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Abstract. Swarm intelligence (SI) has become a popular choice to optimize the
wrapper feature selection technique. It has attracted this research to employ a
binary whale optimization algorithm (BWOA) to solve the molecular descrip-
tors selection problem in ATS drugs classification. This effort is to enhance the
learning and prediction ability of the classifier to generate good classification
results. S-shaped transfer functions are adopted to generate BWOA, which are
then consolidated in the wrapper feature selection with a k-Nearest Neighbor (k-
NN) classifier. Our goal is to investigate the influence of different sigmoid transfer
functions in BWOA on the selection of significant molecular descriptors and clas-
sification accuracy. Several metrics and Wilcoxon’s rank-sum test are utilized
for performance evaluation. Experimental results reveal that the BWOA-S5 offers
performance advantages with the lowest fitness value, fast convergence, high clas-
sification accuracy and, small feature subset. Furthermore, the generalization of
the optimal molecular descriptor subset is ratified by six different classifiers.

Keywords: Binary whale optimization algorithm · Transfer function ·
Descriptors selection · Drug classification

1 Introduction

The synthetic drug market has grown rapidly in recent years, with global seizures of
Amphetamine-type Stimulants (ATS) increasing by more than fourfold from 60 tonnes
in 2008 to 261 tonnes in 2017 [1]. As been reported in the “2019World Drug Report” by
the United Nations Office on Drugs and Crime (UNODC), there were about 271 million
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illicit drug users in 2016 between the ages of 15 and 64 years [2]. ATS includes a range
of synthetic psychostimulants, including methamphetamine, amphetamine, and ecstasy
that are widely abused. They are easy to produce, cheap to buy, and hard to control.

UNODC has recommended methods for identifying and analyzing ATS drugs [3].
Each of themethods has its pros and cons thatmust be considered. Someof the downsides
of existing analytical methods involve expensive facilities that entail well-trained skilled
technicians, complex testing processes, lengthy running time, not updated analytical
methods (libraries), and inconsistent results from different test kits [4–6]. Moreover, the
presents of new ATS drugs on the illegal drug market provides a steep challenge for
analytical toxicologists.

Feature selection is generally classified into filter andwrapper [7]. The filter approach
is basedon independent feature assessments, using essential data properties in identifying
how significantly particular features are [8]. It is computationally efficient than the wrap-
per approach. In contrast, the wrapper approach is highly dependent on the performance
of the machine learning classifier to find for and select the relevant features that results
in computational overhead [9]. However, the wrapper approach produces more accurate
results in terms of classification than the filter approach but suffers from being computa-
tional costly [9, 10].This researchconsidered thewrapper feature selection for theoptimal
selection of molecular descriptors in the ATS drug classification problem.

Feature selection is NP-hard computational problem. It able be a very complex
and computationally intensive task, particularly with large datasets. [11, 12]. Swarm
intelligence (SI) one of the branches of metaheuristic algorithms is established to be
an efficient solution to resolve feature selection problems in several applications [13,
14]. One of the applications is as a molecular descriptors selection approach in the
cheminformatics domainwhereby these SI algorithms have been successfully employed:
grasshopper optimization algorithm (GOA) [15], firefly algorithm (FA) [16], and salps
swarm algorithm (SSA) [17].

TheNoFree Lunch theorem [18] states that none algorithm can solve all optimization
problems, which drives our attempts to employ WOA [34] as wrapper feature selection
in ATS drug classification. WOA is widely used in many fields because of its simple
structure, less parameter for tuning, ease of implementation, and good performance [19,
20].

This work may become an alternative approach for resolving the problem in current
ATS drug analysis and identification methods. Specific molecular descriptors called 3D
Exact Legendre Moment Invariants (3D-ELMI) [21] that were formulated to represent
the 3D molecular structure of ATS drugs are employed. It contains 1185 features to
describe the drug instance. As we know, high-dimensional descriptors can degrade the
ATS drug classification results. For that reason, BWOA algorithms are utilized in this
study for the selection of important descriptors. In this research, five S-shaped transfer
functions were used to transform native WOA to binary WOA.

The principal focus of this study is to examine the effect of various S-shaped transfer
functions on BWOA that selects a less number of molecular descriptors while achiev-
ing the same or greater classification accuracy when employing all features. Next, the
comparative analysis is conducted between BWOA and native WOA according to the
selected performance metrics and statistical analysis.
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Section 2 introduces the binary whale optimization algorithm (BWOA) concepts.
Section 3 explains the 3D Exact Legendre Moment Invariants (3D-ELMI) molecular
descriptors as the representation of ATS drugs molecular structure. Section 4 reveals
the necessary material and methods used in the study. Section 5 discusses the empirical
results for native WOA and five proposed BWOAs. Lastly, Sect. 6 concludes with some
suggestions for future research.

