

Abstract—Multi-Agent System (MAS) is a very active
field that ensures global coherence between agents’
interactions in a distributed way and implicit global
control. Under the awareness of its power, the application
of MAS was no more limited to very specific problems,
but to almost application area: optimization, neural
network, robotics, fuzzy system, etc. In the other side, a
complex system of Artificial Neural Network called
Flexible Beta Basis Function Neural Tree (FBBFNT) has
reached a great level in the prediction search domain. In
the purpose of enlarging the application of the algorithm
to complex applications of the real problems, a new
architecture of MAS was designed and applied to the
FBBFNT process. This new multi-agent system based on
communications and negotiations allowed the resolution
of more complex prediction problems and the
acceleration of the global convergence speed.

I. INTRODUCTION
n nature life, human as an ‘intelligent system’ is a part of
social system in which it operates and interacts with other
humans distributed in the same environment. Humans in

interactions can exchange information, negotiate decisions,
share views, and resolve existing conflicts and they belong to
different organizational structures [37]. The Multi-Agent
System (MAS) considers a new philosophy of intelligent
systems inspired from this nature view. The MAS is a
sophisticated system comprising a set of interacting agents. It
aims at providing solutions to inherently complex
applications in distributed environment [15]—[17].

An agent is an intelligent autonomous entity such as a
software program or a robot that is capable to reach its
concerned objectives [18]. Originally, MAS considers a
derivate branch from Distributed Artificial Intelligence (DAI)
subfield of Artificial Intelligence (AI). Since its invention in
1970, DAI was presented a rich science and an evolving and
interesting field of research [37]. It can be considered as an
intersection with others domains such as artificial
intelligence, management software engineering,
organization, distributed systems, computer science,

sociology, etc [30]. Moreover, it provides an efficient
paradigm of distributing and coordinating a set of jobs, tasks
and decisions between different agents to build coherent and
interactive systems [17].

The extensive growth of the multi-agent field could be
explained by the fact that many researchers have considered
the Multi-Agent Systems as the current and future key for
solving engineering problems [37]. It has the capacity to deal
with heterogeneous, distributed, large and complex
applications and environments in different area such as
optimization, neural network [5], [40], robotics [27], fuzzy
system [25], etc.

In this context, the Beta Basis Function Neural Network
(BBFNN) was one of the complex applications. It showed a
great performance in several success researches like
classification [1], [3] (pattern recognition), prediction [12],
[13], [31]—[35]. The network structure evolution and the
parameter optimization are the two mainly issues that
influence on the BBF neural network’s performance. The
BBFNN structure is not unique and depends on both, the
treated problem and the method of conception. In addition,
the parameters of BBFNN including connected weights and
Beta parameters can be learned using back-propagation
algorithm, genetic algorithm [7], particle swarm optimization
algorithm [12] and so on. Furthermore, many attempts have
been realized to evolve both structure and Beta parameters of
the BBFNN such as Hierarchical Genetic Algorithm (HGA)
[8] and Hierarchical Multi-dimensional Differential
Evolution (HMDDE) [13].

Moreover, to have more flexible structure of the BBFNN,
Bouaziz et al. [31]—[35] has used the tree-based encoding
method for representing the BBF neural network. The new
representation called Flexible Beta Basis Function Neural
Tree (FBBFNT). This system adapted a simultaneous
evolution of the structure and the parameters of the NN using
different Evolutionary Computation algorithms such as
Genetic programming [20], [31], Artificial Immune Systems
[33], Particle Swarm Optimization, Differential Evolution,
Bacterial Foraging Optimization Algorithm [39], Artificial
Bee Colony [31], Harmony Search [26], and so on.

In this paper, a new architecture of multi-agent system was
presented. It used a collection of three types of agent with
different characteristics interconnected coherently. This
system was designed for the FBBFNT model to accelerate the
convergence and adapted it to more complex applications. It
was called the Multi-Agent Evolving Flexible Beta Basis
Function Neural Tree (MA_EFBBFNT)
The remaining paper is organized as follows: Section 2
presents the cumulative search to emerge the Flexible Beta
Basis Function Neural Tree model. In section 3, the Multi
Agent System is introduced with the different agents

