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Abstract The hydration of cement is of great importance
to the formation of the microstructure and development of
strength. However, the complex nature of cement hydration
results in that the existing manually derived model from
some assumptions that are made to simplify the problem
and make it mathematically and computationally tractable
is not satisfactory in comparison with experimental results.
In this paper, the middle-age hydration kinetics is distilled
from observed data reversely using phased hybrid evolution
method. The task that distils the hydration kinetics is divided
into two phases and combines different algorithms. Further-
more, some strategies are also adopted for enhancement. To
solve the problem of high time complexity, the searching
process is accelerated by graphics processing units in par-
allel. The middle-age cement hydration kinetics model is
distilled successfully from observed data. Studies show that
the simulation result is close to the same with experimental
results according to the distilled kinetics.
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1 Introduction

Modeling and simulation enable the scientists to compare
observations with theory, extract physical parameters from
experimental data, and predict the behaviors of system
(Thomas et al. 2011). The study of cement hydration mod-
eling and simulation is of profound theoretical and practical
significance and range from simple single particle models to
complex hydration simulation models, from macro-scale to
micro-scale, from short-term simulation to long-term pre-
diction. The simple models gain insight about the major
controlling processes at different periods of hydration on the
lower stage. Complex models can also be developed for sim-
ulation by incorporating as much of the known physics and
chemistry as possible to predict complicated phenomena on
the advanced stage (Thomas et al. 2011).

The hydration of cement in middle-age is closely related
to the formation of microstructure, development of strength,
and the final performance of hardened cement. Although the
cement hydration is a long process, the middle-age hydration
kinetics covers all five periods, including dissolution, induc-
tion, acceleration, deceleration, and termination. Therefore,
it is of practical significance to research the middle-age
hydration kinetics.

Currently, the cement hydration models are built based on
first principle method and with some assumptions that are
made to simplify the problem and make it mathematically
and computationally tractable. However, due to the inhomo-
geneity and heterogeneity of cement, complex interrelated
chemical reactions and physical changes take place dur-
ing the process of hydration. The manually derived models
from assumptions are not satisfactory in comparison with the
observed experimental results. The manually derived models
cannot represent the cement hydration process as a system
completely and accurately.
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With the popularization and improvement of experimen-
tal devices and approaches, more data can be acquired
conveniently. At the same time, with the advancement in
computer technology, many high-performance computers
have emerged. The computers’ peak performances increase
rapidly. Furthermore, recent studies have shown that evo-
lutionary computation (Koza 1992; Holland 1975) has the
ability to discover natural law and formula from observed
experimental data. However, the cement hydration model-
ing benefits few from all of these advances. This paper
explores distilling the middle-age hydration kinetics unified
form, extracting relationships between kinetic coefficients
and cement parameters from observed experimental data
using a phased hybrid evolution method.

This paper makes the following major contributions:

– First time that the middle-age cement hydration kinetics
is distilled reversely from observed data using evolution-
ary computation.

– Also the first time that the relationships between kinet-
ics coefficients and cement hydration parameters are
extracted reversely and analyzed.

– Propose a phased hybrid evolution method with some
strategies to increase the diversity of searching for kinet-
ics evolution and accelerate it using graphics processing
units (GPUs).

2 Related works

2.1 Cement hydration kinetics

Modeling and simulation of cement hydration are effective
tools to reveal the principle of cement hydration, to pre-
dict the hydration process, to study the relationship between
microstructure and properties, and to improve the design
of high-performance cement material. The researchers build
models and simulate hydration for cement using many kinds
of methods. One of the most commonly used is studying
hydration kinetics equation (Thomas et al. 2011; Tomosawa
1997; Krstulovic and Dabic 2000; Dabic et al. 2000; Lin
and Meyer 2009). The degree of hydration α refers to the
weight fraction of cement reacted in a specified time (Fig. 1).
“Mechanical and transport properties of a hardened cement
paste are significantly influenced by its degree of hydration,
so that computer models having an objective of predicting
performance propertiesmust provide an accurate portrayal of
hydration kinetics, whether from first principle calculations,
empirical relationships, or calibration versus experimental
data” (Bentz 2011). The hydration kinetics equation reveals
the evolution of the degree of hydration α with cement hydra-
tion over time t and is often represented by differential
equation. We can also build models of microstructure (Pig-
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Fig. 1 The time series of degree of hydration and hydration rate

nat et al. 2005) and performance indicators (Park et al. 2005)
based on hydration kinetics.

2.2 Reverse engineering using evolutionary computation

In recent years, it has been found that evolutionary compu-
tation enables us to discover nature law and formula from
observed experimental data. Schmidt and Lipson (2009)
searched motion-tracking data captured from various phys-
ical systems. They confirm that genetic programming is
fully capable of discovering Hamiltonians, Lagrangians,
and other laws of geometric and momentum conservation
without the help from any prior knowledge about physics,
kinematics, or geometry. Fan et al. (2004) proposed a new
systematic method that can automatically generate ranking
strategies for different contexts based on Genetic Program-
ming. Floares (2007) proposed a reverse engineering algo-
rithm for (drug) gene regulating networks, based on genetic
programming-RODES, which automatically discovers the
structure, estimates the parameters, and identifies the mole-
cular mechanisms involved. Sanz et al. (2007) applied two
evolutionary programming algorithms to design prototype
lowpass Finite Impulse Response filters for use in a modu-
lated filterbank. Huang et al. (2012) presented an ant colony
optimization-based algorithm to support end users in making
sensible resource allocations and made it possible to search
anoptimal task operation path on the generated task operation
model. Qian et al. (2008) inferred noisy nonlinear differential
equation models for gene regulatory networks using genetic
programming and Kalman filtering. Yang et al. (2012) pro-
pose an evolutionary approach to parameter identification
for thermal models that are formulated as an optimization
task. Krogmann et al. (2010) presents a novel comprehensive
approach for reverse engineering and performance prediction
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of components by utilizing genetic programming for recon-
structing a behavior model from monitoring data, runtime
byte code counts, and static bytecode analysis.

In previous research, the authors also provided prelim-
inary attempts (Wang et al. 2010, 2012a, b) to extract the
early-age hydration kinetics from the early 24 h data. How-
ever, the cement hydration is a longprocess and still continues
after 24 h. Furthermore, the hydration process after 24 h
also plays an important role on the growth of strength. The
early-age hydration kinetics is incomplete and insufficient.
In addition, previous studies also did not get the functional
relationship between kinetics coefficients and cement hydra-
tion parameters, e.g., the chemical composition, physical
parameters, and curing conditions. Therefore, it can help to
neither understand the hydration process, nor forecast hydra-
tion directly.

