
1

Stock Market Modeling Using Genetic
Programming Ensembles

Crina Grosan1 and Ajith Abraham2

1 Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş Bolyai University, Kogalniceanu 1, Cluj-Napoca, 3400, Romania,
cgrosan@cs.ubbcluj.ro, http://www.cs.ubbcluj.ro/ cgrosan

2 School of Computer Science and Engineering, Chung-Ang University, 221,
Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Korea, ajith.abraham@ieee.org,
http://ajith.softcomputing.net

Summary. The use of intelligent systems for stock market predictions has been
widely established. This chapter introduces two Genetic Programming (GP) tech-
niques: Multi-Expression Programming (MEP) and Linear Genetic Programming
(LGP) for the prediction of two stock indices. The performance is then compared
with an artificial neural network trained using Levenberg-Marquardt algorithm and
Takagi-Sugeno neuro-fuzzy model. We considered Nasdaq-100 index of Nasdaq Stock
Market and the S&P CNX NIFTY stock index as test data. Empirical results reveal
that Genetic Programming techniques are promising methods for stock prediction.
Finally formulate an ensemble of these two techniques using a multiobjective evolu-
tionary algorithm. Results obtained by ensemble are better than the results obtained
by each GP technique individually.

1.1 Introduction

Prediction of stocks is generally believed to be a very difficult task. The process
behaves more like a random walk process and time varying. The obvious com-
plexity of the problem paves way for the importance of intelligent prediction
paradigms. During the last decade, stocks and futures traders have come to
rely upon various types of intelligent systems to make trading decisions [1],
[2], [7]. This chapter presents a comparison of two genetic programming tech-
niques (MEP and LGP), an ensemble MEP and LGP, artificial neural network
and a neuro-fuzzy system for the prediction of two well-known stock indices
namely Nasdaq-100 index of NasdaqSM [19] and the S&P CNX NIFTY stock
index [20]. Nasdaq-100 index reflects Nasdaq’s largest companies across major
industry groups, including computer hardware and software, telecommunica-
tions, retail/wholesale trade and biotechnology [21]. The Nasdaq-100 index is a
modified capitalization-weighted index, which is designed to limit domination
of the Index by a few large stocks while generally retaining the capitalization

2 Grosan and Abraham

ranking of companies. Through an investment in Nasdaq-100 index tracking
stock, investors can participate in the collective performance of many of the
Nasdaq stocks that are often in the news or have become household names.
Similarly, S&P CNX NIFTY is a well-diversified 50 stock index accounting
for 25 sectors of the economy [13]. It is used for a variety of purposes such
as benchmarking fund portfolios, index based derivatives and index funds.
The CNX Indices are computed using market capitalisation weighted method,
wherein the level of the Index reflects the total market value of all the stocks
in the index relative to a particular base period. The method also takes into
account constituent changes in the index and importantly corporate actions
such as stock splits, rights, etc without affecting the index value.

MEP and LGP techniques are applied for modeling the Nasdaq-100 and
NIFTY stock market indices so as to optimize the performance indices (dif-
ferent error measures, correlation coefficient and so on). Results obtained by
MEP and LGP are compared with the results obtained using an artificial
neural network trained using the Levenberg-Marquardt algorithm [5] and a
Takagi-Sugeno fuzzy inference system learned using a neural network algo-
rithm (neuro-fuzzy model) [3][15]. Neural networks are excellent forecasting
tools and can learn from scratch by adjusting the interconnections between
layers. Neuro-fuzzy computing is a popular framework wherein neural network
training algorithms are used to fine-tune the parameters of fuzzy inference
systems. We will build an ensemble between MEP and LGP using a multiob-
jective evolutionary algorithm (Non-dominated Sorting Genetic Algorithm II
(NSGAII)). Results obtained by ensemble are then compared with the results
obtained by MEP and LGP individually.

In Section 2, we briefly describe the stock marketing modeling problem. In
Section 3, different connectionist paradigms used in experiments are presented.
In Section 4, we formulate the ensemble between MEP and LGP followed by
experimentation setup and results in Section 5. Some conclusions are also
provided towards the end.