Multi-agent Evolutionary Design of Flexible Beta Basis Function
Neural Tree

M. Ammar, S. Bouaziz, Adel M. Alimi and Ajith Abraham

I

M. Ammar, S. Bouaziz, Adel M. Alimi are with REsearch Group on
Intelligent Machines (REGIM), University of Sfax, National School of
Engineers (ENIS), BP 1173, Sfax 3038, Tunisia,
(marwa.ammar.tn@ieee.org, souhir.bouaziz@ieee.org,
adel.alimi@ieee.org)
Ajith Abraham is with 2IT4Innovations, VSB-Technical University of
Ostrava, Czech Republic and 1Machine Intelligence Research Labs, WA,
USA; (ajith.abraham@ieee.org)

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1265

implemented in our system. The new architecture of our
multi-agent system which called MA_EFBBFNT is provided
in Section 4. The set of some simulation results is the subject
of Section 5. Finally, some concluding remarks are presented
in Section 6.

II. EVOLVING FLEXIBLE BETA BASIS FUNCTION NEURAL TREE

The Beta function was the transfer function used in the
designing of the neural network. Alimi introduced this idea in
1997 [1]. It was adapted in our system because of its large
flexibility and efficiency [2], [3], [28], [29], which exceeded
the Gaussian function.
The Beta Basis Function Neural Network is a feed-forward
neural network with three layers (input, hidden, output). In
the hidden layer of the NN, the beta basis function was used
as the non-linear transfer function. However, a linear transfer
function was adopted in the output layer.

Furthermore, to extend the neural network structure for
variable hidden layers, the classic matrix-based encoding was
replaced by tree-based encoding. This new representation of
the Beta basis function neural network was introduced by
Bouaziz et al. in 2012 [31], [32], and the new model is called
the Flexible Beta Basis Function Neural Tree (FBBFNT) (see
Fig. 1).
 The flexible nature of the tree has given the global system a
comfortable flexibility for modifying and adjusting its
structure. Therefore, the optimization of the FBBFNT had
two parts; the tree structure evolution and the parameter
evolution. A simultaneous evolution of architectures and
learning parameters has been adapted using the Evolutionary
Computation [20], [26], [31], [33], [39].

A. Structure evolution
The structure optimization has taken a place after the

initialization step. The initialization consisted to generate an
initial population of trees with randomly structures and
randomly parameters (node parameters and connecting
weights).

In this work, the optimal structure or the near-optimal
structure was achieved by using the Extended Genetic
Programming (EGP) algorithm [31]. It was an extended
version of The Genetic Programming (GP) paradigm
introduced by Koza [20].

The EGP algorithm has three operators including selection,
crossover and mutation, which are applied to each individual
(or tree) of the population.

• Selection operator: is used to select two individuals
from the actual population as a parent of the new child
procreated by crossover/mutation operator.

• Crossover operator: is the swapping operation of
two sub-trees from two different individuals randomly
selected.

• Mutation: four different mutation operators were
used in the EGP to generate offspring from the
parents. These mutation operators are as follows:
changing one terminal node; changing all the terminal
nodes; growing (replacing randomly a leaf node in
hidden layer by a sub-tree); pruning (replacing
randomly a beta operator node by a leaf node).

 After that, each individual is evaluated according to the
structure fitness function. The most adopted fitness function
according to many search [6], [8], [13], [32] depends on the
performance of the ANN on the training data (the Root Mean
Squared Error (RMSE) between the target and output of the
proposed model) and the complexity of the ANN related to
the number of nodes and the number of layers.

B. Parameter evolution
After obtaining the best structure of the FBBFNT model

using the Extended Genetic Programming, the
Opposite-based Particle Swarm Optimization algorithm
(OPSO) was applied to improve the performance of the
parameters. These parameters concerned the Beta function
parameters (centre: c, spread: s and the form parameters: p
and q) [1], [2] of the corresponding node and the connecting
weights.

