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Abstract Grid computing being immensely based on the concept of resource sharing
has always been closely associated with a lot many challenges. Growth of Resource
provisioning-based scheduling in large-scale distributed environments like Grid com-
puting brings in new requirement challenges that are not being considered in traditional
distributed computing environments. Resources being the backbone of the system,
their efficient management plays quite an important role in its execution environment.
Many constraints such as heterogeneity and dynamic nature of resources need to be
taken care as steps toward managing Grid resources efficiently. The most important
challenge in Grids being the job–resource mapping as per the users’ requirement in
the most secure way. The mapping of the jobs to appropriate resources for execution
of the applications in Grid computing is found to be an NP-complete problem. Novel
algorithm is required to schedule the jobs on the resources to provide reduced execu-
tion time, increased security and reliability. The main aim of this paper is to present
an efficient strategy for secure scheduling of jobs on appropriate resources. A novel
particle swarm optimization-based hyper-heuristic resource scheduling algorithm has
been designed and used to schedule jobs effectively on available resources without vio-
lating any of the security norms. Performance of the proposed algorithm has also been
evaluated through the GridSim toolkit. We have compared our resource scheduling
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algorithm with existing common heuristic-based scheduling algorithms experimen-
tally. The results thus obtained have shown a better performance by our algorithm
than the existing algorithms, in terms of giving more reduced cost and makespan of
user’s application being submitted to the Grids.

Keywords Grid computing · Resource scheduling · Heuristic methods

1 Introduction

Grid computing has emerged as a computing platform to provide huge amount of
resource sharing to large-scale scientific applications such as drug-design and protein
folding. Due to heterogeneous and dynamic nature of the resources in Grid, resources
are inexorably unreliable, which has a great effect on scheduling [1]. So, Grid resource
management has become one of the most important key concerns in the field of Grid
computing [2,3].

Grid resource management can be defined as a process consisting identification
of requirements of the resources, matching resources to the applications followed by
resource allocation and scheduling as well as monitoring the Grid resources finally
over time to run Grid applications as efficiently as possible [46]. Grid resource man-
agement system is required to take resource management decisions which include
resource provisioning and scheduling, while maximizing the Quality of Service (QoS)
metrics delivered to the clients. Deployment of Grid systems involves the efficient
management of heterogeneous, geographically distributed and dynamically available
resources. These requirements introduce a number of challenging issues that need to
be addressed such as resource provisioning-based resource scheduling and ensuring
the scheduling of jobs on the trustworthy nodes. A major issue which needs due atten-
tion is to address the resource scheduling problem in Grid computing environment
in a way ensuring secure execution of the jobs on ingredient resources leading to a
more authentic performance. Resource provisioning is needed before scheduling of
the resources or execution of Grid applications as Grid user often has a limited control
over Grid Resources and the resource manager too is not always able to fulfill all the
requirements due to the large number of resources as well as users requests.

It thus becomes a well-justified need to design an efficient resource provisioning-
based scheduling algorithm. Grid scheduling is defined as the process of making
scheduling decisions involving allocation of jobs to resources over multiple adminis-
trative domains [4]. Unlike traditional distributed systems, Grid computing environ-
ment provides a platform where resources and users work in different autonomous
domains, thus making the mapping of jobs to appropriate resources for execution of
application in Grid computing, a challenging NP-complete problem [11,44]. Heuristic
methods often help to solve NP-complete problems. Heuristic approaches can easily
be applied to Grid scheduling problems because Grid scheduling consists of various
important issues such as heterogeneity of resources, dynamic and autonomous nature
of Grid resources and finally the issue of different policies being followed by the
resource providers and resource consumers for execution of their applications.

Hyper-heuristic approaches are more suitable to Grid environment as both
resources and jobs are highly diverse and dynamic in nature. The term hyper-
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heuristic describes choice-based heuristics in the context of combinatorial optimiza-
tion.

Hyper-heuristic can be seen as a high-level methodology, which when given a
particular problem instance or class of instances and a number of low-level heuris-
tics automatically produces an adequate combination of the provided components to
effectively solve the given problems [5].

The main motive of this work is to propose a hyper-heuristic-based scheduling algo-
rithm being able to be applicable in Grid environment and hence scheduling resources
to the preferred jobs leading to the delivery of optimum results to the Grid users.
The main contributions of this paper are (1) a model of Grid resource scheduling, (2)
particle swarm optimization (PSO)-based hyper-heuristic resource scheduling algo-
rithm, (3) optimizing the cost and time for resource scheduling simultaneously, and
(4) performance evaluation with respect to existing scheduling algorithms.

Rest of this paper is organized as further six sections. Section 2 presents related
work. Section 3 deals with a description of Grid resource scheduling model. In Sect.
4, we present PSO-based hyper-heuristic resource scheduling algorithm for Grid envi-
ronment. Section 5 shows the simulation study of various heuristic approaches and
their comparison with the new proposed algorithm. Conclusion and future works have
been presented in Sect. 6.