2.3 GPU computing

The time consumption of evolutionary computation in solv-
ing complex problems is very high. The development of GPU
brings dawn and hope to solve this problem using a low-
cost platform. The GPU computing is quickly becoming as
common as CPU computing with the help of Compute Uni-
fied Device Architecture (CUDA) (CUDA 2009), which is
a development platform and considers the GPU as a paral-
lel data computing device. CUDA enables the allocation and
management of computing tasks. Even an ordinary GPU in
a system can speedup programs with the help of CUDA.

The high computational complexity faced by the evolu-
tionary computation and the progress achieved by the GPU
computingmotivatemany researchers to explore speeding up
evolutionary computation algorithms usingCUDA.Luo et al.
(2014) extended the Bees Algorithm to be run on the CUDA.
Zhang andHe (2009) presented a hierarchical parallel genetic
algorithm, implemented byCUDA.Mixedwithmaster–slave
parallelization method and multiple-demes parallelization
method, this method contributes to better utilization of
threads and highspeed shared memory in CUDA. Zhou and
Tan (2009) presented a parallel approach to run standard par-
ticle swarm optimization on GPU. Robilliard et al. (2009)
proposed a method to accelerate genetic programming on
GPU. Their work focuses on the possibilities offered by
NvidiaG80GPUswhenprogrammed in theCUDAlanguage.

2.4 Challenge

Due to the inhomogeneity and heterogeneity, there are com-
plex interrelated chemical reactions and physical changes
in cement hydration. “A critical component of any model-
ing or simulation effort is the choice of assumptions used
to simplify the problem and make it mathematically and
computationally tractable. These assumptions endow each

particular model with its own set of strengths and limitations
that should be acknowledged and considered when applying
the model to a particular case” (Thomas et al. 2011).

The manually derived equation from some assumptions
is not satisfactory in comparison with observed experimen-
tal results; for example, the model developed by Kondo and
Kodama (1967) that characterized the hydration kinetics of
alite, which is the chief component of Portland cement, using
an assumption of concentric-layered growth of hydrates of
uniform thickness on a single reacting spherical cement par-
ticle (Thomas et al. 2011). Another example is the JMAK
model (Avrami 1939; Johnson and Mehl 1939), which has
been used for many years. “The serious mismatch between
its assumption of random volume nucleation and the obser-
vation that C–S–H nucleates on mineral surfaces means that
the parameters from such fits will have little or no physical
meaning” (Thomas et al. 2011).

Furthermore, the definite functions between model coeffi-
cients and cement hydration parameters are still unknown in
manually derived kinetics. The coefficients in these models
were determined from fits to experimental data on the rate
of heat evolution obtained using microcalorimetry. This dis-
advantage resulted in these models cannot be used directly
in forecasting of hydration or in the formulation of different
systems.

Therefore, with above-mentioned limitations, the man-
ually derived models cannot fully represent the cement
hydration process as a system that is complete and accurate.
The difficulties faced by manual derivation of kinetic equa-
tion and the progress achieved by evolutionary computation
in natural law discovery lead the current research to explore
inference of cement hydration kinetics using evolutionary
computation methods from observed data. “We can analyze
the data without hypotheses about what it might show. We
can throw the numbers into the biggest computing clusters
the world has ever seen and let statistical algorithms find
patterns where science cannot.” stated by Anderson (2008).

3 Methodology

The unified formof kinetic equation is required by systems of
cement hydration. Moreover, for different systems of cement
hydration, the difference of them is reflected in the differ-
ence of value of coefficients. The cement hydration kinetics
is expressed through a first-order differential equation as fol-
lows

dα

dt
= fC0,C1,...,Cn−1(t, α) (1)

where f represents the unified form of kinetic equation,
and C0,C1, . . . ,Cn−1 represent coefficients of the kinetic
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equation. To adapt to different systems, the value of coeffi-
cients should be changed correspondingly when the curing
condition or the type of cement is changed. That is to say,
the coefficients are endowed with ability to adjust kinetics
for various systems of cement hydration. The coefficients in
different models represent the different physical meanings.
For example, in the Tomasawa’s model (Tomosawa 1997),
the coefficients consist of a reaction rate per unit area of
reaction surface, radius of unhydrated cement particle, etc.
Conversely, in theKrstulovic–Dabic’smodel (Krstulovic and
Dabic 2000), the coefficients reflect the rate of different sub-
processes in hydration. The cement hydration parameters
determine the value of the coefficients aswell as the behaviors
the system exhibits. Therefore, the mathematical relation-
ships between coefficients and hydration parameters have to
be determined as follows to forecast hydration process and
to explain the cement hydration.

⎧
⎪⎪⎨

⎪⎪⎩

C0 = g0 (F0, F1, . . . , Fm−1)

C1 = g1 (F0, F1, . . . , Fm−1)

· · · · · ·
Cn−1 = gn−1 (F0, F1, . . . , Fm−1)

(2)

where F0, F1, . . . , Fm−1 represent parameters of the cement
hydration system, e.g., water-to-cement ratio (w/c), temper-
ature, weight percentage content of tricalcium silicate, etc.
g0, g1, . . . , gn−1 represent the functional relationship from
parameters space to each coefficient, i.e., the coefficient func-
tion.

In designing the method for evolving hydration kinetics,
somepoints should be taken into considerationfirst. There are
n+1 functions that should be optimized in this task. The uni-
fied formof kinetic equation f and the functional relationship
g0, g1, . . . , gn−1 of its coefficients cannot evolve simultane-
ously on account of unified form, complexity, and data. First,
most of the researches of cement hydration modeling focus
on deriving unified form of kinetics f that is satisfactory
in comparison with the experimental results of hydration.
However, such unified form that fits the curve of hydration
satisfactorily has not been discovered up to now. Second, for
evolving the expression of unified form of kinetics f and
expressions of coefficients g0, g1, . . . , gn−1 simultaneously,
the searching spacewill extend,which leads to the increase of
complexity of evolution. Finally, owing to the preparation of
samples, the slowness of cement hydration, the guarantee of
quality of data, and the restriction of available machine time,
we were unable to collect a large amount of data. Therefore,
it is hard to find an accurate model mixed with hydration
parameters based on small data. However, the collected data
are enough for getting a unified form of kinetics that fits
observed results satisfactorily by adjusting coefficients. This
phenomenon can be observed from the experimental section.