 The Opposition-based learning (OBL) proposed by
Tizhoosh [14] was successfully applied to several problems.
The opposite number)(txi is defined as follows:

For)(txi ∈[aj, bj]

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

++
−

++
+

=
)

2
)((,

2
)((

)
2

)((),
2

)((
)(

jj
i

jj
ii

jj
i

jj
ii

i ba
txif

ba
tx

ba
txif

ba
tx

tx
≺

α

α
 (1)

 Where αi ∈]0,1[

The OPSO algorithm has the same basic concept as the PSO
algorithm with adding the use of the opposite numbers to look
for the solution in a limited search space. The idea was to
divide the search space in two sub-spaces to accelerate the
convergence rate and to opposite the numbers to bring them
closer to the optimal solution.
The learning process of OPSO is described as follows:

• Step 0 (Initialization): The initial positions xi(t = 0) (i
= 1; :::;NP) are generated randomly using this
equation:

)()0(jjiji abrandax −+= (2)

X1 X2 X3 X4

X2 X1 X3

X2

/5

β2

β2 β2

β3

Output layer

Second
hidden layer

First hidden
layer

Input layer

X4 X1

Fig. 1. A typical representation of FBBFNT: function node
set F = {β2, β3, /5} and terminal node set T = {x1, x2, x3,
x4}

1266

Where [aj, bj] is the search space of xi

Then, the opposite population was computed
according to the opposite based learning formula
presented in equation 1. The initial velocities, vi(0)
with i = 1; :::;NP , of all particles are randomly
generated.

• Step 1 (Particle evaluation): Evaluate the performance
of each particle in the population according to the
beta neural system using the Root Mean Squared
Error (RMSE) as a parameter fitness function:

• Step 2 (Velocity update): At iteration t, the velocity vi
of each particle i is updated using pbest i and gbest i
according to this equation.

))()((
))()(()()()1(

22

11

txtgbestc
txtpbestctvttv

ii

iiii

−+
−+=+

ϕ
ϕψ (3)

Where c1, c2 (acceleration), Ψ (inertia) are positive
constant and ϕ1 and ϕ2 are randomly distributed
number in [0, 1]. In addition, ‘pbest’ is the best
fitness value achieved by the particle and the ‘gbest’
is the best fitness value obtained so far by any
particle in the population. The velocity vi is limited
in [-vmax ,+vmax].

• Step 3 (Position update): Each particle updates its
position and its opposite- position according
depending on their velocities :

)1())(1()()1(+−+=+ tvttxtx iii ψ (4)
)1())(1()()1(+−+=+ tvttxtx iii ψ (5)

• Step 4 (pbest and gbest update): After updating the

velocities and the positions of the whole population,
the values of pbest (t) and gbest(t) are changed for
the next iteration.

• Step 5 (End criterion): If the OPSO reached its
objective or the maximum number of iterations
prefixed, the process ends its execution.

So, to find the optimal or the near-optimal FBBFNT model,
EGP (for structure optimization) and OPSO (for parameter
optimization) are combined to evolve the whole system.
Different performance measures are used to evaluate the
effectiveness of our model which are the RMSE training,
RMSE testing and Evaluation Function Numbers (EFNs).
The RMSE training and RMSE testing reflect the solution quality and the accuracy of the system. In addition, the
EFNs compute the number of the evaluations function that
reflects the convergence speed of the global algorithm. This
number depends mainly on the problem treated and the neural
network complexity (the number of input variables, tree
degree fixed ...). Through the experimental results in the
tables III and V, the EFNs have increased hugely when we
tried to generalize the system and augmented the inputs

number (from 4 to 19 or from 2 to 10) and the tree degree
(from 3 to 6).
Therefore, this problem will be more acute when we try to
deal with real problem data sets including a big number of
inputs. Therefore, we have thought to modify the architecture
of the system from a monolithic architecture to distributed
architecture and to design a multi-agent system adapted to the
ANN concept. This new system aims to reduce the
convergence speed and the time complexity of the system.

III. THE MULTI-AGENT SYSTEM FOR THE FLEXIBLE BETA BASIS
FUNCTION NEURAL TREE

A. The Multi-Agent System
The common goal of many researchers was to display an

intelligent system that broke down the real-world problems.
Since the mid-1990s, The Multi-Agent System (MAS) has
attracted an international interest [37]. It has proved its
efficiency in a host of different application domains. MAS
has emerged as a new powerful paradigm of Artificial
Intelligence (AI) which concretized the collective intelligence
behaviors [18]. It focuses on the coordination of interactions
between autonomous entities called agents in their common
environment. Each agent was responsible to resolve set of
tasks that beyond its individual capabilities.