1.2 Modeling Stock Market Prediction

We analysed the Nasdaq-100 index value from 11 January 1995 to 11 January
2002 [19] and the NIFTY index from 01 January 1998 to 03 December 2001
[20]. For both indices, we divided the entire data into almost two equal parts.
No special rules were used to select the training set other than ensuring a
reasonable representation of the parameter space of the problem domain. The
complexity of the training and test data sets for both indices are depicted in
Figures 1 and 2 respectively.

1 Stock Modeling Using GP Ensembles 3

Fig. 1.1. Training and test data sets for Nasdaq-100 Index

Fig. 1.2. Training and test data sets for NIFTY index

Our goal is to optimize several error measures: Root Mean Squared Error
(RMSE), Correlation Coefficient (CC), Maximum Absolute Percentage Error
(MAP) and Mean Absolute Percentage Error (MAPE):

RMSE =

√√√√
N∑

i=1

|Pactual,i − Ppredicted,i|

(1.1)

4 Grosan and Abraham

CC =

N∑
i=1

Ppredicted,i

N∑
i=1

Pactual,i

,

(1.2)

MAP = max
(|Pactual, i − Ppredicted, i|

Ppredicted, i
× 100

)

(1.3)

MAPE =
1
N

N∑

i=1

[|Pactual, i − Ppredicted, i|
Pactual, i

]
× 100,

(1.4)

where Pactual,i is the actual index value on day i, Ppredicted,i is the forecast
value of the index on that day and N = total number of days. The task is to
have minimal values of RMSE, MAP and MAPE and a maximum value for
CC.

1.3 Intelligent Paradigms

The different paradigms used in this chapter are described in this Section.

1.3.1 Multi Expression Programming (MEP)

MEP is a Genetic Programming variant that uses a linear representation of
chromosomes. MEP individuals are strings of genes encoding complex com-
puter programs. When MEP individuals encode expressions, their representa-
tion is similar to the way in which compilers translate C or Pascal expressions
into machine code [4].

A unique MEP feature is the ability of storing multiple solutions of a
problem in a single chromosome. Usually, the best solution is chosen for fit-
ness assignment. When solving symbolic regression or classification problems
(or any other problems for which the training set is known before the problem
is solved) MEP has the same complexity as other techniques storing a single

1 Stock Modeling Using GP Ensembles 5

solution in a chromosome (such as Genetic Programming [17], Cartesian Ge-
netic Programming [18], Gene Expression Programming [11] or Grammatical
Evolution [24]).

Evaluation of the expressions encoded into a MEP individual can be per-
formed by a single parsing of the chromosome.

Offspring obtained by crossover and mutation are always syntactically cor-
rect MEP individuals (computer programs). Thus, no extra processing for re-
pairing newly obtained individuals is needed. For technical details, the reader
is advised to refer to the Chapter on Evolving Intrusion Detection Systems or
please consult [22].

1.3.2 Linear Genetic Programming (LGP)

Linear genetic programming is a variant of the GP technique that acts on
linear genomes [7][6]. Its main characteristics in comparison to tree-based GP
lies in that the evolvable units are not the expressions of a functional pro-
gramming language (like LISP), but the programs of an imperative language
(like c/c ++). An alternate approach is to evolve a computer program at the
machine code level, using lower level representations for the individuals. This
can tremendously hasten the evolution process as, no matter how an individ-
ual is initially represented, finally it always has to be represented as a piece of
machine code, as fitness evaluation requires physical execution of the individ-
uals. The basic unit of evolution here is a native machine code instruction that
runs on the floating-point processor unit (FPU). Since different instructions
may have different sizes, here instructions are clubbed up together to form
instruction blocks of 32 bits each. The instruction blocks hold one or more
native machine code instructions, depending on the sizes of the instructions.
A crossover point can occur only between instructions and is prohibited from
occurring within an instruction. However the mutation operation does not
have any such restriction.