2 Related work

Resource provisioning and scheduling are major pillars of computational Grids and
help it achieve high performance in its execution environment. Due the heterogeneous
and dynamic nature of Grid resources, this basically has taken the form of a large-scale
optimization problem. Observations suggest little emphasis on resource provisioning
and security-based scheduling in Grid resource management as described in this sec-
tion.

2.1 Resource scheduling without security

Abraham et al. [7] used nature’s heuristics namely Genetic Algorithm (GA), Simulated
Annealing (SA) and Tabu Search (TS) for scheduling of jobs on computational Grids.
Authors have presented about better performance of GA over TS and SA for scheduling
of the jobs to exact resources but hybrid heuristic algorithms perform better than GA
approach as it minimizes the time required for scheduling the job.

In [39], a QoS-guided min-min heuristic is presented which can guarantee the QoS
requirements of particular tasks and minimize the makespan at the same time. Carretero
and Xhafa [21] have used GA for job scheduling in large-scale Grid applications.
Authors have done several variations for GA operators to identify which worked best
for the problem. Izakian et al. [40] used particle swarm optimization (PSO) for task
scheduling in heterogenous computing systems and considered the makespan and
flowtime as parameters. Authors did not used hyper-heuristic approach to design Grid
scheduling algorithm and did not use the concept of resource provisioning before
resource scheduling.

Abraham et al. [41] used PSO for scheduling job on computational Grids and
extended the position and velocity of the particles in the conventional PSO from the real
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vectors to fuzzy matrices. Zhao et al. [43] proposed SPSC, a flexible QoS-based service
scheduling algorithm for service-oriented Grids. SPSC scheduling algorithm has been
designed to provide QoS requirements by giving preference to user instead of resource
provider. Above all, these works only considered limited scheduling objectives, more
research is needed to give a flexible resource provisioning policy-based scheduling
algorithm which supports both user’s preference and resource provider’s benefits.
Resource provisioning policies have been discussed in our previous work [23].

Garg et al. proposed a model for meta-scheduling on utility Grids using linear
programming and genetic algorithm. This model minimizes the cost for scheduling
of an independent task. Authors have considered multiple and concurrent users who
are competing for the resources in a meta-scheduling environment to minimize their
cost [9]. Garg et al. [10] proposed three novel heuristics for parallel applications on
utility Grids. The sensitivity of proposed heuristics on the basis of changes in user’s
preference, application’s execution time and resource’s pricing has been evaluated. A
drawback of previously mentioned approaches being performing scheduling without
any consideration of security and reliability as QoS parameters simultaneously.

Brun et al. [11] compared 11 static heuristics for mapping a class of independent
tasks on heterogenous computing systems. A simulation model has been used for com-
paring static heuristics which returned the best optimum result. Gaoa et al. [13] devel-
oped two algorithms that used the predictive models to schedule jobs at both system
level and application level. In application-level scheduling, GA is used to minimize the
average completion time of jobs through optimal job allocation on each node. Xhafa
et al. [14] surveyed the computational model and heuristic methods for Grid scheduling
problems. The major drawback here being the resource scheduling algorithm based on
resource provisioning policies not being designed considering the capability of node
and the QoS expectation of the resource providers and resource consumers.

Gonzalez et al. [8] used ad-hoc (immediate and batch mode) scheduling methods
to design hyper-heuristic approach for scheduling of jobs on the Grid nodes according
to the job and Grid characteristics. A scheduling model for resource scheduling using
heuristic methods has been designed by Bhanu et al. [6]. Longest Job Faster Resource
(LJFR) heuristic and Shortest Job Faster Resource (SJFR) heuristic method have been
used for resource scheduling in [6].

Authors did not consider the cost, makespan, security and reliability for indepen-
dent job scheduling in the Grid environment. Techniques used in the traditional Grid
scheduling have not been very successful in producing efficient and effective results to
manage the resources. Our proposed implementation of hyper-heuristic-based resource
scheduling algorithm minimizes the cost and makespan simultaneously. On the other
hand, particle swarm-based hyper-heuristic has not been used for resource scheduling
in the Grid earlier and we are proposing a new way while designing our resource
scheduling algorithm.

2.2 Resource scheduling with security

The resource scheduling problem in Grid becomes more challenging as it is not only
important to achieve the promising potentials of enormously distributed resources,
but also using effective and efficient scheduling algorithms. Hence, a lot of algorithms
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have been developed for scheduling jobs in a computational Grid and all of them aim
to minimize the job completion time [30,45].

