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Abstract: Security of computers and the networks that connect them is increasingly 

becoming of great significance. Computer security is defined as the protection of computing 

systems against threats to confidentiality, integrity, and availability. Due to the fact that it is 

almost difficult for a system administrator to recognize and manually intervene to stop an 

attack, there is an increasing recognition that Intrusion Detection Systems (IDS) should 

have a lot to earn on following its basic principles on the behavior of complex natural 

systems, namely in what refers to self-organization, allowing for a real distributed and 

collective perception of this phenomena. Having that aim in mind, the present work presents 

a self-organized ANT colony based Intrusion Detection System (ANTIDS) to detect 

intrusions in a network infrastructure. The performance is compared among conventional 

soft computing paradigms like Decision Trees (DT), Support Vector Machines (SVM) and 

Linear Genetic Programming (LGP) to model fast, online and efficient intrusion detection 

systems. 

1.  Introduction 

The process of monitoring the events occurring in a computer system or network 

and analyzing them for sign of intrusions is known as Intrusion detection. It is 

impossible in practice, and even if possible, extremely difficult and expensive, to 

write a completely secure system. Transition to such a system for use in the entire 

world would be an equally difficult task. An Intrusion Detection System (IDS) is a 

program that analyzes what happens or has happened during an execution and tries 

to find indications that the computer has been misused. An Intrusion detection 

system does not eliminate the use of preventive mechanism but it works as the last 

defensive mechanism in securing the system. Data mining approaches for intrusion 

detection were first implemented in mining audit data for automated models for 

intrusion detection [2]. On the other hand, and due to the fact that it is more and 

more improper for a system administrator to recognize and manually intervene to 

stop an attack (an option only possible in small scale networks) without harming 

too much the integrity of the overall system, there is an increasing recognition that 

ID systems should have a lot to earn on following its basic principles on the 



 

behavior of complex natural systems, namely in what refers to self-organization. 

Due to their nature, self-organizing complex adaptive systems typically are 

comprised of a large number of frequently similar components (e.g. agents) or 

events. Through their process, a pattern at the global-level of a system emerges 

solely from numerous interactions among the lower-level components [18][22]. 

Moreover, the rules specifying interactions among the system’s components are 

executed using only local information, without reference to the global pattern, 

which, as in many real world problems is not easily accessible or possible to be 

found. Stigmergy [21][20], a kind of indirect communication and learning by the 

environment found in social insects is a well know example of self-organization, 

providing not only vital clues in order to understand how the components can 

interact to produce a complex pattern, as can pinpoint simple biological non-linear 

rules and methods to achieve improved artificial intelligent adaptive categorization 

systems, critical for collective perception and recognition. In fact, their distributed 

bottom-up emergent nature, along with their massively implicit parallel properties 

and the fact that there is no need of a global top-down hierarchical supervisor, 

makes them ideal candidates for IDS and to be embedded on-line in complex large 

scale computer network infrastructures, where traditional security mechanisms 

demonstrate severe weaknesses. Some works have already been presented along 

these lines. Recently, Foukia et al [12] designed an IR (Intrusion Response) 

system cooperating with an IDS using mobile agents distributed throughout the 

network, based on stigmergic properties. In other works [7][10], detection was 

based on artificial immune systems [6] where ID agents map the functionalities of 

the natural immune system to distinguish between normal and abnormal events 

(respectively “self” and “non self” in the immune system). This paper introduces a 

self-organized ANT colony based Intrusion Detection System (ANTIDS) to detect 

intrusions and compares its performance with Linear Genetic Programming (LGP), 

Support Vector Machines (SVM) and Decision Trees (DT). The rest of the paper is 

organized as follows. The technical details of the ANT colony algorithm are 

presented in Section 2 followed by the importance of attribute or feature reduction 

and experiment results in Section 3. Some conclusions are also provided towards 

the end. 

2.  Bio-Inspired Self-Organized Ant-Based Clustering 

Data Mining is precisely one of those problems in which real ants can suggest very 

interesting heuristics for computer scientists [18], namely for clustering purposes. 

One of the first studies using the metaphor of ant colonies related to the above 

clustering domain is due to Deneubourg [5], where a population of ant-like agents 

randomly moving onto a 2D grid are allowed to move basic objects so as to cluster 

them. This method was then further generalized by Lumer and Faieta [16] (here 

after LF algorithm), applying it to exploratory data analysis, for the first time. 

However, the last work entitled “Exploratory Database Analysis via Self-

Organization”, according to [3], was never published due to commercial 

applications. More recently, Ramos et al. [20][21][22] presented a novel strategy 

(ACLUSTER) to tackle unsupervised clustering as well as data retrieval problems, 



 

avoiding not only short-term memory based strategies, as well as the use of several 

artificial ant types (using different speeds), present in those approaches proposed 

initially by Lumer [16]. Other works in this area include those by Monmarché et 

al. [17], Ramos, Merelo et al. [18][20][21][22], Handl and Dorigo [13], Ramos and 

Abraham [19]. 