LGP uses a specific linear representation of computer programs. Instead
of the tree-based GP expressions of a functional programming language (like
LISP) programs of an imperative language (like C) are evolved.

A LGP individual is represented by a variable-length sequence of simple
Clanguage instructions. Instructions operate on one or two indexed variables
(registers) r, or on constants cfrom predefined sets. The result is assigned to
a destination register, for example, ri = rj* c.

Here is an example LGP program:
void LGP(double v[8])
[0] = v[5] + 73;
v[7] = v[3] – 59;
if (v[1] ¿ 0)
if (v[5] ¿ 21)
v[4] = v[2] .v[1];
v[2] = v[5] + v[4];

6 Grosan and Abraham

v[6] = v[7] .25;
v[6] = v[4] – 4;
v[1] = sin(v[6]);
if (v[0] ¿v[1])
v[3] = v[5] .v[5];
v[7] = v[6] .2;
v[5] = v[7] + 115;
if (v[1] ¡= v[6])
v[1] = sin(v[7]);
}
A LGP can be turned into a functional representation by successive re-

placements of variables starting with the last effective instruction. The maxi-
mum number of symbols in a LGP chromosome is 4 * Number of instructions.
Evolving programs in a low-level language allows us to run those programs
directly on the computer processor, thus avoiding the need of an interpreter.
In this way the computer program can be evolved very quickly.

An important LGP parameter is the number of registers used by a chromo-
some. The number of registers is usually equal to the number of attributes of
the problem. If the problem has only one attribute, it is impossible to obtain
a complex expression such as the quartic polynomial. In that case we have to
use several supplementary registers. The number of supplementary registers
depends on the complexity of the expression being discovered.

An inappropriate choice can have disastrous effects on the program being
evolved.

LGP uses a modified steady-state algorithm. The initial population is ran-
domly generated. The following steps are repeated until a termination cri-
terion is reached: Four individuals are randomly selected from the current
population. The best two of them are considered the winners of the tourna-
ment and will act as parents. The parents are recombined and the offspring
are mutated and then replace the losers of the tournament.

We used a LGP technique that manipulates and evolves a program at the
machine code level. The settings of various linear genetic programming sys-
tem parameters are of utmost importance for successful performance of the
system. The population space has been subdivided into multiple subpopu-
lation or demes. Migration of individuals among the sub-populations causes
evolution of the entire population. It helps to maintain diversity in the pop-
ulation, as migration is restricted among the demes. Moreover, the tendency
towards a bad local minimum in one deme can be countered by other demes
with better search directions. The various LGP search parameters are the
mutation frequency, crossover frequency and the reproduction frequency: The
crossover operator acts by exchanging sequences of instructions between two
tournament winners. Steady state genetic programming approach was used to
manage the memory more effectively.

1 Stock Modeling Using GP Ensembles 7

1.3.3 Artificial Neural Network (ANN)

The artificial neural network methodology enables us to design useful nonlin-
ear systems accepting large numbers of inputs, with the design based solely
on instances of input-output relationships. For a training set T consisting of
nargument value pairs and given a d-dimensional argument x and an associ-
ated target value t will be approximated by the neural network output. The
function approximation could be represented as

T = {(xi, ti) : i = 1 : n}
(1.5)

In most applications the training set T is considered to be noisy and our
goal is not to reproduce it exactly but rather to construct a network function
that generalizes well to new function values. We will try to address the problem
of selecting the weights to learn the training set. The notion of closeness on
the training set T is typically formalized through an error function of the form

ψT =
n∑

i=1

‖yi − ti‖2 (1.6)

where yi is the network output.

Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm [5] exploits the fact that the error
function is a sum of squares as given in (1.6). Introduce the following notation
for the error vector and its Jacobian with respect to the network parameters
w

J = Jij =
∂ej

∂wi
, i = 1 : p, j = 1 : n (1.7)

The Jacobian matrix is a large p × n matrix, all of whose elements are
calculated directly by backpropagation technique. The p dimensional gradient
g for the quadratic error function can be expressed as

g(w) =
n∑

i=1

ei∇ei(w) = Je

(1.8)

and the Hessian matrix by

8 Grosan and Abraham

H = Hij =
∂2ψ

T

∂wi∂wj
=

1
2

n∑

k=1

∂2e2
k

∂wi∂wj
=

n∑

k=1

(
ek

∂2ek

∂wi∂wj
+ ∂e∂

kek

∂wi∂wj

)

(1.9)

=
n∑

k=1

(
ek

∂2ek

∂wi∂wj
+ JikJjk

)
(1.10)

Hence defining D =
n∑

i=1

ei∇2eiyields the expression

H(w) = JJ

T + D (11) (1.11)

The key to the LM algorithm is to approximate this expression for the
Hessian by replacing the matrix D involving second derivatives by the much
simpler positively scaled unit matrix ∈ I. The LM is a descent algorithm using
this approximation in the form

Mk =
[
JJT + ∈ I

]−1
, wk+1 = wk − αkMkg(wk) (1.12)

Successful use of LM requires approximate line search to determine the rate
αk. The matrix JJT is automatically symmetric and non-negative definite.
The typically large size of J may necessitate careful memory management
in evaluating the product JJT . Hence any positive ∈ will ensure that Mk is
positive definite, as required by the descent condition. The performance of the
algorithm thus depends on the choice of ∈.

When the scalar ∈ is zero, this is just Newton’s method, using the ap-
proximate Hessian matrix. When ∈ is large, this becomes gradient descent
with a small step size. As Newton’s method is more accurate, ∈ is decreased
after each successful step (reduction in performance function) and is increased
only when a tentative step would increase the performance function. By doing
this, the performance function will always be reduced at each iteration of the
algorithm.

1.3.4 Neuro-Fuzzy System

Neuro Fuzzy (NF) computing is a popular framework for solving complex
problems [3]. If we have knowledge expressed in linguistic rules, we can build
a Fuzzy Inference System (FIS) [8], and if we have data, or can learn from
a simulation (training) then we can use ANNs. For building a FIS, we have
to specify the fuzzy sets, fuzzy operators and the knowledge base. Similarly
for constructing an ANN for an application the user needs to specify the

1 Stock Modeling Using GP Ensembles 9

architecture and learning algorithm. An analysis reveals that the drawbacks
pertaining to these approaches seem complementary and therefore it is natural
to consider building an integrated system combining the concepts. While the
learning capability is an advantage from the viewpoint of FIS, the formation
of linguistic rule base will be advantage from the viewpoint of ANN. Figure
3 depicts the 6-layered architecture of multiple output neuro-fuzzy system
implementing a Takagi-Sugeno fuzzy inference system. For technical details,
the reader is advised to consult [15].

Fig. 1.3. Architecture of ANFIS

1.4 Ensemble of GP Techniques

Our goal is to optimize four error measures namely Root Mean Squared Er-
ror (RMSE), Correlation Coefficient (CC), Maximum Absolute Percentage
Error(MAP) and Mean Absolute Percentage Error (MAPE). The task is to
have minimal values of RMSE, MAP, MAPE and a maximum value for CC.
The objective is to carefully construct the different GP models to achieve the
best generalization performance. Test data is then passed through these in-
dividual models and the corresponding outputs are recorded. Suppose results
obtained by LGP and MEP are anand bn respectively and the corresponding
desired value is xn. The task is to combine an andbn so as to get the best

10 Grosan and Abraham

output value that maximizes the CC and minimizes the RMSE, MAP and
MAPE values.

We consider this problem as a multiobjective optimization problem in
which we want to find solution of this form: (coef 1, coef 2) where coef 1, and
coef 2 are real numbers between -1 and 1, so as the resulting combination:

coef

1*an + coef 2*bn (1.13)

would be close to the desired value xn. This means, in fact, to find a
solution so as to simultaneously optimize RMSE, MAP, MAPE and CC.
This problem is equivalent to finding the Pareto solutions of a multiobjec-
tive optimization problem. For this problem, the objectives are RMSE, MAP,
MAPE and CC. We use the well known Multiobjective Evolutionary Algo-
rithm (MOEA) - Nondominated Sorting Genetic Algorithm II (NSGAII) [10]
and a short description of this algorithm is given in the subsequent Section.

