fig. 1). Pixels belonging and
not belonging to the bar take values 1 and 0, respectively. For
each image each bar could be chosen with a probability C/L,
where C is the mean number of bars mixed in an image. In
the point of intersection of vertical and horizontal bars, pixel
takes the value 1. The Boolean summation of pixels belonging
to different bars simulates the occlusion of objects. The task
is to recognize all bars as individual objects on the basis of
a dataset containing M images consisting of bar mixtures. In
most papers where the BP was used as benchmark C was set
to 2 and n = 8.

In terms of BFA, bars are factors. Factor loadings fij , j =
1, . . . ,N take value One for pixels constituting ith bar and
value Zero for pixels not constituting it, N = n2 is a
total number of pixels in an image. Each image is Boolean
superposition of factors. Factor scores take values One or Zero
dependently on bar presence or absence in the image. Thus,
the bars problem is a special case of BFA. We consider the
case of homogeneously distributed noise in images both in the
form of factor distortion and in the form of specific factors.
Particularly, we put pij = pfij and qj = q. This means that
pixels constituting bars can take Zero with equal probabilities
p and pixels can take One with equal probabilities q due to
specific factors.

B. Mushroom dataset
The Mushroom dataset consists of 8125 objects and 23

nominal attributes (for example, attribute “class“ with values
“edible“ and “poisonous“, or attribute “cap-shape“ taking
values such as “bell“, “conical“ or “convex“). We transformed
this dataset to a Boolean matrix by nominal scaling, i.e. by
replacing a nominal attribute y with k values v1, . . . , vk by k
Boolean attributes yv1 , . . . , yvk in such a way that at ith row,
the value of the column corresponding to yvj is 1 if and only
if the value of the attribute y at ith row in the original dataset
is equal to vj .

V. EXPERIMENTS

In this section, we compare the efficiency of the three
methods for Boolean Factor Analysis and Matrix Factoriza-
tion. These methods are compared according to two criteria:

information gain G and coverage quality Q. Initially, the
methods are compared in solving BP.

Fig. 2. Dependency of gain G and coverage Q on the number of found
factors for the case when noise is absent (p = 1 and q = 0). ⧫−G(EMBFA),∎ −Q(EMBFA), ▲−G(BVA2), × −Q(BVA2), ∗ −G(M8), ● −Q(M8).

The dependency of G and Q on the number of found factors
for the case when noise is absent (p = 1 and q = 0) is
depicted in Fig. 2. For all methods both criteria initially grow
proportionally to the number of found factors. Since factors are
assumed to be uniformly distributed in the dataset with equal
probabilities πi = 1/8, finding of each new factor provides the
fixed increment of both indices G and Q. When all 16 bars
are found, BVA2 and M8 stop because complete coverage is
achieved. In this case, G and Q reach their maxima which
correspond to the exact solution of BP. In EMBFA like in M8
the total number of searched factors L must be assigned in
advance. As shown in Fig. 2, EMBFA provides maximal G and
Q only when L = 21, that is when assigned number of factors
exceeds the actual number of factors, which is the number of
bars. In this case, besides the bars some false factors (not bars)
are found. As a result, EMBFA slightly loses to BVA2 and
M8 in information gain. Another and more important cause of
its loss is the omission of some factors in the observations
of the dataset. Recall that this EMBFA implementation is
supposing that not more than three factors are mixed in a
pattern. However, in the generative model under consideration,
the number of mixed factors K has the binomial distribution
B(K,C/L,L), where C = 2 and L = 16. According to
this distribution, 13% of patterns containing more than three
factors are generated. Since only three factors can be identified
in these pattern, 9% of the onevalued scores are expected to
be identified as zerovalued scores. The portion of onevalued
scores missed by EMBFA amounts to 10% that is close to the
theoretical estimation obtained.

Fig. 3 illustrates the quality of methods for the case when
common factors were undistorted (p = 1) but specific factors
were added (q = 0.3). When the number of found factors L is
less than the number of bars, for all methods coverage quality
again increases almost proportionally to the found factors. For
EMBFA and BVA2 this is accompanied by the increase of G
but for M8 G remains to be close to zero. This is explained

906 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)

Fig. 3. Dependency of gain G and coverage Q on the number of found
factors for the case when common factors were not distorted (p = 1) and
specific factors were present (q = 0.3). ⧫ − G(EMBFA), ∎ − Q(EMBFA),▲−G(BVA2), × −Q(BVA2), ∗ −G(M8), ● −Q(M8).

by the fact that EMBFA and BVA2 found mostly true bars
but M8 mostly false factors (not bars). For EMBFA the gain
reaches maximum at the point when the assigned number of
searched factors L slightly exceeds the number of true factors.
As mentioned above, this occurs because all true factors can
be revealed by this method only when L exceeds the actual
number of true factors. For BVA2 the gain reaches maximum
when the number of (correctly) found factors L equals to the
number of bars. When L increases the gain decreases due
to the influence of found false factors. Recall that in BVA2
and M8 there is no notion of specific factors, that is why
specific factors appeared in observations when q = 0.3 are
treated as common ones. For EMBFA when the number of
assigned searched factors L continues to increase the gain does
not decrease because specific factors are treated correctly.