The task that distils the hydration kinetics reversely from
observed data is divided into two phases and combines differ-
ent evolution algorithms. Furthermore, the hybrid evolution
with some enhancement strategies are also adopted. At first,
the focus is on distilling the unified form of kinetic equa-
tion usingGeneExpression Programming (GEP) andParticle
Swarm Optimization (PSO) to infer the best form f . This
hybrid method further combines with some enhancement
strategies and is accelerated by GPUs in parallel. At the out-
put of the first phase, the best expression only represents the
unified form of equation, where the unified form of kinetics
and the position of coefficients are fixed, regardless of the
value of coefficients or the type of cement. Second, investi-
gate themathematical relationship g0, g1, . . . , gn−1 between
coefficients and hydration parameters using GEP algorithm.
The objective is to infer the function for every coefficient in
the evolved unified equation form.

Figure 2 shows the main flowchart of the proposed
approach. The thermal signal of heat releases in the hydra-
tion process over time is determined by chemical experiment
using microcalorimetry and is further transformed to the cor-
responding time series of degree of hydration. The hybrid
evolutionary computation, involving GEP, PSO, and some
reinforcement strategies evolves the unified form of equa-
tion of kinetics by taking collected time series as training
data in the environment of the GPU-based high-performance
computer in the first phase. The next phase is to analyze
the relationship between kinetics coefficients and hydration
parameters. The PSO and GEP are used to calculate the
accurate value of coefficients and to extract the functional
relationship between coefficients and parameters, i.e., the
coefficient function, respectively. After finishing both of the
phases, the cement hydration kinetics will be distilled.

3.1 Collect data and estimate degree of hydration

Both of direct determination and indirect determination can
be adopted to estimate degree of hydration. The direct
determination,which comprises petrographic analysis,X-ray
analysis, etc., spends too much time to determine the data in
real time. Therefore, the indirect determination is adopted in
this research. It comprises the microcalorimetry, quantitative
analysis of calcium hydroxide, and bound water determina-
tion, etc. Considering the damaging effect made by the latter
two approaches disables the continuous determination for
the same sample, the microcalorimetry (Wang et al. 2005) is
selected in this research to estimate the degree of hydration
(Wang et al. 2010).

A pack of cement powders will turn into paste after being
mixed with water. Then, it will set in a few hours. During
this process, the hydration will take place and release heat.
The release of heat is closely bound up with the develop-
ment of hydration. Therefore, this phenomenon enables us
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Collect thermal signals
using microcalorimetry

Distilled Hydration Kinetics
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Fig. 2 Main flowchart of mining cement hydration kinetics

to determine the degree of hydration at a certain time point
t as follows

α(t) = Q(t)

Qmax
(3)

where α(t) represents the degree of hydration at time t. Q(t)
represents heat released in hydration at the end of t. Qmax

represents the total heat that can be released by a cement
sample at the end of hydration. Q(t) is determined directly
using microcalorimeter. Qmax (J/g) is estimated according to
the chemical composition of samples (Schindler and Folliard
2005). According to this approach, time serieswith the devel-
opment of hydration can be collected (Wang et al. 2010).

3.2 Phase 1: inference of unified form of kinetic equation

The first problem in the first phase is how to find the best
unified form of hydration kinetics. As a variant of genetic
programming, GEP is adopted to focus on searching for
optimal form of the equation in this phase. It is proposed
by Ferreira (2001) for optimizing the computer program or
function automatically. It combines the advantages of linear
encoding from genetic algorithm and expression evolution
from genetic programming via evolving the complex for-

mula or program by operating a simple linear string which is
coded by K-expression Ferreira (2001). Furthermore, com-
pared with Multi Expression Programming (MEP) Oltean
and Dumitrescu (2002), which is one of the most powerful
tools in finding functions and programs, for this research,
GEP is more suitable on account of complexity. The objec-
tive of this phase is to find a satisfied unified form, where
the position of coefficients is fixed. Considering the charac-
teristic of MEP chromosome, it can be decoded to several
different expressions but only the best one is valid. Each of
the expression represents a possible unified form of model.
A coefficient in a gene can be decoded into different uni-
fied forms of model and will be optimized for different
expressions, respectively, to find the best expression that can
represent this chromosome. In this case, the time consump-
tion of searching of MEP will increase sharply. In contrast,
a chromosome of GEP can be decoded to a unique unified
form of kinetics. Figure 3 shows an example of a GEP chro-
mosome during hydration kinetics mining.

Another problem is how to evaluate the form of the equa-
tion. The value of coefficients are very different in different
systems. Coefficients of all of the equations for every time
series should be determined to evaluate forms in each genera-
tion of the GEP algorithm. Iba (2008) presented a method to
deal with kinetics which contains transcendental functions
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Fig. 3 GEP chromosome, its corresponding expression, and expres-
sion tree. There are three genes in this chromosome. Its link function is
set to +. The head length of each gene is set to five while the maximum
number of arguments is two. The tail is calculated as being 6 Ferreira
(2001). The total length of the gene is the sum of the head length and tail
length, i.e., 11. It is sufficient to decode an expression tree even using
part of symbols (black) in front of the gene. The blue part in the gene
is called the non-coding region which doesn’t appear in the decoded
expression tree (color figure online)

by searching for coefficients using traditional Levenberg–
Marquardt method. However, this traditional method is easy
to fall into the local extremum. Kennedy and Eberhart (1995)
proposed PSO for global numerical optimization via emu-
lating the swarm behavior. The individual in PSO, named
particle, represents a point or a solution inside the searching
space. There are two best positions recorded with the evolu-
tion of PSO: the best position found by the particle itself and
the best position found by the whole population. The new
positions of particles are updated by tracking both of them.
Compared with genetic algorithm, PSO is easy to imple-
ment and tends to converge quickly, which benefits reducing
the complexity of evaluating form of equation. Furthermore,
some studies (Bae et al. 2010; Yan and Zeng 2006) have
shown that PSO which performs a global search for finding
optimum has the ability to aid genetic programming. There-
fore, PSO is chosen to search for the best value of coefficients
for a given form of kinetics.

In this phase, GEP evolves the unified equation form
of kinetics iteratively by inputting the degree of hydration
time series. The coefficients for each generated equation are
optimized by PSO at each step of the GEP generation. It
determines whether a potential unified form can fit the real-
time series by adjusting its coefficients. However, to reduce
the time complexity at this phase, PSO only runs with small
population and generations to get a loose fit. When the uni-
fied form of kinetics and the coefficient for a certain series
are fixed, the hybrid evolution calculates the numerical solu-
tion using the fourth-order Runge–Kuttamethod (RK4). This

process is repeated until the termination conditions are sat-
isfied, such as the maximum generation or the minimum
error. To find the better form of kinetics efficiently and to
avoid premature convergence to local extremum, the follow-
ing strategies are used to aid the hybrid evolution to improve
the performance and speedup the searching. This method is
described in Algorithm 1.

