
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 14 (2022) pp. 191-203

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 27 December, 2021; Accepted: 5 April, 2022; Publish: 24 April, 2022

Optimizing Fuzzy C Means Clustering Algorithm:

Challenges and Applications

Amrita Bhattacherjee 1, Sugata Sanyal 2, Ajith Abraham 3

1 Department of Statistics, St. Xavier’s College, Kolkata – 700016, India

amritab1211@gmail.com

2 School of Technology & Computer Science, Tata Institute of Fundamental Research,

Mumbai – 400005, India
sanyals@gmail.com

3 Machine Intelligence Research Labs (MIR Labs) Scientific Network for Innovation and Research Excellence, Auburn,

Washington 98071, USA
ajith.abraham@ieee.or

Abstract: The Fuzzy C-Means clustering technique is one

of the most popular soft clustering algorithms in the field

of data segmentation. However, its high time complexity

makes it computationally expensive, when implemented

on very large datasets. Kolen and Hutcheson [1] proposed

a modification of the FCM Algorithm, which dramatically

reduces the runtime of their algorithm, making it linear

with respect to the number of clusters, as opposed to the

original algorithm which was quadratic with respect to the

number of clusters. This paper proposes further

modification of the algorithm by Kolen et. al., by

suggesting effective seed initialisation (by Fuzzy C-

Means++, proposed by Stetco et. al. [2]) before feeding the

initial cluster centers to the algorithm. The resultant

model converges even faster. Empirical findings are

illustrated using synthetic and real-world datasets. Finally,

we check the algorithm’s robustness to perturbations in

the data.

Keywords: Clustering, Fuzzy partitions, Time complexity,

Fuzzy C-Means algorithm, Unsupervised Machine Learning

I. Introduction
Cluster analysis or clustering is a method of grouping data

points into different clusters or categories such that objects

within the same cluster are more similar to each other than

objects in different clusters. The objects are grouped together

based on some similarity measure, which is specified

depending on the data at hand and the objective of the task.

This method has widespread application, ranging from pattern

recognition and market segmentation to image processing and

various other fields of data analysis.

The Fuzzy C-Means algorithm is one such clustering

algorithm, which facilitates soft partitioning of the objects in

the dataset. The earliest applications of clustering primarily

focused on ‘crisp’ partitions of objects, where each point

either fully belongs to a category or does not belong to a

category at all. This approach relied on the idea that an object

in a category does not bear any resemblance to any of the

categories except to the one it belongs to. Soft partitions, on

the other hand, rely on the idea that each object is

characterised by the extent to which they belong to all the

clusters/categories. A measure of this extent of an object’s

resemblance to each cluster is introduced by Zadeh (1965) [11]

in the form of what is now known as a ‘membership function’.

The final goal is to create partitions or clusters with soft or

fuzzy margins. As stated by Bezdek et. al. [3]: “A fuzzy c-

partition of (the dataset) X is one which characterizes the

membership of each sample point in all the clusters by a

membership function which ranges between 0 and 1”. The

detailed definition of fuzzy c-means (FCM) partitioning and

the corresponding algorithm, as proposed by Bezdek et al. [3],

is given in Section 3.1.

The main limitation of this algorithm is its time complexity

and memory requirements. The algorithm alternates between

estimating cluster centers from the membership matrix and

updating the membership matrix based on the cluster centers.

As such, the membership matrix, which is of the order of the

number of objects to be clustered, is repeatedly accessed and

updated, on every iteration. This greatly affects the speed of

the algorithm when the dataset is very large. This problem has

been widely addressed in the literature. This paper focuses on

the modification proposed by Kolen and Hutcheson (2002) [1],

where the membership matrix is not generated (or updated)

iteratively. This modification generates an algorithm which

has a time complexity of O(ncp) as opposed to Bezdek’s

original FCM Algorithm, which had a time complexity of

O(nc2p), where n is the number of objects in the dataset, c is

the number of clusters and p is the number of features of each

object/point in the data. Let us call this algorithm FCM-U,

where U refers to the membership matrix.

This paper employs the FCM-U algorithm and pairs it with

the popular approach of effective seed initialisation for even

faster convergence. Here, the FCM++ algorithm (proposed by

Stetco et. al. [2]) is implemented for effective seed

initialization. On clubbing these two algorithms together, the

model runs faster and empirically converges earlier than the

FCM-U algorithm. The following section discusses some

Bhattacherjee et al.

