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Abstract
For any classification problem, the dimension of the feature vector used for classification has great importance. This is

because, in a high-dimensional feature vector, it is found that some are non-informative or even redundant as they do not

contribute to the learning process of the classifier. Rather, they may be the reason for low classification accuracy and high

training time of the learning model. To address this issue, researchers apply various feature selection (FS) methods as

found in the literature. In recent years, meta-heuristic algorithms have been proven to be effective in solving FS problems.

The Coral Reefs Optimizer (CRO) which is a cellular type evolutionary algorithms has good tuning between its exploration

and exploitation ability. This has motivated us to present an improved version of CRO with the inclusion of adaptive b-hill
climbing to increase the exploitation ability of CRO. The proposed method is assessed on 18 standard UCI-datasets by

means of three distinct classifiers, KNN, Random Forest and Naive Bayes classifiers. It is also analyzed with 10 state-of-

the-art meta-heuristics FS procedure, and the outputs show an excellent performance of the proposed FS method reaching

better results than the previous methods considered here for comparison. The source code of this work is publicly available

at https://github.com/ahmed-shameem/Projects.

Keywords Meta-heuristic � Feature selection � UCI � Coral reefs optimization � Adaptive b-hill climbing �
Hybrid optimization

1 Introduction

With the rapid advancement in the domain of computer and

technology, the amount of data to be dealt with is

increasing exponentially in almost every field that includes

financial analysis, business management, social networks,

medical studies, combinatorial chemistry, image process-

ing and so on [5, 7, 8, 21, 29, 66], etc. But for retrieving

useful information from high dimensional datasets,

researchers face some challenges. Firstly, processing high

dimensional datasets requires huge computation power.

Secondly and most importantly, often these data-sets con-

tain many redundant or irrelevant information or attributes,

which cause overfitting problem of the learning algorithms

[59]. As a result, learning algorithms may not perform as

desired. In such cases, feature selection (FS) [34] plays an

important role as a pre-processing step which is used to

eliminate the possible non-informative and irrelevant fea-

tures from the original datasets (here considered as feature
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Córdoba, Spain

3 Machine Intelligence Research Labs, Auburn, WA, USA

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-020-05409-1(0123456789().,-volV)(0123456789().,- volV)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



vector) [28]. In other words, FS is a process of choosing the

most informative subset of features to be employed for

model building in the categorization of the data under

consideration. This also helps in decreasing the computa-

tional time requirement, and increasing the classification

accuracy of that machine learning or data mining algorithm

in consideration, and reduces storage space requirement

[15, 18].

We can divide FS methods into two different categories

based on evaluation criteria of features—filter and wrapper.

Filter methods [32, 38] evaluate features based on some

predefined criteria. Some examples are Symmetrical

Uncertainty [40], Mutual Information [43], Chi-square

[69], Laplacian Score [36], etc. Filter methods do not

employ a learning algorithm. In contrast, wrapper methods

[35] utilize learning algorithms (i.e., classifiers) to evaluate

features and thereby selecting the optimal feature subset

[49]. Due to the requirement of the learner in the latter

method, the computational cost is greater than the filter

method. But, generally, the wrapper methods provide better

results than filter methods [31].

In recent times, meta-heuristic algorithms are quite

common for solving optimization problems of different

types due to their non-derivative nature, flexibility, and

their ability to avoid local optima [51]. Two main aspects

of a meta-heuristic algorithm are [16]: exploration and

exploitation. Exploration guarantees the algorithm to

achieve different favorable areas of the search space (i.e.,

global search) for a given problem, whereas exploitation

guarantees the exploring of optimal individuals within the

given area (i.e., local search). The fine-tuning between

these components decide the goodness of an algorithm. It is

tough to compensate these elements due to their stochastic

properties.

Genetic algorithm (GA) [45] and Particle swarm opti-

mization (PSO) [41] are the oldest and most famous meta-

heuristic algorithms. GA is based on the idea of the Dar-

winian theory of evolution. GA uses crossover and muta-

tion operators to produce better solutions. PSO is a swarm-

based algorithm that simulates the functioning of birds

flying together in flocks searching for food. In [52], a local

search is applied to improve the search capability of GA. In

the work stated in [31], GA is employed for FS on

Microarray datasets. In [46], binary version of PSO is

proposed. In [14], binary PSO is used for FS on Sonar and

Iris datasets. In [39], GA and PSO are hybridized and

applied for FS on digital mammogram datasets. In the work

reported in [27], hybrid of GA and PSO is used for FS on

Indian Pines hyperspectral dataset. Simulated annealing

(SA) [42] is proposed following the annealing procedure,

i.e., heating and then controlled cooling to increase the

strength of metals. Gravitational search algorithm (GSA)

[54] utilizes Newton’s law of gravitation between masses

and their interaction to update the positions toward the

optimal point. PSO and GSA have been hybridized in [44].

Social mimic optimizer (SMO) [13] is proposed by

following the human nature of mimicking more successful

humans, and applied for FS [30] on 18 standard UCI

datasets, with a novel X-shaped transfer function. Follow-

ing the mating procedure of barnacles, Barnacles mating

optimization (BMO) algorithm [58] is proposed. Atom

search optimization (ASO) [68] is proposed which is

inspired by the movement of atom following Lennard–

Jones (L–J) potential and applied for FS on 22 standard

UCI datasets in the work reported in [62]. Butterfly opti-

mization algorithm (BOA) [12] is proposed by mimicking

the food searching and mating behavior of butterflies. In

the work reported in [11], the authors have proposed binary

version of BOA and applied for FS on 21 UCI datasets.

Based on the ‘inspiration’ point of view, classification of

the meta-heuristic algorithms is depicted in Fig. 1.

Therefore, the presence of numerous meta-heuristic FS

algorithms in the literature questions the need for another

meta-heuristic FS method. However, No Free Lunch [65]

theorem states that a single meta-heuristic algorithm cannot

solve every optimization problem present. As FS is con-

sidered to be an optimization problem [49], hence, the

research in this field is still ongoing, which is the inspira-

tion of our present work where we have proposed a hybrid

meta-heuristic FS method based on coral reefs optimization

(CRO) [55]. CRO artificially replicates the natural behavior

in the coral reefs. This way, each coral that made up the

reef is considered as candidate solution to the optimization

problem of our interest. In this ecosystem, each coral grows

up and reproduces by means of sexual and asexual opera-

tions, battling with each other for being allocated in the

coral reef. This battle for survival and reproduction char-

acteristics have given researchers to come up with a robust

meta-heuristic algorithm. In the past, CRO has been

applied on many benchmark problems (both continuous

and discrete), as well as in different areas and fields. These

experiments produce promising results. Work reported in

[17] utilizes CRO for environmental protection fields,

emission reduction and cost reduction, etc. In the work

reported in [56], the authors have applied CRO with the

operators of Harmony search algorithm [26] and is used in

short-term wind speed prediction for obtaining optimal

meteorological variables which are used as input to a

Extreme Learning Machine (ELM) network. The work

reported in [57] proposes an improved version of CRO

which is utilized for large scale continuous optimization.