Different Grid scheduling approaches have been investigated and applied to differ-
ent Grid scenarios and requirements. Some of the researchers have tried to schedule the
jobs securely but to our best of the knowledge there is still a dearth of approaches cover-
ing resource provisioning-based scheduling. Kyriaki et al. [30] have considered multi-
criteria job scheduling using accelerated genetic algorithm. Authors have considered
security constraints for scheduling of jobs but resource provisioning-based schedul-
ing has not been considered. Kolodziej et al. [31,32] have presented an approach for
independent task scheduling with security requirements in Grid computing environ-
ment. Authors here have developed a scheduling model that enables the aggregation of
task abortion and security requirements using a game-theoretic and genetic algorithm-
based approach for optimizing the makespan and flowtime.

A fuzzy reputation-based ant algorithm for Grid scheduling has been designed
in [42]. A fuzzy logic trust model for trust value aggregation through fuzzification
has been used. Chen et al. [38] have used universal utility optimization function to
design economic Grid resource scheduling algorithm by considering time and cost
parameters.

In addition of these, fitness function of the genetic algorithm is dependent on the
makespan of the solution ignoring the other scheduling criteria like cost and secu-
rity. Using the proposed resource provisioning-based scheduling presented in this
work, we can securely schedule the resources and avoid the run-time failures. In the
above-mentioned approaches, security has been considered as a QoS parameter to
provide QoS at the time of scheduling but scheduling based on QoS parameter-based
resource provisioning policies have not been considered. These studies have many
limitations (1) makespan is the only QoS parameter which has been considered for
resource scheduling, (2) only user benefits have been considered ignoring the resource
provider’s benefits and (3) authors did not use the hyper-heuristic approach to solve the
Grid resource scheduling problems. Hyper-heuristic is a good approach to solve vari-
ous problems such as personal scheduling, timetabling, nurse scheduling and resource
scheduling. Not being problem-specific like metaheuristic approach, it can be applied
to any optimization problem.

The main problem in Grid environment is the selection of services as well as service
providers in an appropriate way so as to achieve global Service Level Agreement
(SLA) with minimum cost [33]. An integration of the security mechanisms with the
scheduling algorithms still seems to be one of the most important and challenging
problems in Grid computing [31].

The main aim of our study is to propose an efficient resource scheduling algorithm
based on resource provisioning, taking into account cost and computation time as QoS
parameters.

3 Grid resource scheduling model

Grid resource scheduling is the core of the Grid resource management systems. This
process includes searching multi-administrative domains to use the available resources
from the Grid infrastructure to satisfy the requirements of the user.
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Grid scheduling being a two-step process: step one identifies the required set of
resources as per the user requests whereas the second step maps the jobs on to the actual
set of resources thus ensuring further a near-optimal satisfaction of QoS parameters.
For example, if a person has to buy something from a shop the shopkeeper asks the
buyer about his budget and then shows the items accordingly, the buyer now selects
the most appropriate items among all the items shown that matches his budget and
other specifications.

Figure 1 shows a Grid resource scheduling model.

– Each user tries to access the resources for application’s execution through Grid
portal. After this, the task of authorization and authentication is performed at the
portal side.

– Resource Provisioning (RP) unit takes the information about the available
resources from Resource Information Center (RIC) [23]. RIC collects all the infor-
mation about the resource provider’s resources and trust level of the resources from
Resource Trust Manager (RTM). RTM will act as both resource manager and trust
manager. Then, the RP unit performs preliminary provisioning for user’s requests.
On the completion of resource provisioning, the task of mapping to exact resources
is performed.

Fig. 1 Resource scheduling model
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– Grid scheduler further takes all the information from RP unit which has a list of
provisioned resources that are available in the Grid environment. According to the
status of the resource, scheduler will consult with the Job Manger (JM) for job
execution.

– Job Manager is a protocol engine for communicating with a range of different
local resource schedulers using a standard message format [25]. Grid computing
resources are typically operated under the control of a scheduler which implements
allocation and prioritization policies while optimizing the execution of all submit-
ted jobs leading to high efficiency and performance. Mapping of job to resources is
then performed. Resources can be clusters of computers, memory spaces, storage
capacity, files, attached peripheral devices, etc.

3.1 Requirements

There are some important characteristics which should be kept in mind while designing
resource scheduling algorithm. The important requirements are as follows:

Efficiency Resource provisioning provides the facility to minimize the Grid over-
heads. Resource provisioning requires efficient management of the resources. It
should also be efficient enough based on QoS parameter-based resource provi-
sioning policies.
Efficient resource usage A resource scheduling algorithm should reduce the
wastage of the resources. Jobs that are waiting for events (e.g., disk or user I/O,
network latency, CPU usage, processor) should be handed over to the processor
not to waste any of the resources. It should optimize the resource utilization by
simultaneously optimizing cost and time.
Fair allocation The amount of resources allocated to each user should be inde-
pendent of the number of jobs each user runs and a resource scheduling algorithm
should be fair.
Adaptability and scalability A smart scheduler adapts as per the resources, i.e.,
whenever resources join or leave (dynamically), it manages the resources and jobs’
execution process efficiently.