2.1 Distributed, Collaborative and Stigmergic Clustering 

The swarm intelligence algorithm fully uses agents that stochastically move 

around the classification “habitat” following pheromone concentrations. That is, 

instead of trying to solve some disparities in the basic LF algorithm by adding 

different ant casts, short-term memories and behavioral switches, which are 

computationally intensive, representing simultaneously a potential and difficult 

complex parameter tuning, it was our intention to follow real ant-like behaviors as 

possible (some other features will be incorporated, as the use of different response 

thresholds to task-associated stimulus intensities, discussed later). In that sense, 

bio-inspired spatial transition probabilities are incorporated into the system, 

avoiding randomly moving agents, which tend the distributed algorithm to explore 

regions manifestly without interest (e.g., regions without any type of object 

clusters), being generally, this type of exploration, counterproductive and time 

consuming. Since this type of transition probabilities depend on the spatial 

distribution of pheromone across the environment, the behavior reproduced is also 

a stigmergic one [5][21]. Moreover, the strategy not only allows to guide ants to 

find clusters of objects in an adaptive way (if, by any reason, one cluster 

disappears, pheromone tends to evaporate on that location), as the use of embodied 

short-term memories is avoided (since this transition probabilities tends also to 

increase pheromone in specific locations, where more objects are present). As we 

shall see, the distribution of the pheromone represents the memory of the recent 

history of the swarm, and in a sense it contains information which the individual 

ants are unable to hold or transmit. There is no direct communication between the 

organisms but a type of indirect communication through the pheromonal field. In 

fact, ants are not allowed to have any memory and the individual’s spatial 

knowledge is restricted to local information about the whole colony pheromone 

density. In order to design this behavior, one simple model was adopted [4], and 

extended (as in [20][22]) due to specific constraints of the present proposal. As 

described in [7], the state of an individual ant can be expressed by its position r, 

and orientation θ. It is then sufficient to specify a transition probability from one 

place and orientation (r, θ) to the next (r*, θ*) an instant later. The response 

function can effectively be translated into a two-parameter transition rule between 

the cells by use of a pheromone weighting function (Eq. 1).  

 
This equation measures the relative probabilities of moving to a cite r (in our 

context, to a grid location) with pheromone density σ(r). The parameter β is 

associated with the osmotropotaxic sensitivity (a kind of instantaneous pheromonal 

gradient following), and on the other hand, 1/δ is the sensory capacity, which 



 

describes the fact that each ant’s ability to sense pheromone decreases somewhat 

at high concentrations. In addition to the former equation, there is a weighting 

factor w(∆θ), where ∆θ is the change in direction at each time step, i.e. measures 

the magnitude of the difference in orientation. As an additional condition, each 

individual leaves a constant amount η of pheromone at the cell in which it is 

located at every time step t. This pheromone decays at each time step at a rate k. 

Then, the normalised transition probabilities on the lattice to go from cell k to cell i 

are given by Pik [4] (Eq. 2), where the notation j/k indicates the sum over all the 

pixels j which are in the local neighborhood of k. Finally, ∆i measures the 

magnitude of the difference in orientation for the previous direction at time t-1. 

2.2 Picking and Dropping Data Objects 

In order to model the behavior of ants associated to different tasks, as dropping 

and picking up objects, other works [20] suggest the use of combinations of 

different response thresholds. As we have seen before, there are two major factors 

that should influence any local action taken by the ant-like agent: the number of 

objects in his neighborhood, and their similarity (including the hypothetical object 

carried by one ant). Lumer and Faieta [16], use an average similarity, mixing 

distances between objects with their number, incorporating it simultaneously into a 

response threshold function. Instead, we recommend the use of combinations of 

two independent response threshold functions, each associated with a different 

environmental factor (or, stimuli intensity), that is, the number of objects in the 

area, and their similarity. Moreover, the computation of average similarities are 

avoided in the present algorithm, since this strategy can be somehow blind to the 

number of objects present in one specific neighborhood. In fact, in Lumer and 

Faieta’s work [16], there is an hypothetical chance of having the same average 

similarity value, respectively having one or, more objects present in that region. 