The work reported in [50] has used CRO for solving

clustering problems. A modified version of CRO is pro-

posed in [67] by hybridized with SA and applied for FS for

high dimensional medical datasets. CRO has been

deployed to solve unequal area facility layout problem in
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[22–25]. The CRO algorithm is a cellular type evolutionary

scheme [4], which denotes that it can be implemented as a

fully parallel program in a group of microprocessors. As

CRO utilizes operators whose ideas are embraced from

evolutionary computation and SA, hence it has a good

trade-off between its exploration and exploitation capa-

bilities. These facts have motivated us to explore its

effectiveness in the FS domain by enhancing its exploita-

tion ability.

The present work proposes a binary version of a hybrid

of CRO, known as AbCRO, with another lately suggested

meta-heuristic algorithm, namely Adaptive b-hill climbing

(AbHC) [2]. AbHC is previously evaluated against 23

global optimization functions to prove its efficiency. It has

also been used for FS along with Sailfish optimizer [28].

For hybridizing meta-heuristic algorithms, generally,

two different approaches are followed [61]: high-level and

low-level. In the high-level hybridization, the meta-

heuristics are executed in sequence, one after another. In

the low-level hybridization, a function or sub-procedure in

a meta-heuristic is interchanged by another meta-heuristic

or its sub-procedure. We have followed the high-level

approach to hybridize CRO and AbHC, following a pipe-

line model, where the output of one meta-heuristic opti-

mization algorithm is considered as the input of another

optimization algorithm.

To the best of our knowledge, this is the first time CRO

is hybridized with AbHC algorithm for finding optimal

solution for FS problem. In short, the main offering of this

research are as follows:

• A new FS method, namely AbCRO is proposed by

hybridizing CRO and recently proposed AbHC.
• 18 standard UCI datasets [19] are used to evaluate the

proposed AbCRO by means of K-nearest Neighbors

(KNN), Naive Bayes and Random Forest classifiers.

• The suggested FS method, AbCRO is analyzed against

10 state-of-the-art meta-heuristic and hybrid meta-

heuristic FS methods.

The remainder of this paper is structured as follows:

Sect. 2 provides a brief overview of CRO and AbHC
algorithms. Section 3 provides a detailed description of the

proposed FS method. The experimentation performed to

validate the proposed method is reported in Sect. 4.

Additionally, this section display the achieved results

obtained by our novel approach and discuss them com-

paring with other state-of-the-art solutions. In Sect. 5, the

proposed AbCRO is compared w.r.t. the achieved classi-

fication accuracies and selected number of features, against

10 state-of-the-art meta-heuristic and hybrid meta-heuristic

FS methods. At the end, Sect. 7 closes this article, debates

its limitations and offers a promising future extension of

this research.

2 Pre-requisites

2.1 Coral reefs optimization: an overview

CRO [55] is inspired by the fight for survival phenomenon

of corals. This algorithm mainly has two stages, reef for-

mation and coral reproduction.

In the reef formation stage, the algorithm is initialized

by considering a model of reefs consisting of X � Y square

grids. Each such square is meant to allocate a coral. A

square is uniquely identified as its position (m, n), where

‘m’ denotes the row number and ‘n’ denotes the column

number. We start by assigning some squares in the grid to

be occupied by corals randomly. The others are left empty,

for new corals to freely settle and grow in the later stages.

There is a ratio between the occupied and unoccupied

reefs, ji 2 (0,1), which is an important parameter for CRO.

GA [48]
BMO [64]
CRO [61]

Black widow optimization [37]

PSO [44]
Whale optimization

algorithm [50]
Grey wolf
optimizer [55]

Ant lion optimizer [54]

GSA [60]
ASO [74]
SA [45]

Equilibrium
Optimizer[21]

SMO [13]
League championship

algorithm [43]
Poor and rich

optimization [57]
Volleyball premier

league algorithm [56]

Biology
based

Swarm
inspired

Physics
based

Human
inspired

Meta-
heuristics

Fig. 1 A general classification

of meta-heuristic optimization

algorithms based on their source

of ‘inspiration’
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The next phase of reef formation is completed by different

reproduction operators and involves the settling of new

larvae in the reef. Each stage of CRO produces a coral reef

larva, which is associated with a fitness value. The reef

larvae with better fitness value survive longer, while the

other gets perished eventually, to ensure better solutions in

population.

CRO executes the stages of reproduction iteratively until

the terminating condition is met. The next phase of the

algorithm consists of four sub-phases: sexual reproduction

(external and internal), larvae settling, asexual reproduc-

tion, and depredation in polyp stage.

• Sexual Reproduction

• Broadcast Spawning (External Sexual Reproduc-

tion) In this sub-phase, a part of the population is

selected randomly, let’s say F b fraction of existing

coral, out of which, corals are selected at random in

pairs for sexual crossover. The coral larvae so

produced are then released in water.

• Brooding (Internal Sexual Reproduction) (1�F b)

fraction of the total population is selected at every

step. The new offspring are produced by random

mutation of the existing corals. These offspring are

also released in water following the similar fashion

as broadcast spawning.

• Larvae settling After the formation of offspring by

broadcast spawning and brooding, they try to settle into

the reefs. For this purpose, their strength is computed by

a suitable fitness function. If any reef is already

occupied beforehand then the new larva can only settle

there if its fitness value is better than the already

occupying coral. Each larva is given a number of

chances to settle, after a unsuccessful attempts the larva

is depredated. If the reef is empty, the new larva settles

there irrespective of its fitness value.

• Asexual reproduction Corals perform asexual repro-

duction by budding or fragmentation. The population is

sorted according to their fitness values, out of which

certain fraction, F a is selected to duplicate itself in

order to perform asexual reproduction.

• Depredation At each step, a small fraction of the coral

population gets depredated by other corals based on

their fitness value, thus liberating space for the new

corals to settle there. This operator is employed with

minimal probability, Pd and only to a fraction F d of the

worst fitness.

For the sake of our convenience, we can use F d = F a or

F d þF d � 1 as the relation between F d and F s. Algo-

rithm 1 presents the pseudocode of CRO algorithm.

Algorithm 1 Pseudo-code of CRO algorithm
Input: Problem dependent information (the fitness function, R, Rp, L, X × Y) Output: The
best coral
1: Initialize R, Rp and parameter values (Fb, Fa, Pd, Fd, α, κi)
2: Calculate fitness value of each coral using Equation (1)
3: while Stopping criterion is not met do
4: Perform sexual crossover operator using broadcast spawning
5: for Couples of broadcast spawning corals P1 and P2 do
6: P1 + P2 −→ O1 + O2
7: end for
8: Perform sexual crossover using brooding
9: for Each brooding coral P do
10: P −→ O
11: end for
12: Settle new larvae (as per the fitness values)
13: Perform asexual reproduction using budding
14: for Each coral which would perform budding do
15: Pb −→ Pb

16: end for
17: Perform coral depredation
18: Compute the fitness value of each coral
19: Obtain the current optimal solution with best fitness
20: end while
21: Return the best coral
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2.2 Adaptive b-hill climbing: an overview

AbHC [2] is an actually proposed meta-heuristic algorithm,

an adaptive version of the bHC [1], which, in turn, is an

enhanced version of the popular hill climbing (HC) algo-

rithm. HC is a quite simple local search algorithm. But its

main drawback is, more often than not it gets stuck in local

optima, and consequently fails to reach global optima. bHC
is proposed to overcome this problem. However, in bHC,
parameter tuning is quite an issue and it requires exhaustive

experiments for each of the problems in consideration. To

avoid these exhaustive experiments to set the optimal

values of parameters, an adaptive version, namely AbHC is

proposed.