Fig. 4. Dependency of gain G and coverage Q on the number of found
factors for the case when common factors were distorted (p = 0.6) and specific
factors were absent (q = 0). ⧫−G(EMBFA), ∎−Q(EMBFA), ▲−G(BVA2),× −Q(BVA2), ∗ −G(M8), ● −Q(M8).

Fig. 4 illustrates the quality of methods for the opposite
case, that is when common factors were distorted (p = 0.6) but
specific factors were absent (q = 0). In this case, both BVA2
and M8 much lose EMBFA in information gain for all numbers
of found factors. It means that the most factors found by these

methods are false. As for the previous cases, all true factors
were found by EMBFA when the number of assigned searched
factors L slightly exceeds their actual number L = 16. When
the number of found factors continues to increase, information
gain decreases for both BVA2 and M8 but not for EMBFA.
In contrast, coverage quality continues to increase for BVA2
and M8 but not for EMBFA. However, the coverage increases
in this case only on account of false factors and, therefore,
it does not serve revealing the latent regular structure of the
dataset. Thus, thus only efficiency of EMBFA happened to be
insensitive to a noise in the input data.

Note that for L = 19, when both indices Q and g for EMBFA
reach maxima, coverage quality for EMBFA exceeds those for
both BVA2 and M8 despite of the fact that these methods
are claimed to maximize Q for any given L. This gives a
good example when greedy algorithms used by these methods
actually provide reasonable but not optimal solutions. Note
also that sometimes EMBFA converges to zero solution (as
shown in Fig. 4 in our computation it happened in case of
L = 4). To overcome this problem it is enough to restart it
with another seed of initial values pij .

Fig. 5. Dependency of gain G and coverage Q on the number of found
factors is depicted for Mushroom dataset. ⧫ −G(EMBFA), ∎ −Q(EMBFA),▲−G(BVA2), × −Q(BVA2), ∗ −G(M8), ● −Q(M8).

The performance of the methods applied to the Mushroom
dataset is shown in Fig. 5. All the methods demonstrates
similar results until the number of found factors L is less than
10. If L continues to increase the gain obtained by BVA2
and M8 decreases, but for EMBFA it continues to increase.
Following the results obtained for artificial signals one can
expect that the increase of coverage quality provided by BVA2
and M8 for L > 10 is explained only by the false factors.
Unlike BVA2 and M8, information gain obtained by EMBFA
increases monotonically. The drop of the increasing rate at
L = 20 may be interpreted as the end of finding true factors.

VI. DISCUSSION

The performance of both BMF and BFA methods were
compared for artificial and real datasets. Since for artificial
dataset its hidden factor structure is known in advance it
is possible to estimate exactly the efficiency of methods in

2012 12th International Conference on Intelligent Systems Design and Applications (ISDA) 907

revealing this structure. As artificial signals we used the
superposition of horizontal and vertical bars at the grid of
8-by-8 pixels. Revealing the factor structure of these signals
(solving the Bars Problem, BP) is a common benchmark [16],
[15] to clarify strengths and weaknesses of BFA methods. We
showed that both BVA2 and M8 methods are perfect in solving
BP when noise in signals is absent. This is not surprising
because in this case the search of factors is reduced to the
dataset Boolean factorization. But both these methods were
developed specially to perform this task. In contrast, EMBFA
was developed for Boolean factor analysis based on given
statistical generative model. As a result, EMBFA slightly loses
on BVA2 and M8 in performance when noise-free signals are
analyzed. To the contrary, both BVA2 and M8 lose on EMBFA
when input signals are noisy. M8 is not able to reveal the
hidden factor structure of the dataset for both kinds of noise:
i.e. for factor distortion and specific factors appearance, while
BVA2 is unable to do this only in the case of factor distortion.

To estimate the method‘s performance we used two indices:
information gain G and coverage quality Q. The first index
relates to BFA and the second one to BMF. As shown with
artificial signals when the number of found factors L increases,
these indices change sometimes identically, sometimes oppo-
sitely. Their identical change relates to the case when found
factors are true and the reverse change to the case when they
are false. This gives the heuristic criterion for identification
of true and false factors in real datasets. For BVA2 and M8
applied to Mushroom dataset, both G and Q increase until L
reaches 10. In this case, the factors found by all three methods
are very similar. When L > 10, Q increases for all methods but
for EMBFA G increases and for BVA2 and M8 it decreases.
This can be interpreted as finding true factors by EMBFA
and false factors by BVA2 and M8. Note that there is no
notion “false factor” in methods of matrix factorization and
therefore also no substantiated criterion for terminating the
factors searching too. Contrary to this in BFA such criterion
exists. It relates to the maximum of information gain: it is
reasonable to continue the procedure of factors search until G
increases and stop it when G reaches maximum or stops to
increase. For the Mushroom datasets it increases until L = 20.
Thus, one can expect that EMBFA found 20 but BVA2 and
M8 only 10 factors which are suitable for further analysis
by experts. However, it seems that the best strategy to reveal
the latent structure of the dataset is to apply to its analysis
all the methods and to compare the results to find the proper
interpretation.