192

related works in reducing time complexity of the FCM

Algorithm, followed by short descriptions of the original FCM

algorithm, the FCM++ approach and the FCM-U algorithm.

Then, the proposed model is defined, followed by a

comparative analysis of the results obtained when this

algorithm is employed for clustering datasets. In Section 5, we

check the robustness of the proposed algorithm against

perturbations in the data. Finally, some further scopes of

improvement are discussed.

II. Related works

Several researchers have proposed methods to tackle the

problem of high computational cost that comes with

implementation of the Fuzzy C-Means algorithm.

In 1986, Cannon, Dave and Bezdek [4] proposed an

Approximate Fuzzy C-Means algorithm where the exact

variates in the equation are replaced with integer/real-valued

estimates. With their approach, they sped up the computation

six times that of the original FCM implementation, while

keeping the accuracy of cluster results unchanged. Tolias and

Panas [5] applied spatial constraints on image segmentation

problems using a fuzzy rule-based system, which showed

reduced computational time. In 1994, Kamel and Selim [6]

proposed two algorithms that converged faster than the FCM

algorithm, having adopted a continuous process where the

algorithm starts updating the membership values as soon as a

part of cluster centers are updated. Their algorithm found

manyfold applications in Pattern Recognition problems and

were very effective in speeding up the algorithm. While [4],

[5], [6] and [7] proposed modifications in the computation

itself, some researchers applied modifications in handling the

data instead. In 1998, Cheng et. al. [7] proposed a multi-stage

random sampling approach where the cluster centers are

estimated after taking repeated random samples from the data.

Then, the centroids are initialised over the entire data. This

process reported a speed-up of 2-3 times than the original

algorithm. Note that the algorithmic iterations of the original

FCM algorithm is preserved. The data feed is manipulated to

obtain gain in time. The problem of time complexity is so

influential in this algorithm that research in this field

continued during the past two decades and is still ongoing. In

2007, Hore et. al. [8] proposed a single-pass fuzzy c-means

algorithm using weighted point calculation. In 2002, Kolen

and Hutcheson [1] proposed a modification which eliminates

the task of repeatedly updating the membership matrix, this

reducing the time complexity to a linear function of the

number of clusters; as opposed to the original algorithm which

was a quadratic function of the number of clusters. This was

particularly beneficial for large datasets. In fact, this paper

implements this approach in the proposed algorithm along

with effective seed initialisation. In 2001, Hung and Yang [9]

proposed the psFCM algorithm which used a simplified subset

of the original data to speed up the convergence. Unlike [7],

here, the subset of the data is further simplified to obtain

approximate results. Several approaches were made to

eliminate initial bias and reduce the time taken for

convergence of the FCM algorithm. These research works

mainly focused on modifying the initial centroids which are

passed to the algorithm. Effective seed initialisation shows

promising result in removing initial bias of the FCM algorithm.

In 2015, Stetco, Zeng and Keane [2] extended the idea of K-

Means++ [10] algorithm into the standard version of Fuzzy C-

Means.

Research to speed up the Fuzzy C-Means algorithm is

mainly motivated by its potential to be applicable in a myriad

of disciplines. The concept of fuzzy sets has been a long-

standing tool in different fields of study and research. Tlili et

al. [18] applied this concept as fuzzy cognitive maps for

effective risk management in software projects. They

implemented fuzzy cognitive maps with Reinforcement

Learning to obtain a model that could efficiently study project

risk management as a decision validation tool. While this

paper shows the application of fuzzy sets in computer

applications and economics, Aggarwal et al. [19] presented

another application of fuzzy logic in the field of medicine.

They formulated a fuzzy logic based interface which predicted

the risk of onset of depression, based on four predictor

variables. This paper deals with a specific shortcoming of the

algorithm and a possible algorithmic modification to tackle it

from two different perspectives. For readers interested in more

versatile research trends involving this algorithm, Nayak et al.

[20] provides an excellent review report of the advances of

this algorithm over the decade of 2000 to 2014.