Given a particular solution X ¼ ðx1; x2; . . .; xDÞ, AbHC
iteratively computes an improved solution X00 ¼
ðx001; x002 ; . . .; x00DÞ by using its two operators: N -operator

(Neighborhood operator) and b-operator. The pseudo-code

of this AbHC is given in Algorithm 2.

3 Proposed work

In this section, we describe the binary encoding version of

CRO, for solving the problem of FS. Then we discuss the

fitness function used in this work. Finally, the underlying

steps of the proposed AbCRO used for FS are described.

3.1 The encoding scheme

We denote the reef as R, consisting of X � Y square grids.

We denote each grid uniquely by denoting it as (m, n),

where m represents the row number and n represents the

column number. The grids which are occupied by corals

are set to 1, and the empty grids as 0. In Fig. 2a, every

occupied square Rmn in R represents a coral larva of the

coral population Rmn. Figure 2b shows the initial popula-

tion Rp containing X � Y � ji larvae. Each coral larva is

represented as a binary vector of length L. This vector

contains a series of 0s and 1s representing the feature

subset, where 1 means that feature is selected and 0 means

it is not. For example, theR11 inR is represented asR11 in

Rp. We have represented different corals in R with dif-

ferent shades and colors. A binary individual in Rp rep-

resents a potential solution, i.e., a feature subset. Each Rmn

in Rp has several features denoted by F ¼ ðf1; f2; . . .; fDÞ,
where D is the total number of features whose values are

set to be 1 if selected and 0 if not selected, which is

accomplished randomly.

3.2 Fitness function

The main objective of any FS method to minimize the

number of features and maximize the classification accu-

racy of a classification problem when this feature subset is

used [53]. Here we apply AbCRO to find the best feature

subset and calculate the accuracy of this subset with KNN,

Naive Bayes and Random Forest classifiers. Let A be the

accuracy of the model calculated using a classifier, d be the

number of selected features and D be the total number of

features present in the original dataset. Hence, (1�A)

represents the classification error and d
D represents the

Algorithm 2 Pseudo-code of adaptive β-hill climbing algorithm
Input: X = (x1, x2, ..., xD)
Output: X = (x1, x2, ..., xD) (improved)
1: Initialize βmin, βmax, K, tmax

2: for t = 1, 2, . . . , tmax do
3: X′ := X

4: Ct =
(

t
tmax

) 1
K

5: Nt = 1 − Ct

6: RandIndex ∈ (1, D)
7: X′

RandIndex := X′
RandIndex ± Nt

8: X′′ := X′
9: βt = βmin + t × βmax−βmin

tmax

10: for i = 1, . . . , D do
11: if random(0, 1) < βt then
12: X′′[i] := random(LBi, UBi)
13: end if
14: end for
15: if fitness(X′′) ≤ fitness(X) then
16: X := X′′
17: end if
18: end for
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fraction of features selected from the original feature set.

We define the fitness function as:

# Fitness ¼ x � ð1�AÞ þ ð1� xÞ � dD
ð1Þ

where x 2 ½0; 1� denotes weightage given to the classifi-

cation error.

Our objective is to minimize the value of fitness func-

tion, as we try to reduce the classification error as well as

the number of selected features. For each feature subset, we

calculate the fitness value and decide which is better

depending on whose fitness value is lower. In our case, we

emphasize on selecting the minimum number of features

along with reducing the error of our model and hence x =

0.9 is used.

3.3 AbCRO: the proposed method

In the proposed method, a coral larva exemplify a solution,

which is settled by competing with other corals for growth

space. Here, AbHC is used to escape local optima. The

proposed method, AbCRO is established by combining the

benefits of global search algorithm CRO and local search

of AbHS to find the optimal feature subset. The steps used

in the proposed method are given as follows:

• Initialization In this stage, we initialize the reef R and

the coral population Rp randomly. For FS, each entry is

initialized with binary value, i.e., 0 or 1. ji is set to 0.6.

This stage tells us which squares are empty and which

features are selected or rejected.

• Broadcast spawning We implement the broadcast

spawning using the two-point crossover [60]. We select

two parents P1 and P2 randomly for external sexual

reproduction to produce two offspring O1 and O2.

Illustration of this step is provided in Fig. 3.

• Brooding To perform brooding, we select a parent P
randomly to produce an offspring O through random

mutation. The idea is to select some positions of the

parent and invert them to produce the new offspring.

The method is illustrated in Fig. 4.

• Larvae settling To settle on the reefs, a larva gets a
number of chances. After a number of unsuccessful

attempts, we eliminate it from the population consid-

ering it as not fit enough to survive. If any position in

the reef is already filled by another larva, to settle a new

larva there, we compare their fitness values. The fitter

one settles there and the other one gets perished. If the

position is empty, we allow the larva to settle there

without considering its fitness value.

• Budding or fragmentation Budding is a process where

the parent Pb produces buds from its body to produce

new offspring, which are genetically similar to their

parent. In fragmentation, the parent’s body gets divided

into pieces to produce genetically similar offspring. We

achieve this by selecting a certain ratio of the coral

population having the best fitness values and then

replicate them.

• Depredation In every step, we eliminate a certain

portion of the coral population based on the fitness

value to make room for new and better offspring. For

our case, we use F d as 0.1.

• Fitness evaluation To evaluate and compare the effec-

tiveness of a solution, we determine the fitness value

using Eq. (1). This value gives us the insight to decide

which feature subset to be considered as the optimal

one.

• Update solutions Every potential solution is updated

using AbHC. AbHC tries to find a neighbor with better

fitness value than the current solution has (Fig. 5).

4 Experimentation and discussion

We have used three classifiers, KNN [6], Naive Bayes and

Random Forest, to calculate the classification accuracies

with the feature subset selected by the proposed FS model.

As per the recommendations provided in [20, 48, 49], we

divided the datasets into two parts: training and testing.

80% of the dataset is employed in order to train the

R)(a) REEF( (b) Coral Population (Rp)

Fig. 2 Representation of a reef

and a population considered in

CRO based FS method
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classification model, and the rest 20% for testing purpose.

The suggested FS model is implemented by means of

Python3 [63] and graphs are plotted employing Matplotlib

[37].

4.1 Dataset definition

In order to inspect the performances of CRO and AbCRO,
18 standard UCI datasets [19] are used. The datasets are

chosen from varied domains [9, 10].

As the datasets used here are divergent in terms of the

number of features and instances, so it helps us to under-

stand the firmness of the suggested FS method. We have

summarized the datasets below. For quick reference, we

can have a look at Table 1.

4.2 Software

The conducted experiments are executed on a system with

8th Gen, i5 processor having 4 GB RAM. Each dataset are

run 15 times and the best result is taken for further

experiments. The execution time in seconds for each

dataset using CRO and AbCRO for a single run is provided

in Table 2.

4.3 Tuning parameters

It is to be noted that for a multi-agent evolutionary algo-

rithm, two parameters are very important which are pop-

ulation size or search agents and the maximum number of

iterations applied to execute the algorithm. Population size

reflects how a single agent gets the chance to learn from the

other agents present in the population. On the other hand,

the maximum number of iterations is used to terminate the

evolutionary algorithm. In order to determine proper values

for these parameters, experiments have been carried out by

varying one parameter w.r.t. the other.