An agent is an independent and autonomous entity that is
able to interact, cooperate, coordinate and negotiate with
other agents. The agents aim to solve the delegated tasks and
ensure useful communications that allow the system to reach
its global objective successfully. The figure 2 illustrates the
agent design in our system and its general functional structure
through the interaction with its environment. All the received
messages are identified and interpreted with the perception
functionality. Thus, the execution represents the resolution of
the different tasks requested and the necessary knowledge
update. Moreover, the agent can react in this system by
sending a message to anther identified agent or by giving
result. In our approach there are three types of agents with
different functionalities:

Agent

En
vi

ro
nm

en
t Perception

Execution Knowledge

Receive message

Task

Send message

Result

Evaluate

Update

Fig. 2. Agent functional structure

1267

1) Organizer agent:
It was an interactive agent. It has the responsibility of
organizing the dynamic structure of the MAS including
the starting step, the generation transition and the closing
step. The organizer agent has the direct contact with the
user; it sent the final solution for the appropriate problem
defined by the user.
2) Worker agent: It was intelligent by optimizing some
intern measures that can impact in its objectives. It has the
more flexible (pro-active, reactive, social) behavior. It
was pro-active agent by executing of the tasks and
sending messages, reactive agent by answering requests
and sending feedbacks, and has the social ability of
negotiating with the other worker agents.
3) Principal agent: It was an active and interactive agent
that was responsible for providing the admitted result.

B. The Multi-Agent Evolving Flexible Beta Based
Function Neural Tree: MA_EFBBFNT
In this section, the multi-agent evolving FBBFNT which

called MA_EFBBFNT was presented (see Fig. 3). As known,
the multi-agent system was based on some protocols of
communication between different agents to ensure the
coherence. The communication protocol used is based on an
asynchronous point-to-point communication.

Our algorithm was formed by these five general steps
organized as follow:

Step0: Initialization (include the initialization of agents
and the initialization of the EGP and OPSO algorithms)
Step1: The organizer agent started with dividing the
population into N subpopulations and distributing them to
the N worker agents.
Step2: The worker agents carried out the local FBBFNT
algorithm.

Step2.1: When the worker agent reached an optimal
tree structure (structure optimization by the EGP
algorithm), it broadcasted it to the other worker
agents.
Step2.2: A conflict of possible solutions appeared.
Each worker agent opens a session of one-to-many
negotiation. This negotiation relied on the
complexity of the structure and the RMSE value and
finished by adapting the best tree structure (with

minimum complexity and minimum RMSE) for the
rest of execution.
Step2.3: Another time, when the worker agent
reached the set of optimal parameters (parameter
optimization by the OPSO algorithm), it broadcasted
it to the other worker agents.
Step2.4: Another conflict of possible solutions
appeared. Each worker agent opens another session
of one-to-many negotiation. This negotiation relied
on the fitness (RMSE value) computed and finished
by adapting the best parameters of the best tree for
the next generation of population.

Step3: The final solutions of all worker agents were being
sent to the principal agent forming its population. This
agent executed the adapted FBBFNT algorithm and sent its
‘Best_tree’ to the organizer agent.
Step4: The organizer agent sent a message to the worker
agents to look for the worst of them. After a negotiation,
the worst worker agent was identified according to the
worst solution have been sent to the principal agent before.
Step5: The organizer sent the ‘Best_tree’ to the worst
worker to take a place in the next generation of population.
The other worker agents update their population by their
best local solutions.

IV. EXPERIMENTAL RESULTS
The proposed MA_EFBBFNT system using the EGP
algorithm for the structure optimization and the OPSO
algorithm for the parameter optimization (see table I) is
submitted to the Mackey-Glass time-series prediction and
Box and Jenkins’ Gas Furnace problem to evaluate its
performance.

TABLE I
OPTIMIZATION SETTING

Algorithm Parameter Initial value
Extended Genetic
Programming (EGP)

Crossover probability 0.3
Mutation probability 0.6
Generation gap 0.9

Opposite based Particle

Swarm Optimization
(OPSO)

C1 0.8

C2 0.8

A. Mackey-Glass time-series prediction
Several researchers have used the Mackey-Glass problem in

order to compare the performances of its models. The
Mackey-Glass problem proposed by Glass and Mackey [16]
is a differential equation recognized as a benchmark problem.

)(*
)(1

)()(
10 txb

tx
txa

dx
tdx −

−+
−∗=

τ
τ (6)

According to previous works, the input variables used are

x(t), x(t-6), x(t-12), x(t-18) for predicting x(t +6). In our work,
we predict the x(t + 6) value using the input variables
{x(t),x(t-1), x(t-2), x(t-3),…..,x(t-18)}. It corresponds to 19
inputs to 1-output mapping.