III. Fuzzy C-Means (FCM) Algorithm and its

variants

Let 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} be a set of 𝑛 points in ℛ𝑝 , the p-

dimensional Euclidean space. For 1≤ 𝑐 ≤ 𝑛, 𝑐 ∈ 𝒩, the set of

natural number, a fuzzy c-partition of 𝑋 is represented by

(𝑈, 𝑋) where, 𝑈 is a matrix of order 𝑛 × 𝑐, that is –

𝑈 = ((𝑢𝑖𝑗))
𝑛×𝑐

where, 𝑢𝑖𝑗 denotes the membership value of the 𝑖𝑡ℎ point in 𝑋

to the 𝑗𝑡ℎ fuzzy set. Here, 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑐 . The

values of the membership matrix are subject to the following

conditions:

1. 0 ≤ 𝑢𝑖𝑗 ≤ 1, ∀ 𝑖, 𝑗

2. ∑ 𝑢𝑖𝑗
𝑐
𝑗=1 = 1, ∀ 𝑖

3. 0 < ∑ 𝑢𝑖𝑗
𝑛
𝑖=1 < 𝑛, ∀ 𝑗

 The FCM algorithm defines a constant 𝑚, which is called

the fuzziness parameter and corresponds to the degree of

fuzziness of the clusters.

By convention, we take 𝑚 > 1. The FCM Algorithm then

defines ‘cluster centers’ 𝒗𝒋, 1 ≤ 𝑗 ≤ 𝑐 as:

𝑣𝑗 =
∑ 𝑥𝑖𝑢𝑖𝑗

𝑚𝑛
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1

 (1)

The membership function is typically defined as:

𝑢𝑖𝑗 = (∑ (
𝑑𝑖𝑗

𝑑𝑖𝑘
)

2
𝑚−1

𝑐

𝑘=1

)

−1

,

 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑐 (2)

where,

𝑑𝑖𝑗 = ‖𝑥𝑖 − 𝑣𝑗‖ is the distance of the 𝑖𝑡ℎ point in 𝑋 to the 𝑗𝑡ℎ

cluster center.

The cost function is defined as:

𝐽𝑚(𝑈, 𝑉; 𝑋) = ∑ ∑ 𝑢𝑗𝑖
𝑚‖𝑥𝑖 − 𝑣𝑗‖

2
𝑐

𝑗=1

𝑛

𝑖=1

 (3)

 Therefore, the Fuzzy C-means algorithm as proposed by

Bezdek is given by:

Optimizing Fuzzy C Means Clustering Algorithm: Challenges and Applications

193

Algorithm 1 : FCM

1. Fix c, m. Choose an initial membership matrix U(0)

2. At step k, compute the means 𝒗𝒋, 𝟏 ≤ 𝒋 ≤ 𝒄 using

equation 1

3. Update membership matrix U(k), using equation 2

4. Repeat steps 2 and 3 until:

 || U(k+1) – U(k)|| < ∈. Or, until k reaches the

maximum number of permissible iterations

A. Effective Seed Initialization and Eliminating the U-

Matrix

The Fuzzy C-Means ++ algorithm as proposed by Stetco et.al.

uses effective seed initialisation to determine the starting

values for the FCM algorithm. Before stating the algorithm,

we state some notations :

c : number of clusters

p : dimension of the datapoints

s : the spreading factor

V : the c x p prototype matrix

X : the n x p data matrix

 They defined a value 𝑃𝑖 , corresponding to the ith data point

in X, given by:

𝑃𝑖 =
𝑑𝑠(𝑥𝑖, 𝑉)

𝑠𝑢𝑚(𝑑𝑠)
 (4)

where, 𝑑𝑠(𝑥𝑖, 𝑉) denotes the distance (raised to the power s)

from a point 𝑥𝑖 ∈ 𝑋 to its closest representative in R. The

value of s controls the spreading factor of the algorithm. A

small value of s will choose centers which are very close to

each other, whereas a very large value of s might lead to the

choice of outliers as cluster centers. When s is taken to be

zero, the algorithm reduces to random seed initialisation.

Further, the first point is randomly chosen and determines the

selection of all the other centers. With the values and

parameters defined above, the FCM++ algorithm by Stetco

et.al. is as given in Algorithm 2.

Algorithm – 2: FCM++ initialisation

function FCM++(X,c)

begin

 V = V ∪ random point from dataset

 while sizeOfV<k do

 begin

 choose 𝑥𝑖 ∈ 𝑋 with probability 𝑃𝑖

 V = V ∪ 𝑥𝑖

 end

 return V

end //FCM++ ends here

We now state the algorithm as proposed by Kolen et.al. which

constitutes the main body of the algorithm. In 2002, John

Kolen and Tim Hutcheson proposed a modification in the

algorithm which reduced the time of computation drastically.