Figure 6 displays the impact of the population size on

the classification accuracy of a classifier by means of the

suggested FS method. Figure 7 shows the value of the

fitness function achieved in each iteration of the algorithm.

Table 3 shows the value of the parameters that are used in

the proposed FS method. Considering the constraint of

computational time, we proceed further keeping in mind

the parameter values given in Table 3.

4.4 Complexity analysis

The complexity analysis of any meta-heuristic algorithm

mainly depends on the searching time. The initialization of

parameters and the fitness evaluation also affect the time

complexity. In our case, the initialization process takes

O(n) time, where ‘n’ is the number of corals considered.

The time complexity of fitness evaluation depends upon the

classifier used, so in general, we can say fitness evaluation

takes OðfitÞ time. The main operations which are involved

for the searching procedure include broadcast spawning,

brooding, larvae settling, budding and AbHC. Broadcast
spawning takes Oðd2Þ and brooding takes O(d) time, where

‘d’ is the dimension of the problem. The larvae settling

stage takes Oðn2Þ time and budding has time the com-

plexity of O(n). AbHC has complexity of OðmI � dÞ, where
‘mI’ is the number of iterations considered for AbHC. If we
consider ‘maxIter’ as maximum number of iteration for the

whole search process, then the total time complexity of

AbCRO is given by Eq. 2.

Fig. 3 Illustration of broadcast spawning

Fig. 4 Illustration of the brooding procedure
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Fig. 5 Flowchart of the

proposed AbCRO
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T ¼ Oðnþ fitþmaxIter � ðd2 þ n2 þ mI � dÞÞ ð2Þ

4.5 Result analysis

This section provides the findings of the suggested FS

method called AbCRO, when experimented on the datasets

mentioned in Sect. 4.1.

Tables 4, 5 and 6 provide the outcomes reached by the

proposed AbCRO algorithm when evaluated by KNN,

Naive Bayes and Random Forest classifiers respectively.

Compared to the basic CRO algorithm, the obtained results

show the effectiveness of AbCRO in finding a better

solution. It can be extracted that the suggested AbCRO
algorithm works the best over UCI datasets with KNN

classifier. Also, KNN classifier is widely employed in the

references for FS on UCI datasets [20, 48, 49]. Hence, for

further experiment and discussion, we have utilized KNN

classifier with K ¼ 5.

Observing Table 4, we can see that AbCRO produces

accuracy [ 90% in 15 datasets (83.33%). Amongst these,

for 10 datasets (55.55%), namely BreastEW, WineEW,

Exactly, M-of-n, Zoo, Vote, CongressEW, Lymphography,

SonarEW and PenglungEW, it produces 100% accuracy.

Out of 18 datasets, it has achieved the highest classification

accuracy in case of all the datasets. Analyzing these results

with the obtained results by the basic CRO algorithm, we

can see that CRO produces equivalent results in 13 data-

sets. Although in case of Tic-tac-toe, HeartEW, BreastEW,

KrvskpEW, and WaveformEW, AbCRO outperforms CRO

in terms of achieved classification accuracy.

Talking about the number of selected features, in 16

datasets (88.89%) AbCRO selects the least number of

features. Of these, in 10 datasets, namely Breastcancer,

WineEW, Exactly, Exactly2, M-of-n, Zoo, Vote, Con-

gressEW, BreastEW and Lymphography, CRO selects the

same number of features. In the case of HeartEW and

WaveformEW, CRO outperforms AbCRO. Now, consid-
ering the achieved classification accuracy and number of

selected features, we can say that AbCRO is able to per-

form better than CRO while evaluated with KNN classifier.

From Table 5 we can say that AbCRO produces clas-

sification accuracy[ 90% in 15 datasets (83.33%) while

evaluated by Naive Bayes classifier. It achieves 100%

accuracy in 8 datasets (44.44%). Whereas, it achieves the

highest accuracy in 17 datasets (94.44%). In the case of

Tic-tac-toe, WineEW, HeartEW, Exactly2, Zoo and Vote,

it produces an equivalent result as the CRO. Only in the

case of SpectEW, CRO outperforms AbCRO. So overall,

we can say in terms of classification accuracy AbCRO
produces better results than CRO.

Considering the number of selected features, AbCRO
selects the least number of features in 14 datasets

Table 1 Elucidation of the datasets used here to evaluate the proposed

FS method

Sl. no. Dataset #Attributes #Samples Dataset domain

1 Breastcancer 9 699 Biology

2 Tic-tac-toe 9 958 Game

3 WineEW 13 178 Chemistry

4 HeartEW 13 270 Biology

5 Exactly 13 1000 Biology

6 Exactly2 13 1000 Biology

7 M-of-n 13 1000 Biology

8 Zoo 16 101 Artificial

9 Vote 16 300 Politics

10 CongressEW 16 435 Politics

11 Lymphography 18 148 Biology

12 SpectEW 22 267 Biology

13 BreastEW 30 569 Biology

14 IonosphereEW 34 351 Electromagnetic

15 KrvskpEW 36 3196 Game

16 WaveformEW 40 5000 Physics

17 SonarEW 60 208 Biology

18 PenglungEW 325 73 Biology

Table 2 Execution time (in s) for a single run of 18 standard UCI

datasets using CRO and AbCRO

Sl. no. Dataset CRO AbCRO

1 Breastcancer 3.134 29.499

2 Tic-tac-toe 4.517 47.774

3 WineEW 2.186 22.239

4 HeartEW 2.224 20.48

5 Exactly 5.34 57.743

6 Exactly2 4.405 44.094

7 M-of-n 5.383 59.011

8 Zoo 1.782 20.479

9 Vote 2.063 19.888

10 CongressEW 2.449 22.575

11 Lymphography 2.064 20.088

12 SpectEW 2.391 24.898

13 BreastEW 3.414 33.938

14 IonosphereEW 3.163 30.136

15 KrvskpEW 67.988 525.761

16 WaveformEW 235.347 2043.582

17 SonarEW 3.177 30.985

18 PenglungEW 2.864 54.751
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Fig. 6 Graphs showing the impact of the population size on classification accuracy of the classifiers when tested over 18 UCI datasets using CRO

and AbCRO
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(77.77%). It selects the same number of features as selected

by CRO in the case of HeartEW, Exactly2, Vote,

CongressEW and SpectEW. CRO outperforms AbCRO in

BreastEW, Exactly, KrvskpEW and M-of-n. So,

Fig. 7 Graphs showing the convergence of solution using best fitness value obtained in each iteration for 18 UCI datasets using CRO and

AbCRO
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considering the achieved classification accuracy along with

number of selected features, we can say that AbCRO has

an upperhand while evaluated by Naive Bayes classifier.

If we look at Table 6, we can see that AbCRO produces

classification accuracy [ 90% in 16 datasets (88.89%)

while evaluated using Random Forest classifier. It produces

100% accuracy in 6 datasets (33.33%). It also achieves the

highest accuracy in 16 datasets (88.89%), out of which it

provides equivalent result in 7 datasets with CRO and 3

datasets with Random Forest classifier. CRO is unable to

beat AbCRO in any case in terms of achieved classification

accuracy but Random Forest classifier outperforms

AbCRO in cases of Tic-tac-toe and WaveformEW.