3.2 Problem formulation

To find the most suitable resource to a corresponding job is a tedious task and the prob-
lem of finding the best resource–job pair according to user’s application requirement
is a combinatorial optimization problem.

In this work, a resource scheduling problem has been designed considering the QoS
expectations of both the resource providers and resource consumers. User wishes to
minimize the cost whereas the resource provider wishes to minimize the makespan. In
this problem, we have considered the most popular and extensively studied optimiza-
tion criteria, i.e., the minimization of the makespan. Makespan is used to indicate the
general productivity of the Grid systems. Smaller values of makespan indicate that the
scheduler is planning the jobs in an efficient manner. Another optimization criterion is
cost, which refers to the cost of the job execution on the particle resource along with
the security-assurance cost.
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To formalize the problem instance, we have used the Ali et al. computational model
[35]. We have mathematically formalized the problem to get an optimal solution.

To consider this problem, we have taken a set of independent jobs { j1, j2, j3, . . . , jm}
to map on a set of heterogenous and dynamic resources {r1, r2, r3, . . . , rn}. R =
{rk |1 ≤ k ≤ n} is the collection of resources and n is the total number of resources.
J = { ji |1 ≤ i ≤ m} is the collection of jobs and m is the total number of jobs. The
estimated time to compute value of each application/job on each resource is assumed
to be supplied by the user. User gives the information, experimental data, job profil-
ing and analytical benchmarking. The performance estimation for resource services
is achieved using the existing performance estimation techniques such as analytical
modeling [29] and historical information [28,31]. Under the expected time to compute
(ETC) simulation model for problem formulation, we have considered the following
constraints:

1. Each job to be scheduled for application’s execution has a unique id.
2. Jobs are independent and indivisible.
3. Arrival of jobs for execution of application is random and jobs are placed in a

queue of unscheduled jobs.
4. The computing capacity/speed of the resources is measured in multiple instruction

per second (MIPS) as per Standard Performance Evaluation Corporation (SPEC)
benchmark.

5. The processing requirement of job is measured in million instructions (MI).
6. Execution time for every job on resource is obtained from the ETC matrix. No of

jobs × no of resources gives the size of the matrix and its components are defined
as ETC( ji , rk). Rows of the ETC matrix demonstrate the estimated execution time
for a job on each resource and the columns demonstrate the estimated execution
time for a particular resource. ETC( ji , rk) is the expected execution time of job ji
and the resource rk .

To enable more effective and security aware resource scheduling, it is desirable to
know the security demand (SD) from Grid users at the time of job submission and the
trust level (TL) assured by a resource provider at the Grid site. The first step is to issue
an SD to all the available resource sites which is done by the user. The trust model
requires assessing the resource site’s trustworthiness, called the TL of a node. This
information is taken from RIC unit. When an application is scheduled to execute on
a resource, the trustworthiness of node reflects the reliability of the node’s services.
To address this problem, we are calculating trust of the node. The TL quantifies how
much a user can trust a site for successfully executing a given job. A job is expected
to be successfully carried out when SD and TL satisfy a security-assurance condition
(SD ≤ TL) during the job mapping process [34].

We have defined the failure probability of a resource/machine as a function, which
is dependent on the difference SDi −TLk . The formula (1) presented below expresses
the failure probability of a resource scheduling rk with trust level value TLk , to a job
ji with a specific SDi value [30]. In our model, a job could be delayed or dropped, if
the site TL is lower than the job SD. The SD is a real fraction in the range [0, 1] with 0
representing the lowest and 1 the highest security requirement. The TL is in the same
range with 0 for the most risky resource site and 1 for a risk-free or fully trusted site.
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The negative exponent indicates that the failure probability of a scheduling grows with
the difference SDi − TLk . The failure probability of executing a job, with a job SD on
a site with TL, is modeled by an exponential distributed failure function as follows:

Pf ( ji , rk) =
{

0 if SDi ≤ TLk

1 − e−α(SDi −TLk ) if SDi > TLk
(1)

We have used a simple weighted sum function of makespan and cost to deal with
their simultaneous optimization.