2 Binary Whale Optimization Algorithm (BWOA)

The solutions (feature subsets) for feature selection problems are formed of binarywhich
persuades the custom WOA to the binary version of WOA [14]. Similar to WOA, the
position of search agents (whales) in the binary whale optimization algorithm (BWOA)
is continually updated to any location in the search space by following the best search
agent discovered so far. Then search agents’ real position is converted to binary values.
The conversion approach applied in this study is the transfer function. The probability
definitions by this approach force search agents or whales to travel in a binary space by
updating each position (element) in the search agent to 1 (relevant/selected feature) and
0 (irrelevant/not selected feature) [22] to generate the solution.

2.1 Transfer Functions

There are various families of transfer functions employed by researchers in the feature
selection domain such as S-shaped [23], V-shaped [24], and quadratic[25] transfer func-
tions. Among the SI algorithms that have successfully employed this approach is binary
particle swarm optimization [22], binary grasshopper algorithm [26], binary grey wolf
optimization algorithm [27], and binary harris hawk optimization algorithm [25]. This
study employed five S-shaped transfer functions in [23, 28] to generate BWOA and the
mathematical formulations are shown in Table 1. In sigmoid functions the position is
updated based on Eq. 1 proposed by Kennedy and Eberhart in [29]:

x(t + 1) =
{
1, if rand < T (x(t + 1))

0, otherwise
(1)

rand is a random number, rand ∈ {0, 1} and x(t + 1) is the new whale’s position.

2.2 Fitness Function

There are two objectives to achieve by feature selection which are maximizing the
classification accuracy andminimizing the selected feature size [30]. The fitness function
in Eq. 2 is used in the feature selection problemwhich combines the two objectives into a
single objective problem. It is also designed to have a balance between the two objectives.
The fitness value is determined from each search agent’s solution over iterations. The
optimal feature subset is the one with the least fitness value. Since the wrapper feature
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Table 1. The utilized S-shaped transfer functions.

Identifier Transfer function

S1 T (x) = 1
1+e−x

S2 T (x) = 1
1+e−2x

S3 T (x) = 1
1+e−x/2

S4 T (x) = 1
1+e−x/3

S5 T (x) = 1
1+e−10(x−0.5)

selection technique is used, a learning algorithm (classifier) is involved in evaluating the
selected feature subset.

↓ Fitness = α · E + β
|SF |
|F | (2)

where α, and β are constant parameters which manage the trade-off between classifica-
tion accuracy and subset length respectively. α ∈ (1, 0), and β = (1 − α). E indicates
the classification error rate. |SF | represents the selected feature size, and |F | is the orig-
inal feature size in the dataset. Since classification performance is our primary goal, α
is assigned to 0.99 [31] to be the most important metric.

3 3D-Exact Legendre Moment Invariants (3D-ELMI) Molecular
Descriptors Dataset

3D-ELMI molecular descriptors were introduced in 2017 by Pratama with the motiva-
tion of implementing an image processing technique, Moment Invariants (MI) [21]. The
molecular descriptors were calculated on 7190 drug instances with an equal number of
ATS drug compounds (pihkal.info database) and non-ATS drug compounds (ChemSpi-
der database). The explanation regarding the preparation of the 3Dmolecular descriptors
can be attained in Pratama et al. [32]. The 3D-ELMImolecular descriptors produce fixed
attributes consisting of 1186 feature attributes and 1 class attribute with a binary label
for each drug compound as outlined in Table 2.

4 Method

Abinarywhale-basedwrapper feature selection algorithm is employed in this research. In
this algorithm, the k-NN classifier with the Euclidean distance matric is utilized (where
k = 5 [33]) as the feature evaluator in the wrapper method. The k-NN classifier was
chosen because it has a high processing speed and can generally generate good results.
BWOAalgorithmworks as a feature search and selector to optimize thewrappermethod.
For experiments, the hold-out validation strategy with a stratified random sampling is
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Table 2. Attributes description.

Attribute Attribute type No. of attribute Description

Molecule id String 1 Molecule id refers to the
reference id of the drug molecule
in the original database

Featuren Numeric (real numbers) 1185 Calculated 3D-ELMI value. n is
feature number from 1 to 1185

Class Nominal {0, 1} 1 0: non-ATS and 1: ATS

applied where 80% of the descriptors are for training and the residual 20% is for testing
purposes. Somewhat, the Molecule id attribute is excluded during the feature selection
process. All experimental works are repeated ten times (different random seeds) to obtain
statistically meaningful results. The final results are viewed as the average of evaluation
metrics [17, 27] that were recorded from the testing data in each run. All algorithms are
implemented in Matlab R2019b that run on the Windows 10 platform in the Intel Core
i7-6700 machine, 3.40 GHz CPU, and 16 GB of RAM.