Looking at the number of selected features, we can say

that AbCRO selects least number of features in 12 datasets

(66.67%). It selects same number of features as CRO in 4

datasets. In the case of Tic-tac-toe, HeartEW, BreastEW,

SpectEW, KrvskpEW and SonarEW, CRO outperforms

AbCRO. Now, considering the produced classification

accuracy and number of selected features, we can say for

sure that AbCRO outperforms CRO while being evaluated

by Random Forest classifier.

As we can witness the superiority of AbCRO over CRO

from the above discussion and Tables 4, 5 and 6, we can

state that AbCRO outperforms CRO in every aspect while

evaluated using KNN, Naive Bayes and Random Forest

classifiers. Generalizing this, we can say that AbCRO has

the capability to find a better solution than CRO and hence

producing better results in terms of achieved classification

accuracy and the number of selected features.

From Tables 4 and 5 if we compare the results obtained

by the proposed method when evaluated by KNN and

Naive Bayes classifiers only in terms of achieved classifi-

cation accuracy, we can say that the proposed method

produces better results while evaluated using KNN than

using Naive Bayes in 8 datasets (44.44%). In 10 datasets

(55.55%) they produce equivalent results. So, while eval-

uated on Naive Bayes, it cannot beat AbCRO in any case

while evaluated using KNN classifier.

Considering the number of selected features, AbCRO
produces better results while evaluated by KNN than Naive

Bayes in 4 datasets only. They select the same number of

features in 6 datasets. In the rest 8 datasets, AbCRO selects

fewer features while evaluated using Naive Bayes. Looking

at the number of selected features, it may seem that

Table 3 Value of the

parameters used in the proposed

FS method

Parameters Values

R 5

Iterations 30

F b 0.6

F a 0.4

F d 0.1

ji 0.6

a 3

Pd 0.1

Table 4 Performance of CRO

and AbCRO in terms of

classification accuracy and

number of selected features

using KNN-classifier (highest

classification accuracies and

lowest no. of selected features

are highlighted)

Dataset Original CRO AbCRO

Accuracy Features Accuracy Features Accuracy Features

Breastcancer 96 9 99.28 3 99.28 3

Tic-tac-toe 81.1 9 83.854 6 84.375 5

WineEW 66.67 13 100 2 100 2

HeartEW 68.15 13 90.74 4 94.44 7

Exactly 72.3 13 100 6 100 6

Exactly2 73.3 13 76 1 76 1

M-of-n 87.4 13 100 6 100 6

Zoo 87 16 100 5 100 5

Vote 92.33 16 100 1 100 1

CongressEW 92.18 16 100 3 100 3

Lymphography 81.33 18 100 6 100 6

SpectEW 82.22 22 94.44 7 94.44 5

BreastEW 92.63 30 97.36 4 100 4

IonosphereEW 83.43 34 98.57 11 98.57 3

KrvskpEW 96.1 36 98.435 14 98.748 10

WaveformEW 81.44 40 85.8 16 87.8 17

SonarEW 80.95 60 100 21 100 11

PenglungEW 81.33 325 100 108 100 77
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AbCRO performs better while evaluated using Naive

Bayes, but considering the achieved classification accu-

racy, it shows just the opposite. As classification accuracy

has utmost importance for us, we can say that AbCRO
produces better results while evaluated using KNN

classifier.

Observing Tables 4 and 6 we can say that AbCRO
produces better results in 6 datasets (33.33%) while eval-

uated using KNN than using Random Forest. They produce

equivalent results in 9 datasets (50%). Although when

AbCRO is evaluated using Random Forest, it produces

Table 5 Performance of CRO

and AbCRO in terms of

classification accuracy and

number of selected features

using Naive Bayes classifier

(highest classification

accuracies and lowest no. of

selected features are

highlighted)

Dataset Original CRO AbCRO

Accuracy Features Accuracy Features Accuracy Features

Breastcancer 89.28 9 97.87 3 98.57 2

Tic-tac-toe 75.52 9 72.92 6 72.92 5

WineEW 100 13 100 3 100 2

HeartEW 94.44 13 96.296 4 96.296 4

Exactly 69.5 13 96 1 100 6

Exactly2 76 13 76 1 76 1

M-of-n 96.5 13 98.5 6 100 7

Zoo 100 16 100 5 100 3

Vote 98.33 16 100 3 100 3

CongressEW 98.85 16 98.85 1 100 1

Lymphography 86.67 18 90 5 100 4

SpectEW 72.22 22 94.44 4 92.59 4

BreastEW 96.49 30 97.36 2 100 4

IonosphereEW 95.71 34 92.88 8 98.57 5

KrvskpEW 65.88 36 95.31 9 97.18 12

WaveformEW 82.2 40 82.5 15 85.8 10

SonarEW 80.95 60 80.95 23 97.61 11

PenglungEW 60 325 73.33 120 93.33 50

Table 6 Performance of CRO

and AbCRO in terms of

classification accuracy and

number of selected features

using Random Forest classifier

(highest classification

accuracies and lowest no. of

selected features are

highlighted)

Dataset Original CRO AbCRO

Accuracy Features Accuracy Features Accuracy Features

Breastcancer 97.8 9 97.86 3 97.86 2

Tic-tac-toe 95.8 9 85.94 6 93.23 8

WineEW 100 13 100 4 100 3

HeartEW 81.5 13 88.89 3 94.44 8

Exactly 78.5 13 100 6 100 6

Exactly2 74 13 76 1 76 1

M-of-n 100 13 100 6 100 6

Zoo 100 16 100 4 100 3

Vote 95 16 98.33 3 98.33 1

CongressEW 97.7 16 98 1 98.85 1

Lymphography 90 18 93.33 8 96.67 4

SpectEW 88.9 22 90.74 5 96.3 7

BreastEW 98.2 30 95.61 2 100 4

IonosphereEW 91.4 34 97.14 8 98.57 5

KrvskpEW 99.5 36 98.12 8 99.53 17

WaveformEW 85.8 40 83 15 85.3 14

SonarEW 90.7 60 92.86 13 95.24 14

PenglungEW 86.7 325 93.33 140 100 103
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better results than while it is evaluated using KNN in 3

datasets (16.67%).

Talking about the number of selected features, the pro-

posed method selects fewer features while evaluated using

KNN than using Random Forest in 9 datasets. Although, in

4 datasets AbCRO selects less number of features while

evaluated using Random Forest. Now, considering the

achieved classification accuracy as well as the number of

selected features, we can say that AbCRO produces better

results while evaluated using KNN classifier.

From the above discussions, it is quite clear that

AbCRO produces better results while evaluated using

KNN classifier. So, for our comparison purpose, we con-

sider the results achieved by our algorithm when evaluated

using KNN only. Also, the other state-of-the-art methods

were evaluated using KNN, so the comparison is done in

the common platform.

Table 7 shows the results obtained by CRO and AbCRO
evaluated on 18 standard UCI datasets using precision,

recall and f1 score as evaluation metrics. AbCRO achieves

100% score in Breastcancer, Exactly, M-of-n and Zoo

while evaluated using precision, recall and f1 score. It is

pretty evident from Table 7 that AbCRO performs much

better than CRO in every dataset. In case of WineEW, the

recall score is same, for Exactly2 and M-of-n all the three

scores, namely precision, recall and f1 score are equivalent.