1.4.1 Nondominated Sorting Genetic Algorithm II (NSGA II)

In the Nondominated Sorting Genetic Algorithm (NSGA II)[10] for each so-
lution x the number of solutions that dominate solution x is calculated. The
set of solutions dominated by x is also calculated. The first front (the current
front) of the solutions that are nondominated is obtained.

Let us denote by Si the set of solutions that are dominated by the solution
xi. For each solution xi from the current front consider each solution xq from
the set Si.

The number of solutions that dominates xqis reduced by one. The solutions
which remain non-dominated after this reduction will form a separate list.
This process continues using the newly identified front as the current front.
Let P (0) be the initial population of size N . An offspring population Q(t)
of size N is created from current population P (t). Consider the combined
population R(t) = P(t) ∪Q(t).

Population R(t) is ranked according to nondomination. The fronts F1, F2,
... are obtained. New population P (t+1) is formed by considering individuals
from the fronts F1, F2, ..., until the population size exceeds N. Solutions of
the last allowed front are ranked according to a crowded comparison relation.

NSGA II uses a parameter (called crowding distance) for density estima-
tion for each individual. Crowding distance of a solution x is the average
side-length of the cube enclosing the point without including any other point
in the population. Solutions of the last accepted front are ranked according
to the crowded comparison distance

NSGA II works follows. Initially a random population, which is sorted
based on the nondomination, is created. Each solution is assigned a fitness

1 Stock Modeling Using GP Ensembles 11

equal to its nondomination level (1 is the best level). Binary tournament selec-
tion, recombination and mutation are used to create an offspring population.
A combined population is formed from the parent and offspring population.
The population is sorted according to the nondomination relation. The new
parent population is formed by adding the solutions from the first front and
the followings until exceed the population size. Crowding comparison proce-
dure is used during the population reduction phase and in the tournament
selection for deciding the winner.

1.5 Experiment Results

We considered 7 year’s month’s stock data for Nasdaq-100 Index and 4 year’s
for NIFTY index. Our target is to develop efficient forecast models that could
predict the index value of the following trading day based on the opening,
closing and maximum values of the same on a given day. For the Nasdaq-
100index the data sets were represented by the ‘opening value’, ‘low value’
and ‘high value’. NIFTY index data sets were represented by ‘opening value’,
‘low value’, ‘high value’ and ‘closing value’. The assessment of the predic-
tion performance of the different connectionist paradigms and the ensemble
method were done by quantifying the prediction obtained on an independent
data set.

1.5.1 Parameter Settings

MEP Parameter Settings

Parameters used by MEP in these experiments are presented in Table 1.1.
Next two experiments analyze the results obtained by MEP by considering
different population sizes and different values for chromosome length. The val-
ues for the other parameters are adapted from Table 1.1. Population size was
considered 150 for both test data. Average results obtained from 10 different
runs and the best results obtained are presented in Table 1.2. Results obtained
for different population sizes and various chromosome lengths are presented
in Tables 1.3 and 1.4 respectively for both Nasdaq and Nifty test data.

As evident from Table 1.2 the best results for Nasdaq is obtained using a
population of 100 individuals and for Nifty using a population of 150 individ-
uals. Table 1.3 illustrates that the best result for both Nasdaq and Nifty is
obtained using a chromosome length of 40 and 50.

LGP Parameter Settings

Parameters values used by LGP for Nasdaq and Nifty test data are presented
in Table 1.4.