3.3 Objective function

In Grid scheduling, the main goal of the providers is to minimize the makespan whereas
the goal of the user is to minimize the cost for Grid application. Fitness value is thus
calculated as:

Fitness function = θcost + δmakespan (2)

where 0 ≤ θ < 1 and 0 ≤ δ < 1 are weights to prioritize components of the fitness
function.

cost = min(c(rk, ji )) for 1 ≤ k ≤ n, 1 ≤ i ≤ m (3)

Cost c(rk, ji ) is the cost of job ji which executes on resource rk in addition to
security-assurance cost that is defined below;

c(rk, ji ) = ce(rk, ji ) + cs(rk, ji ) (4)

ce(rk, ji ) =
∑
ji ∈J

completion( ji , rk)
/

completionm( ji ) × J (5)

where as:

completionm( ji ) = max ji ∈J,rk∈Rcompletion( ji , rk) (6)

cs(rk, ji ) =
∑
ji ∈J

Pf ( ji , rk) × ETC( ji , rk)
/

ETCm( ji ) × J (7)

where as:

ETCm( ji ) = max ji ∈J,rk∈RETC( ji , rk) (8)

makespan = min(Fji ) ji ∈ J. (9)

Makespan is the finishing time Fj of the latest job and can be expressed as ETC job
ji on resource rk . The completion time of a machine must be defined before calculating
the makespan. Completion time indicates the time in which the machine/resource can
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complete the execution of all the previous assigned jobs in addition to the execution
time of job ji on resource rk , as defined below.

˜ETC( ji , rk) = (1 + Pf ( ji , rk))ETC( ji , rk) (10)

completion(rk) = avail_timerk ± ˜ETC( ji , rk) (11)

We can use the value of completion time to compute the makespan. This mapping
is done with an objective of minimizing the cost and makespan simultaneously.

Algorithm 1: PSO based Hyper-heuristic
with Great Deluge Resource Scheduling Algorithm

Data: Number of jobs and number of available
resources.

Result: Mapping of the each job to the resources.
begin

initialize Resource list[Number of Resources]
initialize joblist[Number of Jobs]
Input n= number of heuristics
Input r = number of iterations
Initialize a random feasible solution
S= The number of particle in the population
Initialize n and m
for i = 1 To Populationsize do

Pvelocity ← RandomVelocity()
Pposition ←
RandomPosition(Populationsize)
Pp best ← Pposition

For each particle , calculate the fitness
if Fitness(Pp best) ≤ Fitness(Pg best) then

Pg best ← Pp best

while maximum iteration is not satisfied do
for P ∈ Population do

Pvelocity ← UpdateVelocity(Pvelocity,
Pg best, Pp best)
Pposition ← UpdatePosition(Pposition,
Pvelocity)
if Fitness(Pposition) ≤ Fitness(Pp best)
then

Pp best ← Pposition

if (Pp best) ≤ Fitness(Pg best) then
Pg best ← Pp best

Return (Pg best)
Apply the heuristic
while there are unscheduled jobs in the queue do

for every resource is in resource list do
get the next job from queue
schedule the job on the resource on the
basis of fitness

Repeat each and every step till all the jobs are
allocated
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4 Hyper-heuristic-based resource scheduling algorithm

4.1 Pseudo code of algorithm

In this section, we present the pseudo code of PSO-based hyper-heuristic for resource
scheduling in the Grid environment. Each particle in genome is a partial solution and
is represented as a heuristic (e.g., select, move, swap, drop) or a sequence of heuristics.
A low-level heuristic is any heuristic which is operated upon by the hyper-heuristic.

Low-level heuristics can be simple or complex and are implemented as follows:
(1) job selection and scheduling: the heuristics select job from the unscheduled list
and schedule it in to the best available resource. (2) Try for the best combination of
all jobs and resources until the best combination is found. (3) Move job ji from its
current resource/schedule. (4) Swap jobs: select the jobs randomly which can swap.
(5) Remove a randomly selected job from job pool already scheduled. This is the only
heuristic which will move the search into an infeasible region because any job may
be unscheduled.

We make sure that the search can move back into its feasible region by un-scheduling
job that has other valid resources so that it can move into the next iteration. The low-
level heuristics are then applied so as to find an optimal solution of the problem
instance.

The objective of PSO is to find the best low-level heuristic that generates the best
solution for resource scheduling problem. The selection process of low-level heuristic
in hyper-heuristic stops after a pre-defined number of iterations. We set a fixed number
of iterations to keep the computation time low. The particle rejects the new solution if
it is poorer than the current solution. The pseudo code of PSO-based hyper-heuristic
is given in Algorithm 1.

– First of all, scheduler will collect the information about resources and jobs from
the user.

– A resource list is then obtained from the resource provisioning unit after provi-
sioning of user’s requests [23]. Once the resource list has been obtained, a job list
and a random feasible solution are initialized.

– The task to choose the best heuristic from low-level heuristics is started.
– We have a number of particles, each of which represents a hyper-heuristic agent

supplied with an initial solution in the solution space and an access to the evaluation
function.

– Particle’s position and velocity would be randomly initialized.
– It will then select a low-level heuristic at each particle position and compute its

fitness function
Fitness(Pp_best).

– If at Pposition, Fitness(Pp_best) is better than
Fitness(Pg_best) then Pg_best takes the value of Pp_best .

– We will try to find the Fitness value at best global position of the particle.
– After a particle has been chosen from the population, its position and velocity

would be updated using Eqs. 11 and 12. Then, its fitness at the new position is
calculated and compared with its previous position.
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– If it is better than the local best value then we will assign particle’s current position
to the local best value.