Algorithm 1: Discovery of Unified Form of Kinetic
Equation
Initialize chromosomes for all of GEP subpopulation at random
using selective initialization strategy;
while the maximum GEP generation has not been reached do

while there exist unevaluated chromosomes do
while there exist uncalculated time series do

while the maximum number of trials has not been
reached do

Initialize particles (the combination of coefficients
for current chromosome) at random;
while the maximum PSO generation has not been
reached do

while there exist unevaluated particles do
Calculate numerical solution using RK4
method for kinetic equation whose
equation form is current chromosome and
coefficients are the position of current
particle;
Calculate the relative error between
numerical solution and current time series
as the goodness of current particle;

end
Update pbest and gbest for particles;
Update position and velocity of particles;

end
end
The best result is preserved for current time series;

end
Calculate the cost function for current chromosome;

end
if the current epoch has ended then

Perform population migration strategy;
end
for every subpopulation do

Tournament selection operator using unique selection
strategy;
Uniform mutation operator;
One-point and two-point recombination operator;
Insertion sequence and root insertion sequence operator;
Gene recombination and transposition operator;

end
end

3.2.1 Unique selection

The expressions in GEP are easily the same as each other
as a result of the existence of non-coding region in the GEP
chromosomes. If the length of the coding region is much
smaller than the total chromosome length, there will be a lot
of repeated chromosomes in the population. The repeated
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Fig. 4 The strategy of unique selection. The chromosomes are cat-
egorized into several classes. The selection operator is performed on
different classes instead of different chromosomes. The blue parts rep-
resent non-coding regions (color figure online)

chromosomes are different in the whole linear sequence,
but the same in the coding regions. Therefore, they will be
decoded to the same expression trees.

When the coding region of a chromosome is shorter in
length, there will be more chromosomes with the same effec-
tive coding region in the population. If they are better in cost,
the corresponding chromosomes will be copied to the next
generation with high probability, which often leads to pre-
mature convergence into local minima.

To solve this problem, a unique selection strategy (US) is
proposed to avoid the repetition of expressions. At first, the
chromosomes in the population are categorized into several
classes. The chromosomes which have the same effective
coding region are classified into the same class. Then, per-
form the selection operator on different classes instead of dif-
ferent chromosomes. If the selected class contains more than
one chromosome, one of the chromosomes are selected ran-
domly to the next generation. This strategy is shown in Fig. 4.

3.2.2 Population migration

In the theory of punctuated equilibrium, the species in a stable
environment will not change if they bring about equilibrium.

However, they will evolve rapidly when separated from the
common ancestors. Applied to evolutionary computation, it
is better to put chromosomes into several competing sub-
populations rather than put all the chromosomes together
in a single big-population when the total number of chro-
mosomes is fixed Chen (2005). This model is named island
model.

The island model has been used to improve the diversity
of population for evolutionary computation in many works.
As far as genetic algorithm is concerned, Zheng et al. (2014)
found that the asynchronous island scheme, island/ master–
slave hierarchy parallel genetic algorithm (PGA) and island/
cellular hierarchy PGA are the best for multi-core, multi-
socket multi-core and many-core architectures, respectively.
Guan and Szeto (2013) discussed the topological features
of the communication network between computing nodes
in PGA under the framework of the island model. As far
as genetic programming is concerned, Vega et al. (2004)
presented a new proposal for reducing bloat in genetic pro-
gramming and concluded that island model helps to prevent
the bloat phenomenon. For GEP, Du (2008) proposed a new
asynchronous distributed parallel gene expression program-
ming based on Estimation of Distribution Algorithm. The
improved GEP is implemented by an asynchronous distrib-
uted parallel method based on the island model on a message
passing interface environment.

A population migration (PM) strategy, which is a kind of
island model, is adopted in the first phase of this research.
The population of GEP is divided into several subpopula-
tions which evolve the form of kinetics independently. The
best chromosome in the whole population is selected after an
epoch (a certain number of iterations). Then, the worst chro-
mosome in all of subpopulations is replaced by the selected
best chromosome according to a certain probability. Figure 5
illustrates the population migration strategy.

3.2.3 Selective initialization

Numerical solution of differential equations is very sensi-
tive to small changes in equation form. This effect is more
apparent when there exists transcendental functions. There-
fore, the cost of initialized chromosomes is often beyond the
maximum or minimum representable floating-point number.
To fully develop the performance of the GPU platform, the
single-precision floating point is adopted in experiment as
the speed of single precision is higher than double preci-
sion. Its maximum representable number is 3.4e+38 while
the minimum representable number is −3.4e+38. If the ini-
tialization process is not improved, only a small number of
chromosomes in the initial population will achieve superior
cost and the remaining ones will be beyond the representable
number. As a result, these “not very bad” chromosomes will
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`

Fig. 5 Population migration. The green circle represents the worst
chromosome in the subpopulation. The star represents the best chro-
mosome in the whole population (color figure online)

soon control the whole population and result in premature
convergence.

Therefore, to avoid the “not very bad” chromosomes dom-
inating the whole population rapidly and to strengthen the
competition between chromosomes in the early-age of evo-
lution, some chromosomes are produced randomly in the ini-
tialization of the population. The chromosomeswhose cost is
smaller than a predefined value are picked out; add them into
the initial population and go back to the first step of random
production. It is repeated until the number of chromosomes in
the initial population meets the predefined size. This strategy
is named selective initialization (SI). According to this way,
the competitiveness of initial chromosomes can be improved.

3.2.4 Prior knowledge

Prior knowledge is explained as a combination of preexisting
experiences and knowledge. In the field of cement hydration
modeling, scientists have already developed some models
based on first principle method. The knowledge from these
models can be borrowed to narrow down the searching scope
of GEP to find better equations. Therefore, the Krstulovic–
Dabic’s model (Krstulovic and Dabic 2000) and Tomasawa’s
model (Tomosawa1997) are decomposed into some indepen-

dent blocks and added to the function set and terminal set,
respectively. The function set and terminal set are shown as
follows

Function Set = {+, −, ×, ÷, −1 × ( ),
1

( )
,

√
,

3
√

, ( )2, ( )3, ( )( ), e( ), ln( )}
Terminal Set = {C, α, t, 1 − α,

3
√
1 − α,

3
√

(1 − α)2,

ln(1 − α), 1 − 3
√
1 − α, α3}

where C represents the constant term, i.e., coefficient term.
After adding the coefficient term into the terminal set, the
number and positions of coefficients can be determined by
the GEP itself. The term C at a different position implies a
different coefficient. The number of C in each GEP chromo-
some is counted before running the PSO algorithm to fit the
form to different series.Another essential task is to choose the
link function in theGEPchromosome to connect the genes. In
the theory of cement hydration, the hydration rate approaches
to zero gradually with the development of hydration.