Worker agent 1

Worker agent 2

Worker agent N

Organizer
Agent

Principal Agent

Fig. 3. the general architecture of the MA_FBBFNT system

1268

The Mackey-Glass problem has generated 1000 observations;
the first 500 pairs of data were considered as the training set
and the last 500 were employed as test series [12], [21], [38].

B. Application to Mackey-Glass times-series prediction
According to the RMS Error and the global number of

evaluation function NEFs, we have compared between the
simulation results of MA_EFBBFNT for the Mackey-Glass
times-series prediction and other methods from the literature.
The problem was treated with two case of input variables
number: 4 inputs (see table II) and 19 inputs (see table III).

From the experimental results presented in table II, the
FBBFNT_EGP&OPSO provide better results more closely to
the global optimum, but with more than 3 millions of function
evaluations. In this context, the proposed multi-agent
architecture for the algorithm (MA_EFBBFNT) gives better
solution with minimum error and minimum NFEs.
Moreover, according to table III, the experimental results
approved that the MA_EFBBFNT overcomes the over
dimensions imposed by the NN system and provides the best
results with low error and a huge decrease in the number of
evaluation function.

In this two cases treated, the integrating of the multi-agent
architecture to the FBBFNT basic algorithm has ameliorated
the performance of the system.

C. Box and Jenkins’ Gas Furnace problem
From the literature, another Benchmark problem using in

the test of the prediction algorithms was the Box and Jenkins’
Gas Furnace problem [11]. The process is based on the
combustion of a mixture of methane-air. The output
measurement is affected to Y(t) and the inputs measurement
is a set constituted by U(t-τ1) and Y(t-τ2). The U(t-τ1)
presents the gas flow into the furnace at time ((t-τ1) with τ1

∈{1,2,3,4,5,6}) and the Y(t-τ2) computes the concentration of
the CO2 gas provided at time ((t-τ2) with τ1 ∈{1,2,3,4,5}).

According to previous works (like works cited in [13], [32],
[38], etc), the input-output variables used are {U(t-4),Y(t-1)}.
The data set present 296 pairs of delayed input-output in
different point of time.
For another simulation, 10 inputs variables {(U(t-6), U(t-5),
U(t-4), U(t-3), U(t-2), U(t-1) and Y(t-1), Y(t-2), Y(t-3),
Y(t-4)} are used in [39]. Thus, from the data set, 200 data
samples are reserved for the training phase and the rest of data
samples are used for the test of the system performance.

D. Application to Box and Jenkins’ Gas Furnace problem
The same experimental process is applied for the Box and

Jenkins’ Gas Furnace problem using in the first case 2 inputs
(see table IV) and in the second case 10 inputs (see table V).
The following tables present the simulation result of the
MA_EFBBFNT with other methods. The table V (first case)
presents a comparison between our system in the two
architectures (FBBFNT_EGP&OPSO and MA_EFBBFNT)
and other methods from the literature. It is clear that the
proposed algorithm in the proposed multi-agent architecture
product results much better than the others. In addition, for
the second case (10 inputs), the results presented in table V
show the superior performance of the MA_EFBBFNT in
terms of the performance measures used in this work (RMSE
training, RMSE testing and NFEs).

So, our system has reached the best results with the two
cases. It approved that the flexibility of the multi-agent
architecture has a powerful affect to the performance of the
system (low RMS Error) and especially to the time
consuming (less NFEs).
This improvement of the system convergence speed makes
this system more adaptable to deal with real data set
problems.

TABLE IV

COMPARISON (RMSE TRAINING, RMSE TESTING AND NFES) BETWEEN
MA_FBBFNT AND DIFFERENT OTHER METHODS FOR BOX AND JENKINS’

GAS FURNACE PROBLEM WITH 2 INPUTS

System RMSE
Training

RMSE
Testing NFEs ANFIS model [19] ___ 0.08544 ___ FuNN model [21] ___ 0.26720 ___ HyFIS model [23] ___ 0.25245 ___