In the rest cases, AbCRO outperforms CRO in all these

three metrics. From these observations, we may conclude

that AbCRO is able to find better solutions than CRO in

almost every case.

For determining the statistical significance of the pro-

posed AbCRO, Wilcoxon rank-sum test [64] has been

carried out. It is a non-parametric statistical test and it is

done to verify whether the results produced by an

Table 7 Comparison of CRO

and AbCRO based on Precision,

Recall and fscore evaluated on

18 standard UCI datasets

Sl. no. Dataset CRO AbCRO

Precision Recall fscore Precision Recall fscore

1 Breastcancer 0.948 0.957 0.953 1 1 1

2 Tic-tac-toe 0.776 0.778 0.778 0.864 0.8 0.8204

3 WineEW 0.969 0.976 0.971 0.976 0.976 0.976

4 HeartEW 0.87 0.867 0.868 0.9 0.879 0.884

5 Exactly 0.345 0.5 0.408 1 1 1

6 Exactly2 0.38 0.5 0.432 0.38 0.5 0.432

7 M-of-n 1 1 1 1 1 1

8 Zoo 0.452 0.571 0.495 1 1 1

9 Vote 0.909 0.916 0.913 0.9647 0.9647 0.9647

10 CongressEW 0.899 0.908 0.903 0.961 0.966 0.964

11 Lymphography 0.556 0.569 0.56 0.6 0.62 0.6

12 SpectEW 0.398 0.5 0.443 0.651 0.702 0.662

13 BreastEW 0.962 0.962 0.962 0.9741 0.97 0.97

14 IonosphereEW 0.941 0.88 0.9 0.95 0.9 0.9

15 KrvskpEW 0.9518 0.949 0.9496 0.981 0.982 0.981

16 WaveformEW 0.812 0.813 0.812 0.825 0.8365 0.838

17 SonarEW 0.833 0.829 0.831 0.87 0.9 0.8542

18 PenglungEW 0.752 0.738 0.726 0.82 0.84 0.8

Best achived values are highlighted in bold

Table 8 Pairwise p values obtained by Wilcoxon rank-sum test considering entire feature set and selected features by AbCRO using different

classifiers (p� 0:05 are highlighted)

KNN AbCRO ? KNN Random forest AbCRO ? Random forest Naive Bayes AbCRO ? Naive Bayes

KNN – 0.000 0.000 0.000 0.248 0.004

CRO?KNN 0.000 – 0.019 0.754 0.000 0.006

Random_forest 0.000 0.019 – 0.008 0.010 0.642

CRO?Random_forest 0.000 0.754 0.008 – 0.001 0.033

Naive Bayes 0.248 0.000 0.010 0.001 – 0.001

CRO? Naive Bayes 0.004 0.006 0.642 0.033 0.001 –
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algorithm are statistically distinct from the results produced

by other algorithms. Here, the null hypothesis is that the

two sets of results produced by two algorithms are drawn

from the same distribution. So any difference in the pro-

duced results comes only from sampling error. If the two

set of results belong to different (statistically) distributions,

then the generated p value (by Wilcoxon rank-sum test)

from the test statistics will be \0:05 (level of signifi-

cance), as we have done the test at 0:05% significance

level, which in turn rejects of the null hypothesis (Table 8).

5 Comparison

To prove the supremacy of the proposed FS procedure,

comparison with 10 state-of-the-art methods have been

made. These state-of-the-art methods include four very

popular meta-heuristic algorithms, namely ALO, GA, GSA

and PSO. The rest six methods comprise of hybrid meta-

heuristic FS methods, namely BGWOPSO, adaptive

switching grey-whale optimizer (ASGW), serial grey-

whale optimizer (HSGW), random switching grey-whale

optimizer (RSGW), WOA-CM and WOASAT-2.

BGWOPSO [3] is the result of hybridization between

GWO and PSO. ASGW, HSGW and RSGW are three

different FS methods developed by hybridizing GWO and

WOA [48] in different fashion. WOA-CM [47] elevates its

performance by applying both crossover and mutation

operators. WOASAT-2 [49] is a hybrid of WOA and SA

methods. The values of the control parameters of these FS

methods are described in Table 9.

Table 10 displays the fulfillment of AbCRO in terms of

achieved classification accuracy. From this table it is under-

stood that AbCRO achieves the highest classification accu-

racy on 16 datasets (88.9%) which is quite impressive. In the

case of Exactly2, it holds the eighth position along with

BGWOPSO. For Tic-tac-toe, it stands at the third position.

Comparing AbCRO with other methods, we can observe

that ASGW beats AbCRO in Tic-tac-toe and Exactly2, and

produces equivalent result in WineEW, M-of-n, Zoo,

BreastEW and PenglungEW. But, AbCRO outperforms

ASGW in the rest 11 datasets (61.11%). AbCRO beats

BALO in 17 datasets (94.44%). Only in the case of Eax-

ctly2, BALO outperforms AbCRO. AbCRO outperforms

BGA in 15 datasets (83.33%), produces equivalent classi-

fication accuracy in Exactly and M-of-n, but loses in

Exactly2 with a narrow margin. BGSA outperforms

AbCRO only in the case of Exactly2, but in rest 17 datasets

(94.44%), it fails to produce better results. BGWOPSO

performs on equal terms in WineEW, Exactly, Exactly2,

M-of-n and Zoo, but it unable to outperform AbCRO in

other cases. AbCRO beats BGWOPSO in 13 datasets

(72.22%). We can say the similar about BPSO while

comparing it with AbCRO. BPSO outperforms AbCRO in

Exactly2 only and produces similar results in the case of

Exactly and M-of-n. In the rest 15 datasets (83.33%),

AbCRO has the upperhand. HSGW is able to produce the

best result in Exactly2, beating AbCRO with significant

margin. In the case of WineEW, Exactly, M-of-n and Zoo,

it produces an equivalent result with AbCRO. But, the

suggested method beats HSGW in 13 datasets (72.22%).

RSGW outperforms AbCRO in the case of Tic-tac-toe and

Exactly2, and produces similar result in WineEW, M-of-n,

Zoo and PenglungEW. AbCRO beats RSGW in the rest 12

datasets (66.67%). WOA-CM is unable to produce a better

result than AbCRO in any other datasets and performs

equivalently in the case of Exactly only. AbCRO beats

WOA-CM in 17 datasets (94.44%). WOASAT-2 is unable

to beat the proposed method in any dataset. It produces a

similar result in the case of Exactly and M-of-n. AbCRO
beats WOASAT-2 in the rest 16 datasets (88.89%).

