
Toward Lightweight Transparent Data Middleware in Support of Document Stores

Kun Ma∗, Ajith Abraham† ‡
∗Shandong Provincial Key Laboratory of Network Based Intelligent Computing

University of Jinan, Jinan, China
ise mak@ujn.edu.cn

†Machine Intelligence Research Labs, Scientific Network for Innovation and Research Excellence, WA, USA
‡IT4Innovations, VSB-Technical University of Ostrava, Czech Republic

ajith.abraham@ieee.org

Abstract—With the advent of rapid increase in the size of
data in legacy applications, it is urgent to build efficient and
flexible data middleware that supports SQL to MapReduce
transformation. In this paper, we propose a data middleware
to translate the SQLs to the operations that the NoSQL can
understand using the MapReduce framework we design. This
middleware transforms the read and write SQL statements into
MapReduce jobs. In addition, a set of transformation rules is
discussed in detail. This middleware can significantly reduce
redundant computations and improve the performance of I/O
operations.

Keywords-MapReduce; big data; middleware; NoSQL;
Cloud Computing

I. INTRODUCTION

Traditional relational Database Management Systems
(RDBMSs) have been used for decades to store relational
data. However, it meets the I/O bottleneck issues in the case
of big data, especially for the query operation and full-text
searching [1]. To address this limitation, several systems
have already emerged to propose NoSQL, standing for ’non-
relational’ or ’Not only SQL’ [2]. It is often used as the
storage of the schema-free data to enhance the performance
of applications that exhibit a high read to write ratio.
Typically, document store (DS), is a kind of popular NoSQL
database [3]. It stores document-oriented data in the form of
BSON. Some examples of document stores are MongoDB
[4] as well as CouchDB [5].

Although NoSQL databases have some advantageous fea-
tures for specific applications, it is difficult to migrate the
legacy applications to support NoSQL. On one hand, it is
a huge project to make the legacy applications to support
NoSQL. On the other hand, it is impossible to discard the
RDBMS completely [6]. Therefore, an eclectic solution is
benefiting the application with the integration of RDBMS
and NoSQL. In this paper, we focus on this challenge to
design a lightweight data middleware to make the legacy
applications support document stores transparently.

MapReduce is a distributed programming model, which is
an associated implementation for processing and generating
big data [7]. First, a map function processes a key/value pair
to generate a set of intermediate key/value pairs. Second, a

reduce function merges all intermediate values associated
with the same intermediate key. The significance of this
model is that many real world tasks are expressible in this
model. In our paper, we consider the query and transaction
operation on the NoSQL as the MapReduce task. In order
to improve the performance of the NoSQL data middleware,
we design it using MapReduce frameworks.

The rest of the paper is organized as follows. The related
work is discussed in Section II. In Section III, we design
the architecture of lightweight transparent data middleware
in support of document stores. We introduce a SQL parser to
intercept the SQLs from the JDBC proxy, and send them to
the MapReduce framework to translate them into the oper-
ations that the NoSQL can understand. Moreover, the trans-
formation rules from SELECT/INSERT/UPDATE/DELETE
statements to the MapReduce tasks are discussed in detail.
Brief conclusions are outlined in the last section.

II. BACKGROUND AND RELATED WORK

A. Document Stores

Document stores, known as document-oriented database,
is one of the main categories of NoSQL databases. In
contrast to well-known RDBMS, these systems are designed
around an abstract notion of a document to eschew the tra-
ditional table-based relational database structure in favor of
JSON-like documents with dynamic schemas [3]. Although
documents inside a document-oriented database are similar
to the records in relational databases, they are not required
to adhere to a standard schema, known as schema-free. The
basic item of the document is the key/value pair in broader
terms.

There are some main features of the document store. First,
it supports effective search by field, range queries as well as
regular expression searches using indexing, especially in the
case of big data. Second, it can run over multiple servers,
balancing the load and/or duplicating data to keep the system
up and running in case of hardware failure. Third, it can be
used for batch processing of data and aggregation operations.



RDBMS

NoSQL

Legacy

application

write

write

read

(a)

RDBMS NoSQL

UDF

Log-based

listener

trigger

(b)

Figure 1. RDBMS first and NoSQL second.