12 Grosan and Abraham

Table 1.1. Values of parameters used by MEP

Parameter Value

Population size
Nasdaq 100
Nifty 50

Number of iteration
Nasdaq 60
Nifty 100

Chromosome length
Nasdaq 30
Nifty 40

Crossover Probability 0.9

Functions set +, - , *, /, sin,
cos, sqrt, ln, lg, log2,
min, max, abs

Table 1.2. Performance measures obtained by MEP or population sizes

Population size
50 100 150 200

Nasdaq

RMSE
Best 0.022 0.032 0.035 0.0168
Average 0.024 0.027 0.03 0.022

CC
Best 0.999 0.097 0.97 0.992
Average 0.995 0.984 0.98 0.997

MAP
Best 97.43 103.31 103.31 103.31
Average 109.59 100.37 109.33 100.7

MAPE
Best 18.13 9.02 9.08 8.69
Average 23.32 13.58 18.8 18.23

Nifty

RMSE
Best 0.0187 0.163 0.015 0.0138
Average 0.02 0.0196 0.0197 0.019

CC
Best 0.999 0.997 0.999 0.999
Average 0.991 0.979 0.978 0.988

MAP
Best 38.99 31.7 27.64 30.03
Average 53.02 42.225 41.85 48.81

MAPE
Best 4.131 3.72 3.17 3.027
Average 4.9 4.66 4.81 4.34

Ensemble Using NSGAII Parameter Setting

Parameters values used by NSGAII for combining (ensembling) MEP and
LGP are given in Table 1.5. These parameters were used for both Nasdaq and
Nifty test data.

ANN and NF parameter settings

We used a feed forward neural network with 4 input nodes and a single hidden
layer consisting of 26 neurons. Tanh-sigmoidal activation function was for the
hidden neurons. The training using LM algorithm was terminated after 50
epochs and it took about 4 seconds to train each dataset. For the neuro-
fuzzy system, we used 3 triangular membership functions for each of the input

1 Stock Modeling Using GP Ensembles 13

Table 1.3. Performance measures obtained by MEP for different chromosome
lengths

Chromosome length
20 30 40 50

Nasdaq

RMSE
Best 0.021 0.032 0.028 0.0165
Average 0.021 0.027 0.024 0.022

CC
Best 0.998 0.976 0.977 0.993
Average 0.998 0.987 0.985 0.994

MAP
Best 97.43 103.31 103.31 103.31
Average 97.43 100.38 118.5 115.55

MAPE
Best 18.11 9.02 8.91 8.53
Average 18.12 13.52 18.74 15.86

Nifty

RMSE
Best 0.0187 0.0169 0.015 0.014
Average 0.0193 0.023 0.0197 0.02

CC
Best 0.999 0.990 0.999 0.992
Average 0.994 0.977 0.98 0.981

MAP
Best 38.99 42.98 27.64 34.87
Average 43.37 52.1 38.78 40.67

MAPE
Best 4.125 4.08 3.17 3.30
Average 4.33 5.68 4.81 4.75

Table 1.4. LGP parameter settings

Parameter Value

Population size 100

Mutation frequency 95%

Crossover frequency 50%

Number of demes 10

Number of constants 60

Table 1.5. Parameters values used by NSGAII for ensembling MEP and LGP

Parameter Value

Population size 250

Mutation probability 0.3

Crossover probability 0.5

Number of generations 1,000

Chromosome length 30

variable and the 27 if-then fuzzy rules were learned for the Nasdaq-100 index
and 81 if-then fuzzy rules for the NIFTY index. Training was terminated after
12 epochs and it took about 3 seconds to train each dataset [1].

14 Grosan and Abraham

1.5.2 Comparisons of Results Obtained by Intelligent Paradigms

Table 1.6 summarizes the results achieved for the two stock indices using the
five intelligent paradigms (ANN, NF, MEP, LGP and the ensemble between
LGP and MEP).