lim
t→∞

dα

dt
= 0 (4)

This research’s preliminary study of different link functions
(inverse proportional function, exponential function, etc.)
which can implement this characteristic suggests that the
following function is the best link function between genes
(results not shown here)

1

( )( ) · · · ( )
(5)

3.2.5 GPU acceleration

The first phase is very time-consuming because of the intro-
duction of hybrid evolution. To accelerate the evolution of
form of hydration kinetic equation, the study adopted a mas-
ter/slave architecture and divided it into two parts: the main
serial part performed on the CPU and the parallel evaluation
part performed on the GPU. The fourth-order Runge–Kutta
method, which is used to calculate the numerical solution of
α to find out relative error of these time series on the condition
that equation form and coefficients combination are given, is
accelerated using GPU threads in parallel. The CPU requests
the GPU to carry out the evaluation for all equations, after
the CPU finished the update of them in each iteration. At
the same time, the CPU will not resume to the active state
until the GPU returns all of requested tasks. The evaluation
of kinetics consists of solving differential equation and cal-
culating cost function. Each of them occupies one thread and
runs in parallel on the GPU independently. Figure 6 shows
the sequential relationship.
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Fig. 6 Sequential relationship of GPU acceleration for phase 1

In the aspect of computing, to further improve the per-
formance of execution on the GPU, the number of memory
operations inquired by threads should be reduced because the
memory operation is much slower than the register operation
(CUDA 2009). Therefore, the expression tree is consolidated
on the CPU first and then recoded into a new K-expression,
which will be calculated on the GPU. The process of consol-
idating can be described as follows. First, it needs to know
whether there is a terminal node in the child branch. If not, go
to the next function node. If there are several terminal nodes

in the branch, the function node and terminal nodes are com-
bined into a new single terminal node. This new node is used
to replace the original function node. The operation of the
combination is limited only for one upper layer. There is
no recursive operation in consolidating. Figure 7 shows the
method of consolidating an expression tree. On the assump-
tion that a function node is a binary operator, the thread will
access memory for three times if tree branches were not con-
solidated. On the contrary, the thread just needs to read the
new node from memory only one time if the branch of the
expression treewas consolidated. Therefore, the output value
of the original function can be calculated more quickly.

In the aspect of storage, each K-expression is divided into
two parts: one part is expression string and another part is
corresponding value of coefficients.When tree consolidating
operation is completed by theCPU, the recodedK-expression
and its corresponding coefficients will be transferred from
main memory (in the host) to global memory (in the GPU
module) once and for all. A block of sharedmemory inmulti-
processor is allocated to thread during initialization. Then,
this thread copies the string of expression tree from global
memory to its own shared memory and copies the coeffi-
cients to its corresponding local memory. The K-expression
string is stored in shared memory because shared memory
space in multi-processor is too few to store all information
ofK-expression.Moreover, as far as calculation speed is con-
cerned, the frequency of function node access is much higher
than coefficients access in solving differential equation.

3.3 Phase 2: inference of relationship between
coefficients and parameters

The relationship between hydration parameters (such as
chemical composition, particle size distribution and curing
conditions) and their influence on different period of cement
hydration are also needed to be analyzed and investigated.
They are coefficient functions consisting of hydration para-
meters. Different from distilling the unified form of equation
in the pervious phase, it is necessary to extract the defi-

Fig. 7 Consolidating of
expression tree
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Table 1 Cement hydration parameters

F0 CaO (%)

F1 SiO2 (%)

F2 Fe2O3 (%)

F3 Al2O3 (%)

F4 MgO (%)

F5 SO3 (%)

F6 K2O (%)

F7 Na2O (%)

F8 f CaO (%)

F9 Specific surface (m2/kg)

F10 Sieve residue on 74 µ (%)

F11 Water-to-cement ratio (w/c)

F12 Reaction temperature (◦C)

nite functional relation from cement hydration parameters
to coefficients at this phase. Therefore, this phase continues
to use the GEP algorithm to find the function from para-
meters to coefficients and focus on the searching of definite
functional relation but not the form.

At first, based on the distilled unified form of kinetics, for
different samples (systems), the PSO algorithm with big-
ger population and more generations are still adopted to
get a more accurate value of coefficients. Cost function and
other parameters remain unchanged. Then, for each coeffi-
cient, we have a set of parameters from different samples and
their corresponding value of coefficient. Taking the hydration
parameters of every sample as inputs, and their correspond-
ing coefficients as outputs, a data set can be obtained. The
functional relationship from parameters to coefficients can
be found by approximating this data set using the GEP algo-
rithm. The hydration parameters used in this phase include
thirteen items, F0, F1, . . . , F12. The meanings of them are
shown in Table 1.

Since the definite functions between coefficients and
cement hydration parameters are still unknown in current
manually derived models, there is no prior knowledge which
can be used to determine function set and terminal set.
Therefore, the terminal set is made up of thirteen hydration
parameters and ephemeral random constants. For function
set, various functions are tested to find the best combina-
tions. Then, function set and terminal set which are shown
as follows are adopted at this phase

Function Set = {+, −, ×, ÷,
√

, 3
√

, ( )2, ( )3,

e( ), ln( )}
Terminal Set = {?, F0, F1, F2, F3, F4, F5, F6, F7, F8,

F9, F10, F11, F12}

The term “?” represents the ephemeral random constants.
For each chromosome, the constants are randomly generated

Table 2 Chemical compositions and physical properties of the cements
prepared

F01 F31 F38 F51

CaO (%) 65.34 63.01 62.67 65.44

SiO2 (%) 21.14 22.47 20.14 21.08

Fe2O3 (%) 2.88 2.68 3.84 3.07

Al2O3 (%) 5.70 4.18 4.92 4.56

MgO (%) 1.46 3.74 3.31 2.17

SO3 (%) 2.01 2.47 2.49 2.45

K2O (%) 0.45 0.69 0.35 0.62

Na2O (%) 0.14 0.13 0.16 0.13

f CaO (%) 0.99 1.35 1.44 1.43

C3S (%) 53.08 41.24 50.50 58.31

C2S (%) 20.63 33.39 19.72 16.53

C3A (%) 10.23 6.55 6.55 6.89

C4AF (%) 8.77 8.15 11.69 9.33

Specific surface (m2/kg) 360 344 340 346

Sieve residue on 74 µ(%) 3.20 3.20 3.80 2.80

Qmax (J/g) 481.26 447.09 470.24 484.09

at the beginning of a run, but remain unchanged during evolu-
tion. Their circulation is guaranteed by the genetic operators.