– Now, we will compare fitness at Pp_best and Pg_best. If the fitness at Pp_best is better
than at Pg_best then we will assign the value of Pp_best to Pg_best.

– After selection of a low-level heuristic, it is then applied to the problem. Resource
scheduling is performed till there are no unscheduled jobs in the queue.

5 Performance evaluation and discussion

GridSim toolkit provides facilities of modeling, simulation of resources and network
connectivity with different capabilities, configurations and domain. It also supports
primitives for application composition, information services for resource discovery,
interfaces for assigning application tasks to resources and manages their execution.
Following are the reasons for the GridSim toolkit to be used for evaluation [24].

– It allows modeling of heterogeneous resources.
– Resources capability can be defined in the form of MIPS as per SPEC benchmark.
– There is no limit on the number of application jobs that can be simulated.
– Multiple user entities can submit tasks for execution simultaneously.
– It supports simulation of both static and dynamic schedulers.
– Application tasks can be heterogeneous and can be CPU or I/O intensive.
– Statistics of all or selected operations can be recorded and analyzed using GridSim

statistic analysis methods.

For experimental results, heterogeneous resources are considered. In general, each
resource may contain a different number of machines, and each machine may have
one or more than one processing elements (PE) with different MIPS. In our results, we
have assumed that each application/task which is submitted to the Grid may require
varying processing time and input size and such type of task is defined in the form
of Gridlets. A Gridlet is a package that contains all information related to the job
and its execution management details such as job length, I/O operations and size of
input/output files. The processing requirement of Gridlets is measured in multiple
instructions (MI). Table 1 shows the characteristics of resources and Gridlets, that we
have used for all our experiments.

For our evaluation, we have derived a suitable workload from real machine traces.
These traces have been obtained from Grid workload archive website.1 5,000 User
applications are generated according to the Lublin workload model [36]. The model
specifies the arrival time, number of CPUs required and execution time μ of each
application. This model is derived from existing workload traces for rigid jobs and
incorporates correlations between job runtimes, job sizes, and daytime cycles in job-
interarrival times. Using this generated workload, we have generated ETC matrix
which is computed as the ratio of workload and computing capacity of machine vectors.
No of jobs × no of resources gives the size of the matrix and its components are defined
as ETC( ji , rk). Rows of the ETC matrix demonstrate the estimated execution time for

1 More information about the real trace used can be obtained from the Grid Workload Archive at http://
gwa.ewi.tudelft.nl/pmwiki/.
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Table 1 Scheduling parameters
and their values

Parameter Value

Number of resource 150–250

Number of gridlets 5,000

Length of job 1,000–6,000

Bandwidth 3,000 or 7,000 B/S

Number of machine per resource 1

Number of PEs per machine 1–5

PE ratings 10–60 MIPS

Cost per job 3 G−5 G

File size 100 + (10–30 %) MB

Job output size 250 + (10–40 %) MB

a job on each resource and the columns demonstrate the estimated execution time for
a particular resource. ETC( ji , rk) is the expected execution time of job ji and the
resource rk . Each job can execute on each resource, and the estimated execution times
of each job on each resource are known.

ETC matrices are classified into consistent and inconsistent matrices. Consistent
matrix means that whenever a resource rk executes the job ji faster in comparison
to rl then the resource rk executes all the jobs faster than rl . Inconsistent matrix
means that rq may be faster in job execution than rs for some cases and slower for
others [35]. Resource heterogeneity represents the variation that is possible among
the execution times for a given job across all the resources. The variation of the
application’s execution time on different resources can be high or low. A high variation
in execution time of the same application is generated using the gamma distribution
method. In the gamma distribution method, a mean task execution time and Coefficient
of Variation (CV) are used to generate ETC matrices [35]. The mean task execution
time of an application is set to μ and a CV value of 0.9 is used. Similarly, the low
variation in the execution time is generated using uniform distribution with mean
value of μ and a CV value of 0.3. The prices of resources are generated using Weibull
distribution with parameters α = 0.3 and β = 0.7.

5.1 Performance evaluation criteria

In this section, to evaluate the performance of a particle swarm-based hyper-heuristic
for resource scheduling algorithm, we have defined the performance evaluation cri-
teria. Two matrices, namely makespan and cost for evaluating the performance, have
been selected. The former indicates the total execution time whereas the latter indi-
cates the cost per unit resources that are consumed by the users for the execution of
their applications. The makespan and cost are measured in seconds and Grid dollars
(G$), respectively.