Table 1.6. Results obtained by intelligent paradigms for Nasdaq and Nifty test
data

ANN NF MEP LGP Ensemble

Test results for Nasdaq

RMSE 0.0284 0.0183 0.021 0.021 0.0203

CC 0.9955 0.9976 0.999 0.9940 1.000

MAP 481.71 520.84 97.39 97.94 96.92

MAPE 9.032 7.615 14.33 19.65 19.25

Test results for Nifty

RMSE 0.0122 0.0127 0.0163 0.0124 0.0127

CC 0.9968 0.9967 0.997 0.995 1.000

MAP 73.94 40.37 31.7 40.02 31.9

MAPE 3.353 3.320 3.72 2.83 2.80

The combination obtained by ensemble between LGP and MEP are re-
ported below: Nasdaq: 0.669668 ∗ an + 0.334354 ∗ bn

Nifty: 0.632351 ∗ an + 0.365970 ∗ bn

where an and bn correspond to LGP and MEP indices respectively.
As depicted in Table 1.6, for Nasdaq test data, MEP gives the best results

for MAP (97.39). Also LGP gives results very close to MEP while the other
techniques did not perform that well. While MEP obtained the best result for
CC, the performance obtained were close to the results obtained for RMSE
by the other paradigms. Results obtained by ensemble clearly outperforms
almost all considered techniques. For both Nasdaq and Nifty test data, the
values obtained by the ensemble for CC is 1.000.

Since the multiobjective evolutionary algorithm was used to simultane-
ously optimize all the four performance measures (RMSE, CC, MAP and
MAPE), more than one solution could be obtained in the final population
(which, in fact, means more than one combination between LGP and MEP).
Some examples of the solutions obtained for Nifty is given below:

• Best value for RMSE obtained by the ensemble is 0.012375, while CC =
0.999, MAP = 36.86 and MAPE = 2.71.

• Best value for MAP obtained by the ensemble is 25.04, while RMSE =
0.0138, CC = 0.998 and MAPE = 3.05.

• Best result obtained by the ensemble for MAPE is 2.659513, while RMSE
= 0.0124, CC = 0.998 and MAP = 41.44.

1 Stock Modeling Using GP Ensembles 15

1.6 Summary

In this chapter, we presented five techniques for modeling stock indices. The
performance of GP techniques (empirical results) when compared to ANN
and NF clearly indicate that GP could play a prominent role for stock market
modeling problems. The fluctuations in the share market are chaotic in the
sense that they heavily depend on the values of their immediate fore run-
ning fluctuations. Our main task was to find the best values for the several
performance measures namely RMSE, CC, MAP and MAPE. We applied
a multiobjective optimization algorithm in order to ensemble the GP tech-
niques. Experiment results reveal that the ensemble performs better than the
GP techniques considered separately.

According to the No Free Lunch Theorem (NFL), for any algorithm, any
elevated performance over one class of problems is exactly paid for in perfor-
mance over another class [26]. Taking into account of the NFL theorem, it
would be a rather difficult task to predict which paradigm would perform the
best for different stock indices [13].

1.7 Acknowledgements

This research was supported by the International Joint Research Grant of
the IITA (Institute of Information Technology Assessment) foreign professor
invitation program of the MIC (Ministry of Information and Communication),
South Korea.

References

1. Abraham, A. and AuYeung, A., Integrating Ensemble of Intelligent Systems for
Modeling Stock Indices, In Proceedings of 7th International Work Conference
on Artificial and Natural Neural Networks, Lecture Notes in Computer Science-
Volume 2687, Jose Mira and Jose R. Alverez (Eds.), Springer Verlag, Germany,
pp. 774-781, 2003.

2. Abraham, A. Philip, N.S. and Saratchandran, P., Modeling Chaotic Behavior
of Stock Indices Using Intelligent Paradigms. International Journal of Neural,
Parallel & Scientific Computations, USA, Volume 11, Issue (1&2) pp.143-160,
2003.

3. Abraham, A., Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques,
Connectionist Models of Neurons, Learning Processes, and Artificial Intelli-
gence, Springer-Verlag Germany, Jose Mira and Alberto Prieto (Eds.), Granada,
Spain, pp. 269-276, 2001.