They eliminated the storage of the membership matrix at every

iteration, and directly computed the updated cluster centers

and is detailed in Algorithm 3.

We use the following notations:

c : number of clusters

p : dimension of the datapoints

n : number of data points

m : the fuzziness coefficient

V : the c x p prototype matrix

J : the current cost measure

X : the n x p data matrix

Algorithm – 3: Eliminating U-Matrix

function UpdateV(V,c,X,p,n,m)

begin

//save the current V matrix

oldV=V

//Initialise cost at 0

J = 0

rowsumU = 0 //c-dimensional vector

V = 0 //initialise new V matrix to zero

for k=1 to n do

begin

//Calculate the distances from the current datapoint X[i] to

the centers in oldV

//Calculate the numerators and denominators of equation 2

for this data point

//initialise accumulator for denominator in equation 2

denom3 = 0

for i = 1 to c do

begin

//calculate distance between current

datapoint and ith cluster center

dsqr[i] = (||X[k]-oldV[i]||)2

//save numer3[i] for future use

numer3[i] = (dsqr[i])(1/m-1)

//Update denom3

denom3 = denom3 + 1/numer3[i]

end

for i = 1 to c do

begin

u = (numer3[i]*denom3)(-m)

//Update the cost (optional)

J = J + dsqr[i]*u

//Update numerator of prototype centers

V[i] = V[i] + u*X[k]//p-vector operation

//Update future denominators of centers

rowsumU[i] = rowsumU[i] + u

end //for i = 1 to c

end //for k = 1 to n

 //Combine numerator and denominators

 for i = 1 to c do

 V[i] = V[i]/rowsumU[i]

 return V,J

end //UpdateV ends here

We use the above algorithms to derive the proposed

algorithm.

Bhattacherjee et al.

194

B. Proposed Algorithm

This paper implements an algorithm which combines the

previous methods into a single implementation. In other words,

we first generate a prototype matrix using effective seed

initialisation (FCM++), and then use this initial prototype

matrix as the starting point of the algorithm as stated in

Section 3.1. Additionally, some modifications were made so

that the algorithm works even when the cluster centers are

points from the dataset itself. The algorithm is as stated below:

Step 1 : Run algorithm 2 to obtain initial cluster centers

Step 2 : Pass V obtained in Step 1 to algorithm 3. Run

algorithm 3 with some modifications. The modified version

is given below –

function ModifiedUpdateV(V,c,X,p,n,m)

begin

oldV=V

J = 0

rowsumU = 0

V = 0

for k=1 to n do

begin

denom3 = 0

flag = -1

//flag to check the equality of points with

cluster centers

for i = 1 to c do

begin

dsqr[i] = (||X[k]-oldV[i]||)2

if dsqr[i]==0:

 flag=i

 continue to next i

numer3[i] = (dsqr[i])(1/m-1)

denom3 = denom3 + 1/numer3[i]

end

for i = 1 to c do

begin

 if i==flag:

 u=1

 V[i] = V[i] + X[k]

 rowsumU[i] = rowsumU[i] + 1

 else:

u = (numer3[i]*denom3)(-m)

J = J + dsqr[i]*u

V[i] = V[i] + u*X[k]

rowsumU[i] = rowsumU[i] + u

end //for i = 1 to c

end //for k = 1 to n

 for i = 1 to c do

 V[i] = V[i]/rowsumU[i]

 return V,J

end

IV. Experimental Results

Kolen and Hutcheson [1] illustrated the performance impacts

of their modification in great detail. The algorithm

implemented in this paper shows further improvement in

computation speed owing to effective seed initialisation. The

results are illustrated on 4 datasets – the Iris Dataset [12],

Wine Dataset [13] and 2 synthetic datasets generated from

gaussian distributions. The time for convergence (to reach the

same cost value) was measured (in seconds) for both the

original FCM algorithm and the proposed modified algorithm

while varying the number of clusters. The empirical findings

are Tabulated in Tables 1 to 4.

Number

of

clusters

Algorithm Used

Original FCM Proposed FCM

2 0.058 0.021

3 0.147 0.047

4 0.193 0.072

5 0.299 0.093

6 0.384 0.101

Table 1 Time for convergence for the Iris dataset

 Table 1 indicate that the proposed algorithm provides a

considerable gain in time due to faster convergence with the

same cost value. The time taken for convergence is plotted in

Figure 1. The black points are the time taken (in seconds) by

the original algorithm, plotted against the number of clusters

specified to the algorithm. To compare the rate of change in

time taken for each algorithm, a simple linear regression is

fitted for each of them. The following graph gives a visual

representation of the results obtained.