But, experimental evidences and observation in some types of ant colonies can 

provide us with a different answer. After Wilson (The Insect Societies, Cambridge 

Press, 1971), it is known that minors and majors in the polymorphic species of ants 

Genus Pheidole, have different response thresholds to task-associated stimulus 

intensities (i.e., division of labor). Recently, and inspired by this experimental 

evidence, Bonabeau et al. [3], proposed a family of response threshold functions in 

order to model this behavior. According to it, every individual has a response 

threshold θ for every task. Individuals engage in task performance when the level 

of the task-associated stimuli s, exceeds their thresholds. Author’s defined s as the 

intensity of a stimulus associated with a particular task, i.e. s can be a number of 

encounters, a chemical concentration, or any quantitative cue sensed by 

individuals. One family of response functions Tθ (s) (the probability of performing 

the task as a function of stimulus intensity s), that satisfy this requirement is given 

by (Eq. 3) [3], where n>1 determines the steepness of the threshold (normally n=2, 

but similar results can be obtained with other values of n>1). Now, at s = θ, this 

probability is exactly ½. Therefore, individuals with a lower value of θ are likely 

to respond to a lower level of stimulus. In order to take account on the number of 

objects present in one neighborhood, Eq. 13, was used (where, n now stands for 

the number of objects present in one neighborhood, and θ = 5), defining χ (Eq. 4) 



 

as the response threshold associated to the number of items present in a 3 x 3 

region around r (one specific grid location). 

 
Now, in order to take account on the hypothetical similarity between objects, and 

in each ant action due to this factor, a Euclidean normalized distance d is 

computed within all the pairs of objects present in that 3 x 3 region around r. 

Being a and b, a pair of objects, and fa(i), fb(i) their respective feature vectors 

(being each object defined by F features), then d = (1/dmax).[(1/F).Σi=1,F(fa(i)-

fb(i))
2
]

½
. Clearly, this distance d reaches its maximum (=1, since d is normalized by 

dmax) when two objects are maximally different, and d=0 when they are equally 

defined by the same F features. Moreover, δ and ε (Eqs. 5,6), are respectively 

defined as the response threshold functions associated to the similarity of objects, 

in case of dropping an object (Eq. 5), and picking it up (Eq. 6), at site r. Finally, in 

every action taken by an agent, and in order to deal, and represent different 

stimulus intensities (number of items and their similarity), present at each site in 

the environment visited by one ant, the strategy uses a composition of the above 

defined response threshold functions (Eqs. 4,5 and 6). Several composed 

probabilities were analyzed [20] and used as test functions in one preliminary test. 

The best results were achieved with the test function #1 (Eqs. 7,8), achieving a 

high classification rate (out of 4 different functions were used, as well the LF 

algorithm [16]; for comparison reasons – see [20][21]). Alternatively, the system 

can also be robust feeding the data continuously as proved in past works [19].  

3.  Attribute Deduction, Experiment Setup and Results 

Complex relationships exist between features, which are difficult for humans to 

discover. IDS must therefore reduce the amount of data to be processed. This is 

very important if real-time detection is desired [14]. In this research, feature 

selection is done based on the contribution the input variables made to the 

construction of the decision tree. Feature importance is determined by the role of 

each input variable either as a main splitter or as a surrogate. Surrogate splitters are 

defined as back-up rules that closely mimic the action of primary splitting rules.  

Attack types fall into four main categories: DoS: Denial of Service ,  R2L: 

Unauthorized Access from a Remote Machine; U2R: Unauthorized Access to 

Local Super User (root) and  Probing. Our experiments had three conventional 

phases namely input feature reduction, training phase and testing phase for DT, 

SVM and LGP. The 41 features are labeled in order as A, B, C, D, E, F, G, H, I, J, 

K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, AA, AB, AC, AD, AF, AG, AH, AI, 



 

AJ, AK, AL, AM, AN, AO and the class label is named as AP.  This data set has five 

different classes namely Normal, DoS, R2L, U2R and Probes. The training and test 

comprises of 5092 and 6890 records respectively [15]. All the training data were 

scaled to (0-1). The decision tree approach helped to reduce the 12 variable data 

set with C, E, F, L, W, X, Y, AB, AE, AF, AG and AI as variables [14]. Using the 

original and reduced data sets, we performed a 5-class classification. The normal 

data belongs to class 1, probe belongs to class 2, denial of service belongs to class 

3, user to super user belongs to class 4, remote to local belongs to class 5. The 

ANTIDS experimental setup took however a different path, since the algorithm’s 

underneath principle is based on an unsupervised process.  

 
Figure 1 (a - b).  Ant-like clustering using the full data set (with 41 features) and 

(c- d) the reduced data set (12 features), at t=1and t=1x106. For the purpose of 

reader transparency, in all diagrams class 1 to 5 was respectively represented by ■, 

□, ○, ●, and finally by + (training samples in blue; testing samples in black). 