5 Results and Discussion

Analysis of the experimentation results undertaken by us is presented in this section.
Note that, the best results from each approach are emphasized in bolded text. Table
3 presents the worst fitness, best fitness, average fitness, standard deviation achieved,
and average computation time over ten different runs of native WOA and five BWOA
algorithms. As can be observed, BWOA-S5 scored the minimal worst, best, average
fitness values among other algorithms. This exhibits that BWOA-S5 is most capable of
selecting significant features. It is shown that all algorithms have achieved low standard
deviation values that imply consistent fitness values were obtained by every algorithm in
each run. BWOA-S4 is shown to be more stable and produce consistent results with the
lowest standard deviation of 0.00589. The convergence curves of these six algorithms
are presented in Fig. 1 to more intuitively reveal and compare the optimization precision
and convergence rate of each algorithm. Based on the convergence curve and the average
computational time in Table 3, we acknowledged that BWOA-S5 converged faster and
deeper to seek out the optimal solution. This reveals that the transfer function affects
the balance between exploitation and exploration in the native WOA algorithm and
highlights that BWOA-S5 has improved the convergence speed of the native WOA.

Table 4 summarizes the average results of accuracy, size of selected descriptors, and
classification time taken after the implementation of feature selection techniques. The
obtained results specify that the classification accuracy has increased between 25.63%
to 29.54% with WOA-based feature selection techniques. On the other hand, the num-
ber of selected descriptors were decreased to 27.75% (WOA), 52.62% (BWOA-S1),
56.66% (BWOA-S2), 53.39% (BWOA-S3), 48.13% (BWOA-S4), and 22.93% (BWOA-
S5) from the original size. Additional advantages gained from the small descriptors are
the reduction ofmore than 47%of classification time taken by the k-NNclassifier to learn
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and make a prediction. As a result, when evaluating the most informative descriptors
subset, BWOA-S5 contributed to the optimal performance with the highest classifica-
tion accuracy and the lowest number of selected descriptors which outperformed WOA,
BWOA-S1, BWOA-S2, BWOA-S4, and BWOA-S5.

The statistical analysis results of the Wilcoxon signed-rank test for all possible pairs
of the algorithms are presented in Table 5. The results describe whether the difference in
classification accuracies between the two respective algorithms are statistically signifi-
cant or not. If the computed p-value is less than 0.05, 1 is stated in the table, indicating
there exists a significant difference in the two algorithms’ performance. Otherwise, 0
is stated for not significant. It is clearly shown that the BWOA-S5 attained 1 for all
p-values, indicating that its superiority is statistically significant compared to the other
compared algorithms in the pair-wise Wilcoxon signed-ranks test.

Table 3. Results of best, worst, average, and standard deviation (Std) of fitness values andAverage
Computational Time (ACT) in seconds obtained by WOA and five proposed BWOA algorithms.

Algorithm Worst Best Average Std ACT

WOA 0.22389 0.19585 0.20917 0.00783 493.94

BWOA-S1 0.22229 0.19998 0.21249 0.00609 1060.68

BWOA-S2 0.23009 0.20086 0.21344 0.00826 1211.66

BWOA-S3 0.22105 0.19340 0.21318 0.00804 983.52

BWOA-S4 0.21864 0.19733 0.21200 0.00589 943.36

BWOA-S5 0.20403 0.17095 0.18570 0.01170 392.20

Table 4. Averaged results of classification accuracy, descriptors size, and classification time in
seconds for No Feature Selection (NFS), WOA, and BWOA algorithms.

Algorithm Accuracy (%) Descriptors size Classification time

NFS 62.89 1185 3.23

WOA 79.15 328.90 0.85

BWOA-S1 79.07 623.60 1.58

BWOA-S2 79.01 671.40 1.60

BWOA-S3 79.01 632.70 1.71

BWOA-S4 79.11 614.70 1.65

BWOA-S5 81.47 271.70 0.74
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Table 5. P-values of the Wilcoxon signed-rank test of classification accuracy results.

WOA BWOA-S1 BWOA-S2 BWOA-S3 BWOA-S4 BWOA-S5

WOA N/A 0 1 0 0 1

BWOA-S1 0 N/A 0 0 0 1

BWOA-S2 1 0 N/A 0 0 1

BWOA-S3 0 0 0 N/A 0 1

BWOA-S4 0 0 0 0 N/A 1

BWOA-S5 1 1 1 1 1 N/A
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Fig. 1. Convergence curves of the average fitness of WOA and proposed five BWOA algorithms.

6 Conclusions and Future Works

This research has evidenced the benefit of transfer function implementation in BWOA to
optimize the wrapper feature selection technique. The selection of transfer function is a
crucial process to improve the native WOA. The performance measurement and statisti-
cal analysis signify that BWOA-S5 is highly proficient to fulfill the two feature selection
objectives: attained the lowest and informative molecular descriptors and increase ATS
drug classification accuracy. Further experimental investigations are needed to optimize
dominating parameters in WOA: the vector a interval values, maximum iterations, and
the number of search agents. Experimenting with other families of a transfer function
is another subject to explore. Moreover, the application of other classifiers as a features
evaluator in the wrapper feature selection technique will be considered as an extension
for future work.
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