FNT[39] 0.000664 0.000701 ___ FWNN-M [37] 0.01963 0.02324 ___
HMDDE-BBFNN [13] 0.3745 0.2411 ___
FBBFNT_EGP&PSO

[33] 0.01735 0.01814 2,511,167

FBBFNT_EGP&OPSO 0.012454 0.01216 2,000,106
MA_EFBBFNT 0.000041 0.000106 1,423,493

TABLE II
COMPARISON (RMSE TRAINING, RMSE TESTING AND NFES) BETWEEN

MA_EFBBFNT AND DIFFERENT OTHER METHODS FOR MACKEY-GLASS
PROBLEM WITH 4 INPUTS

System RMSE
Training

RMSE
Testing NFEs Classical RBF [22] 0.0096 0.0114 ___ PSO-BBFN [12] ___ 0.027 ___ G_BBFNN [7] ___ 0.013 ___ CPSO [10] 0.0199 0.0322 ___

FNT[39] 0.0071 0.0069 ___ HCMSPSO [9] 0.0095 0.0208 ___ FWNN-M [37] 0.00129 0.00114 ___
HMDDE-BBFNN [13] 0.0094 0.0170 ___ LNF [4] 0.00070 0.00079
FBBFNT_EGP&PSO

[33] 5.3000e-03 5.4000e-03 2,015, 358

FBBFNT_EGP&OPSO 5.5985e-04 5.8488e-04 1, 954,397
MA_EFBBFNT 4.1262e-11 4.1310e-11 158,056

TABLE III
COMPARISON (RMSE TRAINING, RMSE TESTING AND NFES) BETWEEN

MA_EFBBFNT AND DIFFERENT OTHER METHODS FOR MACKEY-GLASS
PROBLEM WITH 19 INPUTS

System RMSE
Training

RMSE
Testing NFEs

FNT[39] 0,00276 0,00271 ___
FBBFNT_EGP&OPSO 2.5444e-05 2.5132e-05 5,213,935

MA_EFBBFNT 2.0622 e-06 2.0527 e-06 290,379

1269

TABLE V

COMPARISON (RMSE TRAINING, RMSE TESTING AND NFES) BETWEEN
MA_FBBFNT AND DIFFERENT OTHER METHODS FOR BOX AND JENKINS’

GAS FURNACE PROBLEM WITH 10 INPUTS

V. CONCLUSION
In this paper, a multi-agent system designed for artificial
neural network which is called MA_EFBBFNT has been
introduced. This system used a multi-agent architecture with
three types of agents; worker agent, principal agent and
organizer agent. It was implemented to a beta based function
neural network using the tree representation. Moreover, two
evolutionary algorithms were used for the optimization of the
NN; the Extended Genetic Programming for the NN structure
optimization and the Opposite based Particle Swarm
Optimization for the NN parameters optimization. The
system was evaluated using two prediction problems well
known as benchmark problems. Its comparison with other
methods from the literature has approved its superior
performance, efficiency and speed.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
of this work by grants from General Direction of Scientific
Research (DGRST), Tunisia, under the ARUB program. This
work was also supported in the framework of the IT4
Innovations Centre of Excellence project, reg. no.
CZ.1.05/1.1.00/02.0070 by operational program ‘Research
and Development for Innovations’ funded by the Structural
Funds of the European Union and state budget of the Czech
Republic, EU.

REFERENCES
[1] Adel M. Alimi, “The Beta Fuzzy System: Approximation

of Standard membership Functions”, In Proc. 17eme
Journées Tunisiennes d’Electrotechnique et
d’Automatique, JTEA’97, pages 108–112, 1997.

[2] Adel M. Alimi, “What are the advantages of using the
Beta neuro-fuzzy system? ”, In Proc. IEEE/IMACS
Multiconf. Computational Engineering in Systems
Applications, CESAŠ98, volume 2, pages 339–344,
1998.

[3] Adel M. Alimi, “Beta Neuro-Fuzzy Systems”, TASK
Quarterly Journal, Special Issue on "Neural Networks",
vol. 7, no. 1, pages 23–41, 2003.

[4] A. Miranian and M. Abdollahzade. Developing a Local
Least-Squares Support Vector Machines-Based
Neuro-Fuzzy Model for Nonlinear and Chaotic Time
Series Prediction. IEEE Transactions on Neural

Networks and Learning Systems, vol. 24, no. 2, pages
207–218, 2013.

[5] A. Quteishat et al. A neural network-based multi-agent
classifier system, Neurocomputing 72 (2009) 1639–1647

[6] B. tak Zhang and H. Mühlenbein, “Balancing accuracy
and parsimony in genetic programming”. Evolutionary
Computation, 1995.