4 Experiments

4.1 Data collection

The Portland cement specimen F01, F31, F38 and F511 were
used in the chemical experiment. The details of chemi-
cal composition and physical properties of these cements
are listed in Table 2. The weight ratios of tricalcium sili-
cate (C3S), dicalcium silicate (C2S), tricalcium aluminate
(C3A), and tetracalcium aluminoferrite (C4AF) are esti-
mated according to Bogue formula (Bogue 1955).

Two grams of samples of Portland cement and water
were added into the container of microcalorimetry (TAMAir
8-channel calorimeter) using various combination of experi-
mental parameters. For different time series, the combination
of water-to-cement ratio, curing conditions, and cement type
are shown in Table 3. To get the data of middle-age hydra-
tion, the duration of hydration was fixed to 5 days and the
sampling interval was set to 30 min (totally 240 time points).
Sixteen groups of time series of degree of hydration were
collected by feeding obtained heat flow information from
microcalorimetry and the total heat can be released by the
current sample at the end of hydration to Eq. (3). Figure 8
shows the collected time series.

1 These specimens were provided by The Cement Quality Supervision
and Inspection Station of Shandong Province, China.
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Table 3 The cement type,
water-to-cement ratio, and
curing conditions of each time
series

Times series Specimen type Water-to-cement ratio (w/c) Reaction temperature (◦C)

0 F01 0.35 22

1 F01 0.35 35

2 F01 0.55 22

3 F01 0.55 35

4 F31 0.35 22

5 F31 0.35 35

6 F31 0.55 22

7 F31 0.55 35

8 F38 0.35 22

9 F38 0.35 35

10 F38 0.55 22

11 F38 0.55 35

12 F51 0.35 22

13 F51 0.35 35

14 F51 0.55 22

15 F51 0.55 35

Fig. 8 Collected time series of degree of hydration within 5 days

4.2 Experiment settings

The goodness of distilled kinetics in the first phase was mea-
sured by cost function. It determines wether the kinetics
performs well for hydration simulation. The cost function
for a single time series is defined as follows

Cost′ =

n−1∑

j=0

∣
∣
∣β

αi j−α̂i j
αi j

∣
∣
∣ +

m−1∑

j=n

∣
∣
∣
αi j−α̂i j

αi j

∣
∣
∣

m
(6)

Table 4 Experiment settings in the first phase

Parameters Settings

GEP Total population size 960

Number of Subpopulation 4

Number of generations 1000

Number of generations in epoch 5

Migration probability 0.1

Number of genes 3

One-point recombination probability 0.4

Two-point recombination probability 0.4

Gene transposition probability 0.1

Gene recombination probability 0.1

Mutation probability 0.003

Insertion sequence probability 0.1

Root insertion sequence probability 0.1

Head length 30

Initialization maximum cost 1

Selection operator Tournament
with size 2

PSO Population size 16

Number of generations 200

ϕ0 1

ϕ1 1.8

ϕ2 1.8

Number of trails 4

GPU Number of threads in each block 512

Number of blocks in each device 960

Number of devices 2

Cost β 10

123



L. Wang et al.

1 2 3 4 5 6
0.072

0.073

0.074

0.075

0.076

0.077

0.078

0.079

0.08

0.081

0.082

Number of Subpopulation

A
ve

ra
ge

 C
os

t

Fig. 9 The variation of number of subpopulation on the cost value

where αi j represents the real value of α at time j in time
series i . α̂i j represents the numerical solution of kinetics at
the same time point. m represents the number of time points
in each time series. Each of series consists of 240 time points,
which means m = 240. n represents the number of points in
the induction period. β is a weight constant. The induction
period plays very important role in the cement hydration.
However, the number of time points in the induction period
is less than 3 % among all of time points in a time series.
It leads to the fact that the evolved curve often mismatches
this period. Therefore, n and β are introduced to solve this
problem by increasing the weight of this period. Since the
unhydrated state of cement remains unchanged at themoment
ofmixingwithwater, the degree of hydration at t = 0 is set to
zero. Since the induction period usually runs for two hours,
n is set to 5. Since the early-age hydration of cement is very
dramatic and the performance of set cement is closely related
to early-age hydration, this equation is measured by percent

errors to emphasize early-age hydration whose α is small.
According to Eq. (6), the cost function for the whole data is
defined as follows

Cost =

N−1∑

i=0
Cost′

N
=

N−1∑

i=0

(
n−1∑

j=0

∣
∣
∣β

αi j−α̂i j
αi j

∣
∣
∣ +

m−1∑

j=n

∣
∣
∣
αi j−α̂i j

αi j

∣
∣
∣

)

mN
(7)

where N represents the number of time series. The number
of group of time series is sixteen, which means N = 16. The
smaller the value of cost is, the better the distilled kinetics is.

The settings of experimental parameters affect the evo-
lution process and sensitivity of model greatly. Considering
the high time complexity of proposed method, and the prob-
ability to find optimal solution increases gradually with the
increase of size of population and maximum number of
generations, the settings are tuned by running preliminary
experiment under small population size and few generations.
Then, the population size and number of generations are
increased in the formal experiment. After trial and error, the
settings shown in Table 4 were adopted in the first phase.

Particularly, as far as the adopted strategies are concerned,
Fig. 9 and Table 5 shows the influence of number of sub-
population and different strategies, respectively. About the
experimental settings of Fig. 9 and Table 5, for GEP, the
total population size is decreased to 60 while the number of
generations is decreased to 100. For PSO, the number of trails
is set to 2 while the number of generations is set to 10. The
size of tournament is set to 4 to accelerate convergence under
few generations. The other parameters remain unchanged. In
Fig. 9, it can be observed that the best cost is achieved when
subpopulation size is set to 4. Moreover, the results shown in
Table 5 further confirms the effectiveness of adopted strate-
gies in comparison with the traditional method. The com-
bined strategy PM+US+SI exhibited the lowest average cost.