5.2 Results

In addition, a comparison of makespan and cost of the proposed algorithm vs
existing heuristic algorithms GA [9,13,15,16], GA–TS [5] and Bacterial Foraging
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Fig. 2 Flowchart of scheduling in simulator

Optimization-based Hyper-Heuristic (BFOHH) [37] resource scheduling algorithm
has been presented. To evaluate the performance of the proposed approach, we have
investigated the effects of different number of applications. In all experiments, a com-
parison for consistent and inconsistent matrix has been done.

The main flow of scheduling in GridSim toolkit can be briefly described as follows.
When a scheduling event is started, an instance of the scheduling problem is created
by the simulator which is based on the current jobs and available resource pools as
shown in the Fig. 2. The instance contains (a) workload; (b) computing capacity of
machines; (c) prior load of machines and (d) the ETC matrix. The defined instance is
then passed on to the scheduler which computes the planning of jobs to resources.

5.2.1 Performance for the high- and low-heterogeneous case

In this case, we evaluate the makespan and cost of the Grid applications in two different
scenarios as (i) same number of applications/jobs is sent and (ii) different numbers
of applications are sent. The pricing of resources may or may not be related to CPU
speed. Thus, minimization of both makespan and cost of an application may conflict
with each other depending on the price of the resources. In this analysis, low resource
heterogeneity is simulated by each resource having a random number of PEs between
1 and 4. Figures 3 and 4 show the makespan of PSO-based hyper-heuristic vs GA,
SA, GA–TS and BFOHH algorithms for inconsistent and consistent with low machine
heterogeneity, respectively.
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Fig. 3 Comparison result for inconsistent and low machine heterogeneity

Fig. 4 Comparison result for consistent and low machine heterogeneity

Figures 5 and 6 show the cost of PSO-based hyper-heuristic vs GA, SA, GA–
TS and BFOHH algorithms for inconsistent and consistent with low machine het-
erogeneity, respectively. When having low resource heterogeneity, PSOHH outper-
forms all the other approaches for both consistent and inconsistent matrices. The
other three heuristics have higher cost in comparison to PSOHH for application
execution.

The most important characteristic applicable to real-world scenarios is about how
each algorithm responds to different heterogeneity of resources. A comparison of
different makespans for both high and low resource/machine heterogeneity has been
shown. The high resource heterogeneity is simulated by resources having the number
of PEs between 7 and 30. Figures 7 and 8 show the effect on makespan by the four
heuristics in case of high resource heterogeneity with inconsistent and consistent
matrices. It can be seen from the figures that the makespan is lowest in case of PSOHH
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Fig. 5 Comparison result for inconsistent and low machine heterogeneity

Fig. 6 Comparison result for consistent and low machine heterogeneity

for both the consistent and inconsistent matrices. This is because of the high variation
in execution time across various resources as the resource list that is obtained from the
resource provisioning unit is already filtered. This also demonstrates the effectiveness
of the PSOHH in managing the time requirement of the user.

Figures 9 and 10 show the cost comparison for inconsistent and consistent matrices
with high machine heterogeneity.

By analyzing the results in the Figs. 3, 4, 5, 6, 7, 8, 9, 10, we can conclude that
PSO-based hyper-heuristic outperforms all the other approaches in cases of both low
and high machine heterogeneity.

The results show that in case of GA, SA and GA–TS algorithms, if we send the
same number of applications/jobs to the Grid, makespan and cost increase whereas in
the case of PSO-based hyper-heuristic both makespan and cost decrease.
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Fig. 7 Comparison result for inconsistent and high machine heterogeneity

Fig. 8 Comparison result for consistent and high machine heterogeneity

5.2.2 Effect of the number of jobs

We have also performed experiments to determine the effect of an increase in the
number of applications on cost and makespan. We have a 100-node simulated Grid
with 2,000 jobs being sent to the Grid. From the experimental results shown in Figure
11, we can conclude that the time taken to execute an application can be reduced using
PSO-based hyper-heuristic algorithm.

Figure 12 shows that cost per application increases as the number of submitted appli-
cations increases. The existing algorithm-based application’s execution resulted in a
schedule which is expensive in comparison to PSO-based hyper-heuristic algorithm.
From all the experimental results, we observed that application execution using PSO-
based hyper-heuristic algorithm provides the following advantages: the makespan is
much lower in comparison to the GA, SA and GA–TS. The time variation in appli-
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Fig. 9 Comparison result for inconsistent and high machine heterogeneity

Fig. 10 Comparison result for consistent and high machine heterogeneity

cation’s execution is about 4–7 %, which is much less in comparison to the 40–70 %
variation in the existing algorithms using the same set of applications. The overall cost
for user’s application execution is less.