Figure 1. Iris Dataset performance

The regression equations obtained are:

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (0.0804 × 𝑁) − 0.1054

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.0206 × 𝑁) − 0.0156

where, N represents the number of clusters. The regression is

done keeping the number of features in the dataset constant. It

can be noted visually from the graph that the time taken by the

original algorithm is consistently higher than that by the

proposed algorithm. In addition, the rate of increase in time as

the number of clusters increases can be obtained from the

regression equations as follows:

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.0804
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.0206

 Clearly, the rate of increase in time for a unit increase in the

number of clusters is approximately 4 times higher for the

Optimizing Fuzzy C Means Clustering Algorithm: Challenges and Applications

195

original algorithm than that for the proposed algorithm. This

validates a considerable amount of savings in time, especially

for higher number of clusters.

 The time taken are recorded while keeping the cost value

constant for a given number of clusters, which enables a fair

comparison. The cost is calculated using (3). For perspective,

the performance of the proposed algorithm in predicting the

correct clusters can be visually estimated by looking at the

following graphs. Figure 2 represents the true clusters as

available in ground truth labels of the dataset.

Figure 2(a). Iris dataset: True clusters

Figure 2(b). Iris dataset: Predicted clusters (red stars

indicate the predicted cluster centers)

 The Wine Dataset contains data on the results of a chemical

analysis of 3 different types of wine grown in the same region

in Italy. The 13 different features for each datapoint are

actually the amount of each of the 13 different constituents

found in the analysis. The attributes are real-valued numbers.

There is a total of 178 datapoints. The time for convergence

(to reach the same cost value) was measured (in seconds) for

both the original FCM algorithm and the proposed modified

algorithm while varying the number of clusters and the results

are depicted in Table 2.

Number

of

clusters

Algorithm Used

Original

FCM

Proposed

FCM

2 0.184 0.074

3 0.619 0.321

4 0.794 0.288

5 2.493 0.504

6 2.501 0.915

Table 2 Time for convergence for the Wine dataset

The proposed algorithm, once again, shows significant

economy in terms of time taken till convergence. A similar

study is done to obtain simple linear regression equations for

each of the algorithms. The regression lines are plotted against

the number of clusters in Figure 3.

Figure 3. Wine Dataset performance

The regression equations obtained are:

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (0.6508 × 𝑁) − 1.285

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.1865 × 𝑁) − 0.326

where, N represents the number of clusters. The regression is

done keeping the number of features in the dataset constant.

It can be noted visually from the graph that the time taken by

the original algorithm is consistently higher than that by the

proposed algorithm. In addition, the rate of increase in time as

the number of clusters increases can be obtained from the

regression equations as follows:

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.6508
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.1865

Here, the rate of increase in time for a unit increase in the

number of clusters is approximately 3.5 times more for the

original algorithm than that for the proposed algorithm. The

time taken are recorded while keeping the cost value constant

for a given number of clusters, which enables a fair

comparison. The cost is calculated using (3). Figure 4

illustrates the true clusters and the predicted clusters for the

Wine dataset.

Bhattacherjee et al.

196

Figure 4(a). Wine data set : True clusters

Figure 4(b). Wine data set: Predicted clusters (red stars

indicate the predicted cluster centers)

Isotropic gaussian blobs are generated using Python’s Scikit-

learn library. The dataset generated for this problem contains

3 clusters where cluster centers are generated at random from

the interval (-10, 10). The standard deviation for each cluster

is set at 1 (to maintain homoscedasticity). The random state is

fixed at ‘0’. Under the above conditions, 300 points are

generated, each having 3 features. The points are plotted on a

2-dimensional space for visualisation in Figure 5.

Figure 5. Isotropic gaussian blobs

The time for convergence (to reach the same cost value) was

measured (in seconds) for both the original FCM algorithm

and the proposed modified algorithm while varying the

number of clusters and the results are illustrated in Table 3 and

the time taken over the number of clusters is depicted in Figure

6.