Table 5 The influence of
population migration (PM),
unique selection (US), and
selective initialization (SI) on
results of cost [Eq. (7)]

Trail Traditional PM US SI PM+US+SI

1 8.18E−02 7.74E−02 7.14E−02 6.53E−02 5.90E−02

2 5.26E−02 9.07E−02 5.79E−02 6.68E−02 6.53E−02

3 9.76E−02 6.44E−02 5.59E−02 1.04E−01 5.90E−02

4 5.19E−02 7.77E−02 7.56E−02 6.09E−02 4.47E−02

5 1.04E−01 3.55E−02 6.00E−02 5.01E−02 6.25E−02

6 5.92E−02 9.75E−02 8.40E−02 7.10E−02 5.95E−02

7 9.20E−02 5.94E−02 5.90E−02 6.43E−02 5.81E−02

8 7.47E−02 6.38E−02 5.46E−02 7.98E−02 6.35E−02

9 8.00E−02 9.02E−02 7.00E−02 1.01E−01 5.14E−02

10 9.53E−02 6.93E−02 6.57E−02 6.15E−02 7.16E−02

Mean 7.89E−02 7.26E−02 6.54E−02 7.24E−02 5.95E−02

Traditional represents the method which closes population migration and selective initialization, and adopts
ordinary tournament selection. PM+US+SI represents the method which adopts all three strategies
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Table 6 GEP settings in the
second phase

Parameters Settings

Total population size 200

Number of generations 50,000

Number of genes 3

One-point recombination probability 0.4

Two-point recombination probability 0.4

Gene transposition probability 0.1

Gene recombination probability 0.1

Mutation probability 0.003

Insertion sequence probability 0.1

Root insertion sequence probability 0.1

Head length 20

Selection operator Tournament with size 4

Cost function Root mean square error

Link function +
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Fig. 10 Evolution process of unified form of kinetic equation

In the second phase, to search for the best value of coeffi-
cients, there are 7680 particles are used simultaneously. The
maximumgeneration of PSO is increased to 1000. After find-
ing the value of coefficients, the settings of GEP in this phase
are also tuned by preliminary experiment. Table 6 shows the
formal settings used by GEP to extract the relation between
hydration parameters and kinetics coefficients. Because the
objective at this phase is coefficient, but not the degree of
hydration, the root mean square error (RMSE) is adopted as
cost function

RMSE =

√
√
√
√
√

N−1∑

i=0

(
C − Ĉ

)2

N
(8)

where C is the value of coefficient, Ĉ is the predicted value
of coefficient, and N is the number of time series.

A GPU-based desktop powerful computer with Linux
operation system and C programming environment was
selected as our experimental platform. This powerful com-

Table 7 Comparison of
execution times and speedup
ratios between GPU and CPU

Generation Execution time on CPU (s) Execution time on GPU (s) Speedup ratio

100 12,046 1079 11.15

200 10,003 1097 9.11

300 8878 1136 7.81

400 9020 1038 8.69

500 11,538 1048 11.00

600 10,776 1023 10.53

700 10,360 1084 9.56

800 10,617 1092 9.72

900 10,708 1129 9.48

1000 9566 1106 8.65

Mean 10,352 1083 9.57
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puter contains two high-performance Tesla C1060 GPUs
produced by NVIDIA. This GPU contains 30 stream mul-
tiprocessors (SMs) with eight stream processors (SPs) on it,
totally 240 SPs. The clock frequency of SP is 1.3GHz and the
size of devicememory is 4GB.Eachmulti-processor contains
16KBof sharedmemory and 16,384 registers. Therefore, this
powerful computer reaches the peak speed at 2Tflops.

4.3 Results and discussion

It took 1,071,446 s (297.5 h) to perform the first phase to
distil the unified form of middle-age hydration kinetics for
Portland cement. On the one hand, the initialization process
spent 1751 s (half an hour). On the other hand, the equation
evolution process spent 1,069,695 s (297 h). The evolution
process of middle-age kinetics is shown in Fig. 10, which
illustrates the variation of cost of the historically best chro-
mosome. Moreover, to illustrate the information from the
whole population, the variations of average cost of top 10 %,
top 30 % and top 50 % chromosomes in the population are

also plotted in the same figure. This figure shows that the
evolution process converges gradually after 250 generations.
Furthermore, the fluctuation range of top 50 % is larger than
it of the others, which reflects the nonuniformity of the popu-
lation. Table 7 illustrates the comparison of execution times
and speedup ratios between GPU and CPU. It is obtained
by performing the GEP population in 100th, 200th, 300th,
400th, 500th, 600th, 700th, 800th, 900th, 1000th generation
on CPU (Intel Core i7 920) again. The average speedup ratio
is 9.57. Although it took a long time for distilling the result,
considering the frequency of execution of reverse extraction,
the time consumption is acceptable because the objective of
this research is hydration kinetics itself but not the system of
reverse extraction.

After evolution of first phase, the optimal equation with
the best cost 0.00387 is obtained and shown in Eq. (9) by
decoding the optimal chromosome to expression and simpli-
fying it. It is the middle-age hydration kinetics of Portland
cement mined from observed data. Its unit of time is half an
hour.
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Fig. 11 The impact of coefficients on the hydration process

There are eight coefficient terms in the obtained GEP
chromosome. As mentioned above in Sect. 3, they are dif-
ferent coefficients. To distinguish them, these coefficients
are identified by C with a subscript according to the order in
chromosome, namedC0,C1, . . . ,C7. Despite the difficulties
of understanding the physical meaning of these coefficients
in the distilled kinetics, their affection can be evaluated on

different periods of cement hydration. Figure 11 shows the
impacts of change of value of coefficients on hydration rate
and degree of hydration simulated by distilled kinetics. It
can be observed that the main effect of C0 on simulation
is to adjust the proportional relationship between induction
period and the following periods. The decrease ofC0 reduces
the durations of induction period and accelerating period.
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Table 8 The comparison of cost between Krstulovic–Dabic’s model, Tomosawa’s model, early-age model, and distilled model [Eq. (9)]

Krstulovic–Dabic’s model Tomosawa’s model Early-age model Distilled model

Series 0 0.41167 0.04453 0.05759 0.00272

Series 1 0.38190 0.04382 0.11764 0.00289

Series 2 0.47326 0.05296 0.05358 0.00437

Series 3 0.44928 0.05379 0.14164 0.00452

Series 4 0.89866 0.14654 0.07507 0.00614

Series 5 0.64103 0.07739 0.14628 0.00370

Series 6 0.62233 0.07616 0.42886 0.00115

Series 7 0.62741 0.08867 0.14454 0.00258

Series 8 0.53913 0.05966 0.08930 0.00116

Series 9 0.69562 0.14207 0.39357 0.00100

Series 10 0.35713 0.02686 0.16312 0.00163

Series 11 0.55596 0.07959 0.14220 0.00197

Series 12 0.43481 0.04500 0.14308 0.00425

Series 13 0.82162 0.14865 0.42303 0.00311

Series 14 0.47353 0.05720 0.03610 0.00182

Series 15 0.59853 0.08457 0.13255 0.00130

Mean 0.56137 0.07672 0.16801 0.00277

SD 0.15411 0.03822 0.12866 0.00150

Furthermore, the hydration rate in terminating period are
also reduced with the decrease of this coefficient. The effect
of C1 is to adjust hydration rate of accelerating period and
decelerating period. After the induction period, the larger the
C1, the higher the peak of hydration rate. C6 has the same
effect as C1. Nevertheless, the larger the C6, the lower the
peak of hydration rate. C2 and C4 are used to adjust decel-
erating period and terminating period. Larger value of C2

and C4 increases the hydration rate in decelerating period
and decreases it in the terminating period. The main dif-
ference between both of them is C2 affects the peak of
hydration rate. C3 adjusts the duration of induction period,
accelerating period, and decelerating period. The duration
of induction period and accelerating period decreases with
the decrease of C3. However, the duration of decelerat-
ing period increases. There is an integral impact on every
period of simulation curve using C5. For C7, the effect on
hydration rate in induction period can be also observed.
However, different from C1, it has little effect on the other
periods.