4. Aho, A., Sethi R., Ullman J., Compilers: Principles, Techniques, and Tools,
Addison Wesley, 1986.

5. Bishop, C. M., Neural Networks for Pattern Recognition, Oxford: Clarendon
Press, 1995.

16 Grosan and Abraham

6. M. Brameier and W. Banzhaf, A Comparison of Linear Genetic Programming
and Neural Networks in Medical Data Mining, IEEE Transactions on Evolu-
tionary Computation, 5, pp.17-26, 2001.

7. M. Brameier and W. Banzhaf, Explicit Control of Diversity and Effective Vari-
ation Distance in Linear Genetic Programming,in Proceedings of the Fourth
European Conference on Genetic Programming, edited by E. Lutton, J. Foster,
J. Miller, C. Ryan, and A. Tettamanzi (Springer-Verlag, Berlin, 2002).

8. Cherkassky V., Fuzzy Inference Systems: A Critical Review, Computational
Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications,
Kayak O, Zadeh L A et al (Eds.), Springer, pp.177-197, 1998.

9. Collobert R. and Bengio S., SVMTorch: Support Vector Machines for Large-
Scale Regression Problems, Journal of Machine Learning Research, Volume 1,
pages 143-160, 2001.

10. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T., A fast elitist non-dominated
sorting genetic algorithms for multiobjective optimization: NSGA II. KanGAL
report 200001, Indian Institute of Technology, Kanpur, India, 2000.

11. C. Ferreira, Gene Expression Programming: A New Adaptive Algorithm for
Solving Problems, Complex Systems, 13 (2001) 87129.

12. E.H. Francis et al. Modified Support Vector Machines in Financial Time Series
Forecasting, Neurocomputing 48(1-4): pp. 847-861, 2002.

13. C. Grosan and A. Abraham, Solving No Free Lunch Issues from a Practical
Perspective, In Proceedings of Ninth International Conference on Cognitive and
Neural Systems, ICCNS’05, Boston University Press, USA, 2005 .

14. S. Hashem. Optimal Linear Combination of Neural Networks. Neural Network,
Volume 10, No. 3. pp. 792-994, 1995.

15. J.S.R. Jang, C.T. Sun and E. Mizutani. Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, Prentice Hall
Inc, USA, 1997.

16. T. Joachims . Making large-Scale SVM Learning Practical. Advances in Kernel
Methods - Support Vector Learning, B. Schölkopf and C. Burges and A. Smola
(Eds.), MIT-Press, 1999.

17. J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection (MIT Press, Cambridge, MA, 1992).

18. J. Miller and P. Thomson. Cartesian Genetic Programming, in Proceedings of
the Third European Conference on Genetic Programming, edited by Riccardo
Poli, Wolfgang Banzhaf, Bill Langdon, Julian Miller, Peter Nordin, and Terence
C. Fogarty (Springer-Verlag, Berlin, 2002).

19. Nasdaq Stock MarketSM : http://www.nasdaq.com.
20. National Stock Exchange of India Limited: http://www.nse-india.com.
21. M. Oltean and C. Grosan. A Comparison of Several Linear GP Techniques.

Complex Systems, Vol. 14, Nr. 4, pp. 285-313, 2004
22. M. Oltean M. C. Grosan. Evolving Evolutionary Algorithms using Multi Expres-

sion Programming. Proceedings of The 7 th European Conference on Artificial
Life, Dortmund, Germany, pp. 651-658, 2003.

23. N.S. Philip and K.B. Joseph. Boosting the Differences: A Fast Bayesian classifier
neural network, Intelligent Data Analysis, Vol. 4, pp. 463-473, IOS Press, 2000.

24. C. Ryan C. J.J. Collins and M. O’Neill. Gramatical Evolution: Evolving pro-
grams for an arbitrary language. In Proceedings of the first European Workshop
on Genetic Programming, Springer-Verlag, Berlin, 1998.

1 Stock Modeling Using GP Ensembles 17

25. R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and Appli-
cations. New York: Wiley, 1986

26. D.H. Wolpert and W.G. Macready. No free lunch theorem for search. Technical
Report SFI-TR-95-02-010. Santa Fe Institute, USA, 1995.