Number of

clusters

Algorithm Used

Original

FCM

Proposed

FCM

2 0.115 0.043

3 0.126 0.037

4 0.461 0.126

5 0.642 0.225

6 0.840 0.267

Table 3 Time of convergence for Gaussian dataset (Type 1)

Figure 6. Isotropic gaussian blobs dataset performance

Referring to Figure 6, the regression equations obtained are:

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (0.197 × 𝑁) − 0.345

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.064 × 𝑁) − 0.115

where, N represents the number of clusters. The number of

features in the dataset is kept constant. It can be noted visually

that the time taken by the original algorithm is consistently

higher than that by the proposed algorithm. In addition, the

rate of increase in time as the number of clusters increases can

be obtained from the regression equations as follows:

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.197
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.064

Here, the rate of increase in time for a unit increase in the

number of clusters is approximately 3 times more for the

original algorithm than that for the proposed algorithm. Hence,

we can conclude that the proposed algorithm facilitates a

significant amount of savings in time to converge to the same

clustering result. Figure 7 illustrates the true and predicted

clusters of this simulated dataset.

Optimizing Fuzzy C Means Clustering Algorithm: Challenges and Applications

197

Figure 7(a). Isotropic gaussian blobs dataset: True clusters

Figure 7(b). Isotropic gaussian blobs dataset: Predicted

clusters (red stars indicate the predicted cluster centers)

 As illustrated in Figure 8, samples from 4 gaussian

distributions of varying means and standard deviations are

taken to create overlapping clusters. For this particular

evaluation, the means of the 4 distributions are taken as (-3,1),

(2,2), (1,-3) and (5,4) with respective standard deviations 1,

0.5, 1.5 and 2 respectively. 250 points are generated from each

of these distributions (making a total of 1000 datapoints). The

time for convergence (keeping the cost same) is measured in

seconds for both the original and the proposed algorithm are

depicted in Table 4 and the clustering results are illustrated in

Figures 9-10.

Figure 8. Gaussian Dataset (Type 2)

Number

of

clusters

Algorithm Used

Original

FCM

Proposed

FCM

2 0.738 0.321

3 1.973 0.619

4 1.264 0.442

5 5.288 0.910

6 12.016 2.402

Table 4: Time of convergence for Gaussian dataset (Type 2)

The time taken by each of the 2 algorithms is regressed

separately on the number of clusters, and two regression

equations are obtained. Note that even though the regression

lines (Figure 9) seem to suggest that, for 2 clusters, proposed

algorithm takes more time than the original algorithm, it can

be seen from the plotted points that, in the data, the proposed

algorithm does in fact take less time for all clusters. The

regression equations obtained are:

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (2.587 × 𝑁) − 6.093

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.445 × 𝑁) − 0.842

where, N represents the number of clusters. The number of

features in the dataset is kept constant.

It can be noted that the rate of increase in time as the number

of clusters increases can be obtained from the regression

equations as follows –

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 2.587
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.445

Here, the rate of increase in time for a unit increase in the

number of clusters is approximately 5 times more for the

original algorithm than that for the proposed algorithm, which

is especially pronounced for high number of clusters. Hence,

we can conclude that the proposed algorithm facilitates a

significant amount of savings in time to converge to the same

clustering result.

Bhattacherjee et al.

198

Figure 9. Gaussian Dataset (Type 2) performance

For visualisation, the true clusters are plotted below, followed

by a graph illustrating the predicted clusters –

Figure 10(a). Gaussian Dataset (Type 2): True clusters

Figure 10(b). Gaussian Dataset (Type 2): Predicted

clusters

The next dataset is the Breast Cancer (Wisconsin) Dataset

from the UCI ML Repository [14]. This data has 569 instances,

where each datapoint has 30 attributes (after eliminating the

ID Number and Diagnosis). The target values are the

diagnosis outcomes – Malignant or Benign. The features were

computed from a digitized image of a fine needle aspirate

(FNA) of a breast mass. These features describe

characteristics of the cell nuclei present in the image. Some of

the features, for example, include mean radius, mean texture,

radial error and other measurements of the mass. The

objective is to detect the diagnosis, given the feature vector.

The time for convergence (to reach the same cost value) was

measured (in seconds) for both the original FCM algorithm

and the proposed modified algorithm while varying the

number of clusters and the results are depicted in Table 5.

Number

of

clusters

Algorithm Used

Original

FCM

Proposed

FCM

2 0.929 0.416

3 6.331 2.426

4 6.278 2.555

5 8.809 4.092

6 13.870 13.093

Table 5 Time of convergence for Breast Cancer Dataset

Clearly, the proposed algorithm converges much faster than

the original one. As done with the previous datasets, a simple

linear regression is implemented to obtain equations that

indicate the rate of change in time. The regression lines are

plotted against the number of clusters in Figure 11.