Table 11 shows the number of selected features by the

proposed method and 10 state-of-the-art methods. As we

Table 9 Setting of parameter values for state-of-the-art FS methods

used here for comparison

Algorithm Parameters

BGA popSize = 8

maxIter = 70

Mutation and Crossover rate = 0.8

BPSO popSize = 8

maxIter = 70

inertia factor = 0.1

individual-best acceleration factor = 0.1

BALO popSize = 8

maxIter = 200

BGSA popSize = 8

maxIter = 20

G = 1

a = 20

WOASAT-2 popSize = 10

maxIter =100

a in WOA = [2 0]

selection pressure = 0.5

BGWOPSO popSize = 10

maxIter = 100

c1 = c2 = c3 = 0.5

w = 0.5 ? rand()/2

l 2 [1, 0]

WOA-CM popSize = 10

maxIter = 100

a in WOA = [2 0]
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Table 10 Comparison of classification accuracy obtained by proposed FS method with some state-of-the-art FS methods for 18 UCI datasets

(highest classification accuracies are highlighted)

Dataset AbCRO ASGW BALO BGA BGSA BGWOPSO BPSO HSGW RSGW WOA-CM WOASAT-2

Breastcancer 0.9928 0.985 0.974 0.9743 0.9686 0.98 0.9629 0.986 0.971 0.968 0.97

Tic-tac-toe 0.84375 0.865 0.783 0.7996 0.7766 0.81 0.7996 0.828 0.859 0.785 0.79

WineEW 1 1 0.972 0.9888 0.9775 1 0.9775 1 1 0.959 0.99

HeartEW 0.9444 0.831 0.838 0.8741 0.8296 0.85 0.837 0.923 0.848 0.807 0.85

Exactly 1 0.999 0.965 1 0.994 1 1 1 0.997 1 1

Exactly2 0.76 0.777 0.762 0.77 0.77 0.76 0.768 0.815 0.779 0.742 0.75

M-of-n 1 1 0.967 1 0.994 1 1 1 1 0.991 1

Zoo 1 1 0.98 0.902 0.9804 1 0.9608 1 1 0.98 0.97

Vote 1 0.984 0.972 0.9733 0.96 0.97 0.96 0.983 0.996 0.939 0.97

CongressEW 1 0.994 0.981 0.9679 0.9633 0.98 0.9633 0.975 0.961 0.956 0.98

Lymphography 1 0.884 0.917 0.8378 0.8649 0.92 0.8919 0.934 0.893 0.852 0.89

SpectEW 0.944 0.87 0.899 0.8955 0.8433 0.88 0.8881 0.862 0.815 0.866 0.88

BreastEW 1 1 0.974 0.9754 0.9544 0.97 0.9719 0.981 0.982 0.971 0.98

IonosphereEW 0.9857 0.972 0.904 0.9489 0.9432 0.95 0.9489 0.944 0.978 0.926 0.96

KrvskpEW 0.98748 0.971 0.973 0.985 0.9549 0.97 0.9731 0.973 0.972 0.972 0.98

WaveformEW 0.878 0.746 0.797 0.7836 0.9549 0.8 0.756 0.748 0.757 0.753 0.76

SonarEW 1 0.948 0.845 0.9904 0.9135 0.96 0.9423 0.964 0.979 0.919 0.97

PenglungEW 1 1 0.827 0.9189 0.8333 0.96 0.9189 0.942 1 0.792 0.94

Average rank 1.44 3.77 5.61 4.33 7.27 4.16 5.67 3.55 3.72 7.38 4.55

Assigned rank 1 4 8 6 10 5 9 2 3 11 7

Table 11 Comparison of proposed FS method with some state-of-the-art FS methods for 18 UCI datasets in terms of number of feature selected

by the methods (lowest no. of selected features are highlighted)

Dataset AbCRO ASGW BALO BGA BGSA BGWOPSO BPSO HSGW RSGW WOA-CM WOASAT-2

Breastcancer 3 4.867 4.7 4 4 4.4 4 5 5.933 4.302 4.2

Tic-tac-toe 5 7 5 5 4 5.2 6 7 7 6.903 6

WineEW 2 5.933 5.4 4 4 6 5 4.533 5.867 6.799 6.4

HeartEW 7 6.367 8.6 5 3 5.8 3 8.767 6.133 6.995 5.4

Exactly 6 6.867 5.75 6 4 6 6 6.7 7.1 6.045 6

Exactly2 1 7.933 1.5 1 1 1.6 1 9.033 9.2 5.252 2.8

M-of-n 6 6.867 6 6 5 6 6 6.8 7.1 6.006 6

Zoo 5 7.6 5.7 4 6 6.8 5 5.33 5.3 6 5.6

Vote 1 8.967 6.6 5 4 3.4 3 7.567 8.8 7.408 5.2

CongressEW 3 8.833 6.65 2 4 4.4 3 8.867 9.7 6.448 6.4

Lymphography 6 11.2 7.35 5 6 9.2 5 10.567 10.567 8.208 7.2

SpectEW 8 10.167 7.65 5 5 8.4 6 10.233 13.3 8.025 9.4

BreastEW 4 15.833 13.85 8 10 13.6 9 16.667 17.5 15.81 11.6

IonosphereEW 3 17.3 11.75 7 9 13 7 18.167 20.5 14.416 12.8

KrvskpEW 10 24.5 16.15 11 14 15.8 12 24.8 24.8 18.54 18.4

WaveformEW 17 25.833 20.5 15 14 14.2 15 26.933 27.533 25.4 20.6

SonarEW 11 35.3 26.6 19 24 31.2 22 34.3 36.433 35.64 26.4

PenglungEW 77 170.3 133.1 84 140 130.8 130 165.333 181.2 128.05 127.4

Average rank 2.11 7.78 5 2 2.83 4.83 2.5 7.5 8.33 6.27 4.72

Assigned rank 2 10 7 1 4 6 3 9 11 8 5
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can observe, in the case of 9 datasets (50%), AbCRO
selects the least number of features.

For BreastCancer and WineEW, AbCRO holds the first

position. In the case of Vote, BreastEW, IonosphereEW,

KrvskpEW, SonarEW and PenglungEW, it selects the least

number of features. In Tic-tac-toe, it holds the second

position along with BGA and BALO after BGSA. For

HeartEW, AbCRO stands at the ninth position. For

Exactly, it stands at the third position along with BGA,

BPSO, WOASAT-2 and BGWOPSO. In the case of Eax-

ctly2, it selects only one feature hence selecting the same

number of features as BGA, BPSO and BGSA do. It again

holds the second position in M-of-n after BGSA. In the

case of Zoo, it stands at second position with BPSO after

BGA. In the case of CongressEW, it is slightly behind

BGA and produces an equivalent result with BPSO. In the

case of Lymphography, it holds the second position after

BGA and BPSO. BGA, BPSO, BALO and BGSA outper-

form AbCRO in the case of SpectEW. It stands at fifth

position in the case of WaveformEW.