[7] C. Aouiti, A.M. Alimi and A. Maalej. A Genetic
Designed Beta Basis Function Neural Networks for
approximating of multi-variables functions. In Proc. Int.
Conf. Artificial Neural Nets and Genetic Algorithms,
Springer Computer Science, pages 383–386, Prague,
Czech Republic, 2001.

[8] C. Aouiti, Adel M. Alimi, F. Karray and A. Maalej, “The
design of bate basis function neural network and beta
fuzzy systems by a hierarchical genetic algorithm”,
Fuzzy Sets and Systems, vol. 154, no. 2, pages 251–274,
2005.

[9] C-F. Juang, C-M. Hsiao and C-H. Hsu. Hierarchical
cluster-based multispecies particle-swarm optimization
for fuzzy-system optimization. IEEE Transactions on
Fuzzy Systems, vol. 18, no. 1, pages 14–26, February
2010.

[10] F. V. D Bergh and A. P. Engelbrecht. A Cooperative
approach to particle swarm optimization. IEEE
Transactions on Evolutionary Computation, vol. 8, no. 3,
pages 225–239, 2004.

[11] G.E.P. Box and G.M. Jenkins, “Time series analysis:
forecasting and control”. Holden-Day series in time
series analysis and digital processing. Holden-Day, 1976.

[12] H. Dhahri, Adel M. Alimi and F. Karray, “Designing
beta basis function neural network for optimization using
particle swarm optimization”, In IJCNN, pages
2564–2571, 2008.

[13] H. Dhahri, Adel M. Alimi and A. Abraham,
“Hierarchical multidimensional differential evolution for
the design of beta basis function neural network”.
Neurocomputing, vol. 97, pages 131–140, 2012.

[14] H. Tizhoosh, “Opposition-based Learning: A New
Scheme for Machine Intelligence”, Proceedings Int.
Conf. Comput. Intell. Modeling Control and Autom, Vol.
I, pp. 695-701, 2005.

[15] I. Dzitac, B.E. B˘arbat, “Artificial Intelligence +
Distributed Systems = Agents”. Int. J. of Computers,
Communications & Control, ISSN 1841-9836, E-ISSN
1841-9844, Vol. IV ,No. 1, pp. 17-26, 2009.

[16] J. Ferber, Les systèmes multi-agents: Vers une
intelligence collective. InterEditions, Paris, 1995.

[17] J. Ferber, Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence, Addison Wesley,
London, 1999.

[18] J. Ferber, O. Gutknecht1, and M. Fabien, “From Agents
to Organizations: an Organizational View of
Multi-Agent Systems”. Agent-Oriented Software
Engineering (AOSE) IV, P. Giorgini, Jörg Müller, James
Odell, eds, Melbourne, July 2003, LNCS 2935, pp.
214-230, 2004

[19] J. Nie. Constructing fuzzy model by self-organizing
counterpropagation network. IEEE Transactions on

System RMSE
Training

RMSE
Testing NFEs

FNT[39] 0.000291 0.000305 ___
FBBFNT_EGP& OPSO 0.000044 0.000228 2,486,085

MA_FBBFNT 4.0979e-05 1.8850e-04 185,576

1270

Systems, Man, and Cybernetics, vol. 25, no. 6, pages
963–970, 1995.

[20] J.R. Koza, “Genetic programming: a paradigm for
genetically breeding populations of computer programs
to solve problems”. Rapport technique, Stanford, CA,
USA, 1990.

[21] J-S. R. Jang and C-T. Sun. Neuro-fuzzy and soft
computing: a computational approach to learning and
machine intelligence. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1997.

[22] K.B Cho and B.H Wang. Radial basis function based
adaptive fuzzy systems and their applications to system
identification and prediction. Fuzzy Sets and Systems,
vol. 83, no. 3, pages 325–339, November 1996.

[23] K. K. Nikola, K. Jaesoo, J. W. Michael and R. G.
Andrew. FuNN/2 – A Fuzzy Neural Network
Architecture for Adaptive Learning and Knowledge
Acquisition. Information Sciences, vol. 101, no. 3-4,
pages 155–175, 1997.