Figure 11. Breast Cancer Dataset Performance

The regression equations obtained are:

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (2.836 × 𝑁) − 4.1

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (2.701 × 𝑁) − 6.3

where, N represents the number of clusters. The number of

features in the dataset is kept constant.

It can be noted that the rate of increase in time as the number

of clusters increases are indicated by the slopes of the

respective equations as follows –

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 2.836
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 2.701

Here, the rate of increase in time for a unit increase

in the number of clusters is more for the original algorithm

than that for the proposed algorithm. Therefore, here as well,

the proposed algorithm converges much faster than the

original one, which is especially advantageous for datasets

with a high number of features such as the one used here.

Further, the true vs. predicted clusters are indicated in Figure

12, to facilitate a visual representation of the clustering

outcome. Here, each cluster represents a diagnosis, that is, one

for benign and the other for malignant masses.

Optimizing Fuzzy C Means Clustering Algorithm: Challenges and Applications

199

Figure 12(a). Breast Cancer Dataset : True clusters

Figure 12(b). Breast Cancer Dataset : Predicted Clusters

The yellow points represent benign masses while the purple

ones represent malignant ones. Since the clusters have a very

high overlap, standard global clustering techniques are not

ideal for this dataset. Therefore, although most of the points

are correctly clustered, a considerable number of ‘false

positives’ can be seen in terms of diagnosis. However, its

performance is equivalent to the that of the traditional FCM

algorithm, in terms of cluster accuracy. Therefore, the purpose

of the study is fulfilled.

 We finally illustrate the algorithm’s performance over non-

convex datasets as well, keeping in mind that the cluster

accuracy is expected to be lower for non-convex datasets

compared to performance of algorithms like DBSCAN.

However, we include this dataset in our study to demonstrate

that the time conservation is maintained irrespective of the

type of dataset used. For this, two crescents are generated

using Python Scikit-learn’s make_moons() method. We

generate 100 datapoints for each moon, making a total of 200

points in the 2-dimensional dataset. We added a noise quotient

of 0.08. The resultant dataset is shown in Figure 13.

Figure 13. Crescents Dataset

The time for convergence (to reach the same cost value) was

measured (in seconds) for both the original FCM algorithm

and the proposed modified algorithm while varying the

number of clusters and the results are depicted in Table 6.

Number

of

clusters

Algorithm Used

Original

FCM

Proposed

FCM

2 0.083 0.034

3 0.314 0.213

4 0.423 0.151

5 0.515 0.214

6 0.604 0.241

Table 6 : Time of convergence for the crescents

Time taken by the proposed algorithm is consistently lower

than that by the original algorithm. Finally, a simple linear

regression is implemented to obtain equations that indicate the

rate of change in time. The regression lines are plotted against

the number of clusters in Figure 14.

Figure 14. Crescents Dataset performance

The regression equations obtained are:

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (0.124 × 𝑁) − 0.109

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.041 × 𝑁) + 0.005

Bhattacherjee et al.

200

where, N represents the number of clusters. The number of

features in the dataset is kept constant.

The rate of increase in time as the number of clusters increases

are indicated by the slopes of the respective equations as

follows –

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.124
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.041

Here, the rate of increase in time for a unit increase in the

number of clusters is approximately 3 times more for the

original algorithm than that for the proposed algorithm.

Therefore, although a global clustering algorithm is not the

most appropriate model to cluster a pair of crescents, the

proposed algorithm converges much faster than the original

one.

 The true vs. predicted clusters are shown in Figure 15. It is

evident that the clustering is not perfect. This is an expected

result.

Figure 15(a). Crescents Dataset : True clusters

Figure 15(b). Crescents Dataset : Predicted Clusters

V. Check for Robustness

This final section checks the proposed algorithm’s robustness

to data perturbation. In other words, we check how resilient

the proposed algorithm is to some noise/perturbation in the

dataset. The procedure is explained as follows.

 We randomly selected 20% points from the data at hand.