In spite of the fact that both BVA2 and M8 were developed
to maximize coverage quality for every given number of
factors during the run of algorithm, EMBFA is comparable
with these methods even in this index. Thus, EMBFA could be
used also for Boolean matrix factorization. The disadvantage
of EMBFA is that sometimes it converges to unreasonable zero
solution. But this problem can be easily overcome by restart
with another initial seed of parameters.

ACKNOWLEDGMENT

This research has been partly funded by project GACR
P202/10/0262, by the IT4Innovations Centre of Excellence
project, reg. no. CZ.1.05/1.1.00/02.0070 supported by Oper-
ational Programme ’Research and Development for Innova-
tions’ funded by Structural Funds of the European Union and
state budget of the Czech Republic and by long-term strategic
development financing of the Institute of Computer Science
(RVO:67985807).

REFERENCES

[1] R. Belohlavek and V. Vychodil, “Discovery of optimal factors in binary
data via a novel method of matrix decomposition,” Journal of Computer
and System Sciences, vol. 76, no. 1, pp. 3–20, 2010.

[2] G. Golub and W. Kahan, “Calculating the singular values and pseudo-
inverse of a matrix,” Journal of the Society for Industrial and Applied
Mathematics: Series B, Numerical Analysis, vol. 2, no. 2, pp. pp. 205–
224, 1965.

[3] D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3, p. 2003,
2003.

[4] D. Lee, H. Seung et al., “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[5] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,”
Environmetrics, vol. 5, no. 2, pp. 111–126, 1994. [Online]. Available:
http://dx.doi.org/10.1002/env.3170050203

[6] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis.
Wiley & Sons, New York, 2001.

[7] P. Miettinen, T. Mielikainen, A. Gionis, G. Das, and H. Mannila, “The
discrete basis problem,” IEEE Transactions on Knowledge and Data
Engineering, vol. 20, no. 10, pp. 1348–1362, 2008.

[8] B. Ganter, R. Wille, and R. Wille, Formal concept analysis. Springer
Berlin, 1999.

[9] [Online]. Available: {http://www.statistical-solutions-software.com/
bmdp-statistical-software/boolean-factor-analysis/}

[10] A. A. Frolov, D. Husek, and P. Y. Polyakov, “Boolean factor analysis
by expectation-maximization method,” in Proceedings of the Third
International Conference on Intelligent Human Computer Interaction
(IHCI 2011), Prague, Czech Republic, August, 2011, ser. Advances in
Intelligent Systems and Computing, M. Kudelka, J. Pokorny, V. Snasel,
and A. Abraham, Eds. Springer Berlin Heidelberg, 2013, vol. 179, pp.
243–254.

[11] A. Frolov, D. Husek, and P. Polyakov, “Estimation of Boolean factor
analysis performance by informational gain,” in ADVANCES IN IN-
TELLIGENT WEB MASTERING-2, PROCEEDINGS, ser. Advances in
Intelligent and Soft Computing, Snasel, V. and Szczepaniak, P.S. and
Abraham, A. and Kacprzyk, J, Ed., vol. 67, 2010, pp. 83–94, 6th Atlantic
Web Intelligence Conference, Prague, CZECH REPUBLIC, SEP, 2009.

[12] ——, “New measure of Boolean factor analysis quality,” in Adaptive and
Natural Computing Algorithms, ser. Lecture Notes in Computer Science,
A. Dobnikar, U. Lotric, and B. Ster, Eds. Springer Berlin / Heidelberg,
2011, vol. 6593, pp. 100–109.

[13] A. Asuncion and D. J. Newman, “UCI Machine Learning Repository.
University of California, Irvine, School of Information and Computer
Sciences,” 2007. [Online]. Available: {http://www.ics.uci.edu/∼mlearn/
MLRepository.html}

[14] P. Foldiak, “Forming sparse representations by local anti-hebbian learn-
ing,” Biological Cybernetics, vol. 64, p. 165170, 1990.

[15] J. Lücke and M. Sahani, “Maximal causes for non-linear component
extraction,” The Journal of Machine Learning Research, vol. 9, pp.
1227–1267, 2008.

[16] M. W. Spratling, “Learning image components for object recognition,”
Journal of Machine Learning Research, vol. 7, pp. 793–815, 2006.

908 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)