[24] L. Glass and M. C. Mackey, “Pathological physiological
conditions resulting from instabilities in physiological
control systems”. Ann. NY. Acad. Sci, vol. 316, pages
214–235, 1979.

[25] L. Mengual, J. Bobadilla, G. Triviño. “A fuzzy
multi-agent system for secure remote control of a mobile
guard robot”, (2004) Lecture Notes in Artificial
Intelligence (Subseries of Lecture Notes in Computer
Science), 3034, pp. 44-53.

[26] M. Ammar, S. Bouaziz, Adel M. Alimi, “Hybrid
Harmony Search algorithm for Global
Optimization”. the Fifth World Congress on Nature and
Biologically Inspired Computing (NABIC) , pp. 69–75,
Fargo-USA, 12-14 August 2013.

[27] M.C.G. Quintero , J.A.O. Lopez, R.F.A. Bertel,
“Coordination mechanisms for a multi-agent robotic
system applied to search and target location”. IX Latin
American Robotics Symposium and IEEE Colombian
Conference on Automatic Control, 2011 IEEE, Oct.
2011, pp.1-6

[28] M. Masmoud, M. Same and Adel M. Alimi, “Beta
Neuro-Fuzzy Systems”. International Journal of
Electronics, vol. 87, no. 6, pages 675–682, 2000

[29] M. Njah, Adel M. Alimi and M. Chtourou, “A learning
algorithm for the Beta neuro-fuzzy network”. In Proc.
Int. Conf. Artificial and Computational Intelligence for
Decision, Control and Automation, pages 76–81,
Monastir, Tunisia, 2000.

[30] M. Wooldridge, An Introduction To Multi Agent
Systems. West Sussex, Willey, 2002.

[31] S. Bouaziz, H. Dhahri, Adel M. Alimi and A. Abraham,
“Evolving Flexible Beta Basis Function Neural Tree
Using Extended Genetic Programming & Hybrid
Artificial Bee Colony”, submitted in Applied Soft
Computing, December 2012.

[32] S. Bouaziz, H. Dhahri and Adel M. Alimi, “Evolving
flexible beta operator neural trees (FBONT) for time
series forecasting”, In Proceedings of the 19th
international conference on Neural Information

Processing - Volume PartIII, ICONIP’12, pages 17–24,
Berlin, Heidelberg, 2012. Springer-Verlag.

[33] S. Bouaziz, Adel M. Alimi and A. Abraham, “Extended
Immune Programming and Opposite-based PSO for
Evolving Flexible Beta Basis Function Neural
Tree”, IEEE International Conference on Cybernetics,
pp. 13 –18, Lausanne Switzerland, 13-15 June 2013.

[34] S. Bouaziz, H. Dhahri and Adel M. Alimi, “Evolving
Flexible Beta Basis Function Neural Tree for nonlinear
systems”, International Joint Conference on Neural
Networks, Dallas Texas, 4-9 August 2013.

[35] S. Bouaziz, H. Dhahri, Adel M. Alimi and A. Abraham,
“A Hybrid Learning Algorithm For Evolving Flexible
Beta Basis Function Neural Tree Model”,
Neurocomputing, vol. 117, pp. 107–117, 2013.

[36] S. Yilmaz and Y. Oysal. Fuzzy wavelet neural network
models for prediction and identification of dynamical
systems. IEEE Transactions on Neural Networks,vol. 21,
no. 10, pages 1599–1609, October 2010.

[37] W. Gerhard, “Multiagent systems: a modern approach to
distributed artificial intelligence”, 1999, The MIT Press
ISBN 0-262-23203-0

[38] Y. Chen, B. Yang, J. Dong and A. Abraham.
“Time-series forecasting using flexible neural tree
model”, Inf. Sci., vol. 174, no. 3-4, pages 219–235,
August 2005.

[39] Y. Jarraya, S. Bouaziz, Adel M. Alimi, A. Abraham, “A
Hybrid Computational Chemotaxis in Bacterial Foraging
Optimization Algorithm for Global Numerical
Optimization”, IEEE International Conference on
Cybernetics, Lausanne Switzerland, pp. 213 –218, 2013.

[40] Yong S. Choi, Suk I. Yoo and J. Lee. “Neural Network
Based Multi-agent Information Retrieval System”. Third
International Symposium, IDA-99 Amsterdam, The
Netherlands, August 9–11, 1999 Proceedings Volume
1642, 1999, pp 499-511.

1271