Table 8 compares the distilled middle-age hydration
kinetics with three other kinetics models, including the
Krstulovic–Dabic’s model (Krstulovic and Dabic 2000),
Tomosawa’s model (Tomosawa 1997), and early-age hydra-
tion model (Wang et al. 2010). For a fair comparison,
the coefficients in these models were determined from fits
to experimental data to get the best matching. The PSO
algorithm whose population size is 7680 and maximum gen-
eration is 1000 is adopted to find the best coefficients for all

of the compared models. This table depicts the results for
comparison between Eq. (9) and the other models. The sta-
tistical analysis t test (Box 2005) was also performed for a
thorough comparison of the distilled middle-age hydration
kinetics and the other algorithms. The t test results show
that the distilled middle-age model performs significantly
better than the compared algorithms, with a significance
level of 0.05. Moreover, the smallest standard deviation
(SD) is also produced by the Eq. (9) which means it is
more stable. Although the manually derived models sim-
ulate all life of cement hydration, the nature of reverse
distilling method makes the discovered model especially
accurate in middle-age hydration. Furthermore, the results
of early-age model show that it is not effective in simulat-
ing middle-age hydration though it can simulate all life of
cement hydration besides the early-age hydration. The results
indicate that the distilled unified form of kinetic equation
is fully capable of modeling middle-age cement hydration
kinetics.

In the second phase, the relationship between the eight
coefficients and cement hydration parameters F0, F1, . . . ,
F12 are extracted and listed in Eq. (9). It took 1831 s (half an
hour) to perform the second phase. The evolution processes
for all of coefficients are shown in Fig. 12, which illustrates
the variation of RMSE of the historically best chromo-
some. This figure shows that the evolution process converges
gradually after 20,000 generations. Figure 13 illustrates the
accuracy of coefficients, which is calculated using extracted
functional relationship, to the target valuewhich is optimized
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Fig. 12 Evolution processes for all of coefficients in the second phase

using particle swarm optimization. It can be observed that
there is high similarity between calculated coefficients and
the target.

Based on the distilled middle-age hydration kinetics, the
curve of degree of hydration and hydration rate can be
simulated. Figure 14 illustrates the comparison between sim-
ulation curves and experimental curves. It can be observed
that the simulation curves of hydration are in agreement
with experimental data on series 0, series 4, series 5, series
7, series 9, series 10, series 12, series 14, series 15 com-
pared with the others. The remaining ones are generally in
accordance with experimental data, except time series 6. In
addition, the distilled kinetics not only simulate periods after
the induction period but also simulate the induction period
of Portland cement successfully, which should be attributed
to the introduction of n and β. Considering the coefficients
in the other models are determined from fits to experimental
data but not calculated directly from hydration parameters,
it is unable to compare them with distilled model in this fig-
ure. However, the comparison shown in Table 8 confirms
the unified form of distilled equation is better than the other
models.

Figure 15 shows the generalization ability on test data
(another type of cement differs from F01, F31, F38, F51. It
reacts at 30 ◦C. The water-to-cement ratio is 0.55). For com-
parison, the coefficients of distilled unified form of kinetics
were also determined from fits to experimental data to get
the best matching. The PSO algorithm is used as optimiza-
tion method with population size 1,22,880 and maximum
generation 1000. The result using the best coefficients illus-
trates that the distilled unified form of kinetics performs well
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in fitting observed results even if sample’s chemical com-
position, particle size and curing conditions are changed.
However, the accuracy of kinetics using coefficients esti-
mated by coefficient functions on test data is not as high
as the results using the best coefficients, which reflects
that although the unified form of kinetics is good in fit-
ting observed results, this is ascribed to the complexity of
problem and inadequacy of data, which is costly to collect.
Therefore, the generalization ability of coefficient functions
which are obtained in the second phase should be improved
further.

5 Conclusions

In this paper, the middle-age hydration kinetic equation of
Portland cement is distilled reversely from observed data.
A phased hybrid evolution method with some reinforcement
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Fig. 14 Comparison of experimental and simulation curves

strategies and GPU acceleration is proposed to increase the
diversity of searching and to speedup the evolution of kinet-
ics. The middle-age hydration kinetics and its corresponding
coefficient functions are distilled successfully. This is the
first time that the middle-age hydration kinetics of Portland
cement is distilled reversely from observed data. This is also
the first time that the relationships between kinetics coef-
ficients and cement hydration parameters are extracted and
analyzed.

It takes a long time to distil the middle-age hydration
kinetics. However, considering the frequency of execution

of reverse extraction, the time consumption is acceptable
because the objective of this research is hydration kinetics
itself but not the system of reverse extraction. The impacts of
change of value of coefficients on hydration rate and degree
of hydration simulated bydistilled kinetics are also evaluated.
Compared with the manually derived models and early-age
model, the nature of reverse distilling method makes the dis-
covered model especially accurate in middle-age hydration.
The generalization ability on test data proves that the distilled
unified form of kinetics performs well in fitting observed
results even if sample’s chemical composition, particle size
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and curing conditions are changed. However, the accuracy of
kinetics using coefficients estimated by coefficient functions
on test data is not as high as the results using the best coef-
ficients, which reflects the high complexity of problem and
inadequacy of data, which is costly to collect. The general-
ization ability of coefficient functions which are obtained in
the second phase should be improved further.

In futureworks, considering the unsatisfactory generaliza-
tion ability of obtained coefficient functions, additional data
using more types of cement specimens and curing conditions
are also required to improve the coefficient functions. Fur-
thermore, the reverse extractionmethodneeds to be improved
to reduce its time complexity so that the framework of this
method can be widely used in different systems. Its parame-
ters’ impact on different systems should also be studied.
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