Comparison between AbCRO and top 3 state-of-the-art

methods (based on achieved classification accuracy) using

precision, recall and f1 score is also performed. Table 12

illustrates the comparison results. We can observe that

AbCRO outperforms the other 3 methods in almost every

dataset in terms of precision, recall and f1 score. From this

Table 12 Comparison of the proposed method with the top� 3 FS methods in terms of precision, recall and f-score for 18 UCI datasets

Dataset HSGW RSGW ASGW AbCRO

Precision Recall fscore Precision Recall fscore Precision Recall fscore Precision Recall fscore

Breastcancer 1 1 1 0.9552 0.9678 0.9609 0.98 0.9891 0.9843 1 1 1

Tic-tac-toe 0.6864 0.645 0.6515 0.8995 0.8204 0.8433 0.9139 0.806 0.8325 0.864 0.8 0.8204

WineEW 0.9697 0.9762 0.9718 0.9744 0.9762 0.9743 0.9697 0.9762 0.9718 0.9762 0.9762 0.9762

HeartEW 0.5907 0.5917 0.5903 0.739 0.7417 0.7393 0.85 0.85 0.85 0.9 0.879 0.884

Exactly 0.8143 0.8086 0.8113 0.7779 0.7779 0.7779 0.9006 0.8734 0.8852 1 1 1

Exactly2 0.5505 0.5192 0.5007 0.6241 0.5718 0.5766 0.5609 0.534 0.5291 0.38 0.5 0.432

M-of-n 0.9379 0.9329 0.9353 0.8527 0.8443 0.8481 0.9922 0.9865 0.9892 1 1 1

Zoo 1 1 1 0.9841 0.9286 0.944 1 1 1 1 1 1

Vote 0.951 0.943 0.9467 0.9259 0.9459 0.9314 0.9647 0.9647 0.9647 0.9647 0.9647 0.9647

CongressEW 0.9512 0.9512 0.9512 0.9662 0.9604 0.9632 0.9714 0.9815 0.9759 0.961 0.966 0.964

Lymphography 0.4234 0.4409 0.432 0.3946 0.4006 0.3944 0.4039 0.4069 0.401 0.6 0.62 0.6

SpectEW 0.7778 0.7378 0.7545 0.7473 0.6924 0.7126 0.7976 0.8171 0.8066 0.651 0.704 0.7333

BreastEW 0.9539 0.9335 0.9422 0.9672 0.9573 0.9619 0.936 0.9315 0.9337 0.9741 0.97 0.97

IonosphereEW 0.9018 0.78 0.8045 0.9327 0.86 0.8825 0.9245 0.84 0.8639 0.95 0.9 0.9

KrvskpEW 0.9646 0.9634 0.9639 0.9765 0.9764 0.9765 0.9704 0.97 0.9702 0.981 0.982 0.981

WaveformEW 0.811 0.8111 0.811 0.8202 0.8195 0.8187 0.8367 0.8361 0.836 0.825 0.8365 0.838

SonarEW 0.8413 0.8249 0.8286 0.8612 0.8513 0.8542 0.8333 0.8295 0.8309 0.87 0.9 0.8542

PenglungEW 0.881 0.9048 0.8762 0.7929 0.7857 0.7732 0.7571 0.8095 0.7651 0.82 0.84 0.8

Table 13 p values generated by the Wilcoxon rank-sum test for the classification accuracies generated by CRO and AbCRO and 10 state-of-the-

art meta-heuristic FS methods considered in this work

ASGW BALO BGA BGSA BGWOPSO BPSO HSGW RSGW WOA-CM WOASAT-2

CRO ? KNN 0.041 0.000 0.001 0.000 0.001 0.000 0.022 0.022 0.000 0.001

AbCRO ? KNN 0.037 0.013 0.02 0.000 0.022 0.000 0.022 0.019 0.03 0.041

Table 14 Description of the microarray datasets used for

experimentation

Sl. no. Dataset #Instances #Features #Classes

1 DLBCL 77 7070 2

2 Leukemia 72 5147 2

3 SRBCT 83 2308 4

Neural Computing and Applications

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



table we can say that AbCRO is proving its superiority

over the other state-of-the-art methods.

Here, Wilcoxon test has been employed in order to

demonstrate that the achieved results by the suggested

algorithm is statistically significant from the reached

results by the 10 state-of-the-art methods considered (with

KNN classifier). The p values achieved for pairwise com-

parison of the CRO and AbCRO methods with state-of-the-

art algorithms are provided in Table 13.

From Tables 10 and 11 and the above discussions, we

can safely say that AbCRO produces the best results con-

sidering the achieved classification accuracy and the

number of selected features as the deciding factors.

6 Additional testing on microarray data

It is evident from the previous discussion, AbCRO is an

effective algorithm for FS. In this section, additional

experiments are performed to check how AbCRO can scale

to high dimensional datasets which are challenging binary

optimization problems.

Microarray datasets [31] are high dimensional in nature

and FS becomes difficult due to the existence of extremely

large search space. So, these datasets are very effective in

testing the robustness of any FS model. For this experi-

mentation, three publicly availableMicroarray datasets have

been considered details of which is presented in Table 14.

The classification accuracies obtained over the

Microarray datasets [31] have further been compared with

some classical as well as recently proposed meta-heuristics

such as: Genetic Algorithm (GA), Memetic Algorithm

(MA), Particle Swarm Optimization (PSO), Ant Lion

Optimizer (ALO), Gravitational Search Algorithm (GSA),

Social Ski-Driver Algorithm with Late Acceptance Hill

Climbing (SSD-LAHC), Embedded Chaotic Whale Sur-

vival Algorithm (ECWSA). The results of these algorithms

are reported in [16, 33]. Table 15 contains the classification

accuracy (in %) obtained by these algorithms over the

utilized Microarray datasets. The number of features used

to achieve the accuracy has been provided in parenthesis

corresponding to the accuracy.

7 Conclusions

Feature selection is a relevant and a fundamental pre-pro-

cessing phase in the domains of data mining and machine

learning. In the last two decades, many meta-heuristic

algorithms have been proposed to select an optimal number

of features from various high dimensional datasets. These

methods have proved their effectiveness in this domain by

showing promising results. CRO algorithm has an efficient

exploration capability and it has also good trade-off

between its exploitation and exploration capabilities. In

present work, we have proposed an improved version of

CRO by enhancing its searching capability with the help of

a recently proposed local search algorithm, AbHC. The
proposed method is named as AbCRO. To establish the

effectiveness and superiority of AbCRO, it is evaluated on

18 standard UCI datasets and compared with 10 state-of-

the-art FS methods. The achieved results demonstrate that

AbCRO is a good choice for FS problem. To prove the

robustness of this algorithm, it is applied on microarray

data; where the results have shown the effectiveness of the

proposed algorithm.

There are several parameters which are used in this

proposed algorithm. To exploit the perfect value for each

and every parameter is a time-consuming process. To find

out the best-suited combination of these parameters, it

requires exhaustive experiments. On top of that, there can

be some problems where AbCRO may fail to find the

optimal solution, as it may be unable to find the global

optimum. Although this is in accordance with No Free

Lunch theorem [65], it can still be treated as a weakness of

the proposed method.

As future work, it would be intriguing to hybridize CRO

with any other meta-heuristic method on low level. We can

also apply this algorithm in other challenging research

problems such as facial emotion recognition, handwriting

recognition, human activity recognition, etc.

Acknowledgements This research has been partially funded by Junta

de Andalucı́a, under the Research Project UCO-FEDER 18 REF.

1265277 MD A1. We would like to thank the CMATER research

laboratory of the Computer Science and Engineering Department,

Jadavpur University, India for providing us the infrastructural

support.

Table 15 Performance comparison of the proposed method with some existing methods on Microarray datasets

Dataset GA MA PSO ALO GSA LAHC-SSD ECWSA AbCRO

DLBCL 97 (88) 96.4 (105) 96.2 (90) 95.1 (92) 95.7 (59) 96 (60) 96 (57) 97.6 (52)

Leukemia 95.8 (85) 97 (65) 97 (50) 97.2 (70) 97.6 (80) 94 (61) 95.2 (50) 98.4 (47)

SRBCT 100 (78) 100 (50) 99.1 (49) 98.7 (45) 100 (62) 99.2 (54) 100 (40) 100 (37)
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