5.3 Effect of the number of resources

Figure 13 shows the effect of increasing the number of resources, while keeping the
number of jobs being sent to the Grid constant. In this experiment, 700 jobs were sent
to the Grid with varying number of resources. The results depict that by increasing the
number of resources, the execution time increases thus decreasing the performance of
the Grid. PSOHH and GA–TS perform better when the number of resources is less in
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Fig. 11 Effect of the number of application on the makespan

Fig. 12 Effect of the number of application on the cost

comparison to the number of jobs. The cost of application execution using PSOHH is
much less in comparison to the execution cost using existing scheduling algorithms as
shown in Fig. 14. As the cost variations within the Grid resources are not significant
(i.e., 4G$ with 0.5G$) so the cost benefits of only 5–7 % were noticed. However, more
benefits can be anticipated if the variations are higher.

5.4 Statistical analysis of results

In this section, we employed statistical method, namely the Coefficient of Variation
(CV), to analyze the statistical significance of the results. The coefficient of varia-
tion is defined as the statistical measure of the dispersion of data around the aver-
age value. For comparison between datasets with different units or widely different
means, we should use the coefficient of variation instead of the standard deviation. It
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Fig. 13 Effect of the number of resources on the makespan

Fig. 14 Effect of the number of resources on the cost

expresses the variation of the data as a percentage of its mean value and is calculated as
follows:

CV = (standard deviation/mean) × 100 (12)

The CV statistic is very useful in the analysis of the data series. It can also provide
a general analysis of performance of the method used for generating the data. In Figs.
15 and 16, we examined the CV of the makepsan and cost of application’s execution
of each scheduling algorithm.

It can be observed that in all instances, the values of CVs are in the range 0–2 %
which confirms the stability of the proposed algorithm. If the coefficient of variation is
small, it means that BFO-based hyper-heuristic resource scheduling algorithm is more
effective in scheduling of independent parallel jobs in the cases where the number of
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Fig. 15 Coefficient of variation for the cost with each algorithm

Fig. 16 Coefficient of variation for the makespan with each algorithm

application has changed. As the number of applications is increasing, the CV value
decreases. It shows that our proposed algorithm outperforms other existing algorithms
for large number of applications. Thus, we can say that as the system with small
coefficient of variation value is more balanced, our proposed algorithm achieved the
best results in the Grid with regard to both makespan and cost as QoS parameters.

5.5 Discussion

A good scheduling algorithm should schedule jobs to achieve high Grid performance
while satisfying various user demands in an unbiased fashion. A hyper-heuristic
approach for secure resource provisioning-based resource scheduling algorithm is
designed. We have compared the performance of the PSO-based hyper-heuristic
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resource scheduling algorithm with well-known scheduling algorithms such as GA,
SA and GA–TS. We analyzed the performance of the proposed algorithm with vari-
ation in both the number of jobs and the number of resources, which are expected
to vary in the real Grid environment. We evaluated the algorithm’s performance with
respect to makespan and cost. Makespan allows the evaluation of the algorithm which
results in better scheduling in the sense of the duration of job execution, while the
cost allows the comparison for resource selection. The proposed algorithm helps to
achieve high performance and simultaneously and also to satisfy the user’s require-
ments. In the experiments conducted, PSO-based hyper-heuristic resource scheduling
algorithm clearly demonstrates its ability to provide better performance with respect to
the existing Grid scheduling algorithms. As Grid computing has emerged for solving
scientific, engineering and large-scale problems, it can be concluded that resources
scheduling is one of the main challenging issues of Grid computing. Metaheuristic is
highly adaptive in Grid computing environment but does not provide good solutions
for more number of jobs in heterogeneous environment. Considering all these criteria
and simulation results, it can be concluded that PSO-based hyper-heuristic resource
scheduling algorithm provides a better solution for consistent and inconsistent matri-
ces in cases of both low and high machine heterogeneity. It also outperforms all the
existing scheduling algorithms in cases of varying jobs and resources thus providing
near-optimal solution of Grid scheduling problems.

6 Conclusions and future works

In this paper, we have proposed particle swarm optimization-based hyper-heuristic
resource scheduling algorithm for scheduling of jobs in Grid environment so as to
minimize the cost and time by minimizing the makespan. Trust has been defined for
the evaluation of the target nodes to provide security. To improve the efficiency of
PSOHH, security has been calculated by probability of resource failure. We have pre-
sented simulation results, demonstrating that a hyper-heuristic approach for secure
resource provisioning-based scheduling is effective in reduction of the overall cost
and makespan of Grid applications. The results show that PSO-based hyper-heuristic
approach gives better result in comparison to the existing common heuristic schedul-
ing algorithms at different resource utilization levels. Attaining optimum scheduling
results and management of the resources becomes considerably easier through resource
provisioning.

The proposed algorithm not only minimizes the time and cost but also minimizes
the makespan and security cost. In future, we wish to incorporate the concept of load
balancing during scheduling of the resources. The performance of Grid would be
shown by considering the average response time as a metric that is not considered in
this work. Current results have been gathered through simulation on Gridsim but in
future the same results would be verified on actual Grid resources present at Centre
of Excellence (CoE) in Grid Computing at Thapar University.
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