B. MapReduce Framework

MapReduce is a programming model for parallel and
distributed computing, which was proposed by Google [7].
The model is inspired by the map and reduce functions
commonly used in functional programming, although their
purpose in the MapReduce framework is not the same as
their original forms. The process is divided into two steps:
map and reduce. Developers specify map functions which
take an input pair and produces a set of intermediate key/-
value pairs. The MapReduce library then groups together
all intermediate values associated with the same intermediate
keys, and passes them to the reduce functions which are also
specified by the programmers; The reduce function accepts
an intermediate key and a set of values for that key. It
merges together these values to form a possibly smaller set
of values. The intermediate values are supplied to the user’s
reduce function via an iterator. The programming model of
MapReduce framework is shown as follows:

• map: (k1, v1) → list(k2, v2). Map Function. Map
function takes an input key-value pair (k1, v1) and
produces a set of intermediate key-value pairs (k2, v2).

• reduce: (k2, list(v2)) → list(k3, v3). Reduce Function.
Reduce function merges the intermediate key-value
pairs (k2, list(v2)) together to produce a smaller set
of values list(v3).

C. Integration of RDBMS and NoSQL

Currently, there are two categories of methods to benefit
from both RDBMS and NoSQL. The first approach is
RDBMS first and NoSQL second. In this solution, the
legacy applications are rectified to write the data to the
RDBMS and NoSQL ate the same time. For the query
operation, we can obtain the data from the NoSQL. For
the transaction operation, we must write the copy to the
NoSQL. The architecture of this solution is shown in Figure
1(a). An improved solution is trigger-based rather than real-
time synchronization, which is shown in Figure 1(b). In
this solution, the user-defined function or log-based event
is designed to trigger the real-time synchronization. The
disadvantage is the performance impact on the RDBMS with
the mixture of RDBMS and NoSQL.

The second approach is NoSQL first and RDBMS second.
In this solution, the legacy applications are rectified to adapt
to NoSQL databases. The data are saved in the NoSQL

Data

warehouse

NoSQL

Full-text

searching

storage

RDBMS

Legacy

application

Figure 2. NoSQL first and RDBMS second.

directly. Next, the replication script will synchronize the
data to the RDBMS, data warehouse and full-text searching
storage. This solution is shown in Figure 2.

After evaluating the pros and cons of these two ap-
proaches, we decided to pursue the last solution. The
difference between the NoSQL first solution and ours is
that we design a lightweight transparent data middleware
to enable the feature of NoSQL without modifying the
legacy applications. In the rest of the paper, we introduce
the architecture of this middleware. The main difficulty to
construct the data middleware is how to convert the SQL-
like operations to the similar operations of NoSQL.

D. SQL to MapReduce

This drastic increase in the amount of data has led to the
development of extensive data processing middleware like
the relational SQL to schema-free query language transla-
tions. Currently, there are some translators in practice. Due
to the ever increasing size of data, the basic requirement of
this middleware is that it can process big data. The obvious
approach is parsing the SQL first, and translate it into the
corresponding language of NoSQL [8]. The drawback is
the inefficiency in case of big data. Another approach is
translating the SQL using MapReduce framework [9] [10].

The popularity of a hybrid system or middleware trans-
forming SQL to MapReduce jobs has increased due to the
emergence of big data in many data centric organizations.
We use MongoDB as the NoSQL storage, and intercept
all the SQLs from the JDBC and translate them into
the tasks of MapReduce. In this paper, we focus on the
translation of the query (select) and transaction operation
(insert/update/delete) statements. Currently, there are some
translator products. The first is Pig [11], which is developed
to support parallelization of data retrieval and analyzing
in the Cloud environment. Pig supports a simple language
called Pig Latin to support query formulations and data
manipulation, which is written using Java class libraries. The
second is Hive [12], which is developed by Facebook to add



SQL-like functions to MapReduce. It converts the SQL to
HiveQL of using Apache Hadoop. The third is Scope [13],
which is developed by Microsoft to generate a new scripting
language for managing and retrieving data from large data
repositories.

III. DATA MIDDLEWARE

A. Architecture

Figure 3. Architecture of NoSQL Data Middleware.

The typical architecture of lightweight transparent data
middleware in support of document stores is shown in Figure
3. The architecture is composed of five parts in order to
reduce the complexity. From the top to the bottom, they are
legacy application, JDBC proxy, select/insert/update/delete
parser, MapReduce framework, and document store respec-
tively.

We consider that the legacy application is developed
using Java language. We change the original JDBC con-
nection parameters to JDBC proxy, which intercepts the
SQL statements. Then the SQL parser forwards the SQLs
to MapReduce framework to translate them into the similar
operation that NoSQL can comprehend. Next we introduce
read/write to MapReduce modules, which are the cores of
the MapReduce framework we design.