In our case, each object (each ID sample) manipulated by the artificial ant colony 

is represent by a feature vector composed of 41 elements or 12 elements, 

depending if we instead use the reduced data set . Based on self-organizing these 

objects in a non-parametrical toroidal 2-D space, the unsupervised clustering 

proceeds for t = 1 x 106 time steps. After the unsupervised and self-organized 



 

clustering process is finished (Fig. 1) - with 11982 samples x 41 (12) features each 

–, the first 5092 samples are used as markers or reference points (blue markers in 

Fig. 1), and via k-NNR nearest neighbor rule classification [11,13] the remaining 

6890 samples (black markers in Fig. 1) are classified (we used k = 3 neighbors; k 

must be always an odd number). In order to do so, for each sample i = 6890, 

…,11982, we computed their first k = 3 marker neighbors on this non-parametric 

toroidal 2-D space. An algorithm to find the first k neighbors in a toroidal space 

can however be largely tricky. Our idea was to use 8 virtual spaces (windows) 

around the one we see in Fig. 1, copying to each one of them, all the respective 

reference markers to be used in the normal k-NNR and finally computing the 

geographical vicinity in this large virtual space for each one of the testing samples 

only present in the central window. The majority of those marker label values, 

considered for each still unclassified sample, give them the respective final 

classification result. Two experiment setups were then tested and the results are 

depicted in Tables 1 and 2.  

 
Figure 2. Random allocation of marker items into specified zones. 

The first one (ANTIDS-a) used self-organization in order to cluster all the 11982 

samples at once (5092 training + 6890 testing samples). In ANTIDS-b, however, 

we process and treat parts and streams of data independently, set after set. In this 

framework, we use always the full markers set (5092 training samples) plus only a 



 

part of the testing set (1000 samples each time). That is, we had to make six runs 

with 1000 testing samples and the 7
th

 final one with 890 testing samples. For any 

of these cases, the final self- organized stigmergic map [21] achieved is highly 

robust. If for example, we use k = 1 in the final k-NNR classification, which 

normally is not prudent, we also arrive at similar recognition rates.  

 
Table 1. Performance comparison using full data set 

 
Table 2. Performance comparison using reduced data set 

Other experiments included the initial random allocation of marker items into 

specified zones (Figure 2). In a) marker samples (training data set for the 

subsequent k-NNR classification; in blue) are randomly allocated in 5 box zones 

corresponding to samples from class 1 to 5 (class 1 in the bottom-left corner; other 

classes distributed clockwise), while testing samples are allocated everywhere in 

this toroidal classification space. These marker samples, however, can now be 

translated to new places if any ant-like agent wishes to do so, in order to proceed 

the unsupervised clustering. In c) marker samples are randomly allocated into 10 

vertical stripes (2 for each class). In b-d) corresponding results at t=10000. Both 

strategies however, leaded to meager recognition rates in the interval [40-72%], for 

each class, after finally using k-NNR (k=1,3). 

4. Conclusions 

As depicted in Tables 1 and 2, ANTIDS approach has several limitations in what 

refers to the final recognition rate, obtaining optimal results only for some cases. 

This is in part due to several reasons. First, the large number of samples used in 

the present study forces ACLUSTER algorithm to be run on a large toroidal space. 



 

Empirical studies [21][22] show that the optimal classification “habitat” area 

should be in the order of 4 times the number of objects, while the number of ants 

should be in the order of 1/10 of the number of objects. Rather, it’s by large 

preferably to process and treat parts and streams of data independently, set after set 

(check ANTIDS-b results). Second, and still in the present case, the data is poorly 

uniformly distributed between all the five classes. In fact, while some classes like 

class 3 (DOS) are represented by a sum of 3000 training and 4200 testing samples, 

a total of 7200 items (around 60% of our entire data set), other classes like class 4 

(U2R) are merely represented by a sum of 27 training and 25 testing samples, a 

total of 52 items (0.4% of our entire data set). In fact, the probability of one ant to 

encounter a class 3 sample in the toroidal classification space, process and treat it, 

is 120 times bigger than to find one from class 4. This fact per se, can bias a lot 

our final results, since any self-organizing mechanism depends a lot on a self-

sufficient critical mass. However, the self-organizing ID system has 4 major 

advantages in what refers to a comparison to their counterpart paradigms (DT, 

SVM, LGP), namely: (1) Classification can be processed online and in real time 

due to their distributed nature, as proved before with swarms nourished with 

continuous streams of data [19]. (2) ANTIDS can deal with new classes whenever 

it’s needed without the need of retraining. In fact, stigmergy is often associated 

with flexibility: when the environment changes because of an external 

perturbation, the insects respond appropriately to that perturbation, as if it were a 

modification of the environment caused by the colony’s activities. In other words, 

the colony can collectively respond to the perturbation with individuals exhibiting 

the same behavior. When it comes to artificial agents, this type of flexibility is 

priceless: it means that the agents can respond to a perturbation without being 

reprogrammed to deal with that particular instability. (3) ANTIDS algorithm can 

work either in unsupervised or supervised mode (adding the final k-NNR 

classification and using training samples as markers), and finally (4) The self-

organizing nature of ANTIDS makes them an ideal candidate for distributed IDS. 
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