B. Read to MapReduce

Figure 4 shows the transformation rules from SELECT
SQL statement to MapReduce operation on the document
store. As shown in Figure 4, the first rule is pulling di-
mension columns to the map function, reducing the size of
the working set. The aggregated functions (e.g. SUM and
COUNT) are translated into the operations in the reduce
functions, which is described in the second and third rules.
The fourth rule is changing the AVG aggregate function into
the record count waiting until finalization. The fifth rule is
changing query filters into the JSON-like queries. The sixth
rule enables the aggregate filtering applied to the result set.
The seventh rule is ascending or descending on the query
result.

C. Write to MapReduce

Figure 5. INSERT to MapReduce.

Figure 5 shows the transformation rules from INSERT
SQL statement to MapReduce operation on the document
store. The first rule is pulling dimension columns to the
operations in the map function. The second rule is translating
the row-based records into the documents in the reduce
function.

Figure 6 shows the transformation rules from UPDATE
SQL statement to MapReduce operation on the document
store. The first rule is pulling dimension columns to the
operations in the map function. In the reduce function, the
affected documents are saved in the NoSQL. The second
rule is changing query filters into the JSON-like queries.

Figure 7 shows the transformation rules from DELETE
SQL statement to MapReduce operation on the NoSQL.
The first rule is changing query filters into the JSON-like
queries. Within the reduce function, the affected documents
are deleted.



1

2

3

4

5

1

6

7

Figure 4. SELECT to MapReduce.

Figure 6. UPDATE to MapReduce.

IV. CONCLUSIONS

Execution of complex queries and transaction operations
with high efficiency and high performance is critically de-
sirable for big data legacy applications. In this scenario, the
legacy applications encounter the I/O bottleneck issues. Our
solution is that we propose a lightweight data middleware in
support of document stores, to translate the SQL statements
to the NoSQL operations using the MapReduce framework
we design transparently. This middleware will be integrated

Figure 7. DELETE to MapReduce.

with the other legacy applications without modifying the
source codes.

ACKNOWLEDGMENT

This work was supported by the Doctoral Fund of Univer-
sity of Jinan (XBS1237). Ajith Abraham acknowledges the
support from IT4Innovations Centre of Excellence project,
reg. no. CZ.1.05/1.1.00/02.0070 funded by Structural Funds
of the European Union and state budget of the Czech
Republic.

REFERENCES

[1] R. Cattell, “Scalable sql and nosql data stores,” ACM SIG-
MOD Record, vol. 39, no. 4, pp. 12–27, 2010.

[2] N. Leavitt, “Will nosql databases live up to their promise?”
IEEE Computer, vol. 43, no. 2, pp. 12–14, 2010.



[3] J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql
database,” in Proceedings of 6th International Conference on
Pervasive Computing and Applications, 2011, pp. 363–366.

[4] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and
L. Ramakrishnan, “Performance evaluation of a mongodb and
hadoop platform for scientific data analysis,” in Proceedings
of of the 4th ACM workshop on Scientific cloud computing,
2013, pp. 13–20.

[5] G. Manyama, M. A. Paytona, J. A. Rothc, L. V. Abruz-
zob, and K. R. Coombesa, “Relax with couchdb ł into the
non-relational dbms era of bioinformatics,” ACM SIGMOD
Record, vol. 100, no. 1, p. 1C7, 2012.

[6] S. Khatchadourian, M. Consens, and J. Simeon, “Web data
processing on the cloud,” in Proceedings of 35th SIGMOD
international conference on Management of data, 2009, pp.
165–178.

[7] R. Cattell, “Mapreduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[8] K. Ma, Z. Chen, A. Abraham, and R. Sun, “A transparent
data middleware in support of multi-tenancy,” in Proceedings
of of 7th International Conference on Next Generation Web
Services Practices, 2011, pp. 11–19.

[9] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang, “Ys-
mart: Yet another sql-to-mapreduce translator,” in Proceed-
ings of 2011 31st International Conference on Distributed
Computing Systems, 2011, pp. 25–36.

[10] N. Gowraj, P. V. Ravi, M. V, and M. R. Sumalatha, “S2mart:
Smart sql to map-reduce translators,” in Proceedings of 2013
15th Asia-Pacific Web Conference, 2013, pp. 571–582.

[11] Z. Zhang, L. Cherkasova, A. Vermam, and B. Loo, “Opti-
mizing completion time and resource provisioning of pig pro-
grams,” in Proceedings of 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2012, pp.
811–816.

[12] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy, “Hiveca petabyte
scale data warehouse using hadoop,” in Proceedings of 2010
IEEE 26th International Conference on Data Engineering,
2010, pp. 996–1005.

[13] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou, “Scope: Easy and efficient parallel
processing of massive data sets,” in Proceedings of the VLDB
Endowment, 2008, pp. 1265–1276.