To each point, we introduced some random noise. For each

datapoint 𝑋𝑖 , we generate p number of observations from a

Normal distribution with mean at zero and standard deviation

of 0.15. We then add this p-dimensional vector to the p-

dimensional datapoint 𝑋𝑖 , to obtain the final perturbed

datapoint. Mathematically, this can be expressed as –

𝐹𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝑋𝑖 𝑤𝑖𝑡ℎ 𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑤𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 −

𝑌𝑖
(𝑗)

= (1 + 𝑧(𝑗))𝑋𝑖
(𝑗)

,

𝑤ℎ𝑒𝑟𝑒 −

 𝑋𝑖
(𝑗)

 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡

 𝑧(𝑗)~𝒩(0,0.15)

𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑝

The vector 𝑌𝑖 is the final datapoint after necessary

perturbation. The new dataset is so formed that it contains 80%

points same as the original dataset and 20% perturbed points.

 The new dataset 𝑋′ is then fed to the proposed algorithm

and the cluster outcome is noted. This output is then compared

with that obtained with the original, unperturbed dataset and

the degree of overlap is studied. If this degree of overlap is

very high, we say that the algorithm is robust to perturbation.

However, if the resulting clusters vary to a great extent from

the clusters obtained from the original dataset, then we say that

the algorithm is highly sensitive to perturbations. The degree

of overlap is calculated by the adjusted rand score of the two

clustering outputs for each dataset. The value of Rand Index,

as defined in scikit-learn [15], computes a similarity between

two clustering by considering all pairs of samples and

counting pairs that are assigned in the same or different

clusters in the original and perturbed clustering. This measure

was first introduced by William Rand [16]. The Rand Index

was then modified by Hubert and Arabie [17] and adjusted for

chance, thus forming the ARI (or Adjusted Rand Index) score.

The Adjust Rand Index score is therefore defined as follows –

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥

=
𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥(𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥

An ARI value of 1.0 indicates complete overlap between two

clusters whereas an ARI value of 0 indicates no overlap. The

results are tabulated in Table 7.

Dataset Adjusted Rand Index

Iris 0.912

Wine 0.874

Gaussian (Type 1) 0.997

Gaussian (Type 2) 0.983

Breast Cancer 0.974

Crescents 0.979

Table 7 : ARI for each dataset

Optimizing Fuzzy C Means Clustering Algorithm: Challenges and Applications

201

The ARI values are very close to 1, indicating that the

algorithm is highly robust to perturbations. The next figures

show cluster outputs on the original vs. perturbed datasets for

each dataset mentioned in Table 7.

Figure 16(a). Iris Dataset – Cluster output on

original dataset

Figure 16(b). Iris Dataset – Cluster output on perturbed

dataset

Figure 17(a). Wine Dataset – Cluster output on original

dataset

Figure 17(b). Wine Dataset – Cluster output on perturbed

dataset

Figure 18(a). Gaussian Dataset (Type 1) – Cluster output on

original dataset

Figure 18(b). Gaussian Dataset (Type 1) – Cluster output on

perturbed dataset

Bhattacherjee et al.

202

Figure 19(a). Gaussian Dataset (Type 2) – Cluster output on

original dataset

Figure 19(b). Gaussian Dataset (Type 2) – Cluster output on

perturbed dataset

Figure 20(a). Breast Cancer Dataset – Cluster output on

original dataset

Figure 20(b). Breast Cancer Dataset – Cluster output on

perturbed dataset

Figure 21(a). Crescents Dataset – Cluster output on original

dataset

Figure 21(b). Crescents Dataset – Cluster output on

perturbed dataset

VI. Conclusions

Comparative analyses of the time taken for Algorithm 2 and

Algorithm 3, when implemented individually are already

elaborated in [3] and [2] respectively. This paper combined

these algorithms and compared its performance with the

Optimizing Fuzzy C Means Clustering Algorithm: Challenges and Applications

203

original Fuzzy C-Means algorithm to empirically confirm that

it indeed accelerates the speed of the algorithm, which

becomes more evident for larger datasets and higher number

of clusters. In fact, the cluster accuracy stays intact (and in

some cases, improves over the original FCM algorithm).

Empirical results indicate faster convergence with very high

cluster accuracy (as confirmed by Adjusted Rand Index during

runtime). One can be interested in tailoring the algorithm to

the specific data in hand. In this context, feature normalisation,

feature engineering, sampling from the dataset could be viable

options for further speeding up the convergence. The FCM

algorithm largely depends on the initial centers selected.

Further attempts could be made to eliminate the initial bias to

ensure that the algorithm converges to a better solution.

FCM++ has been proven to be a good approach in this context.

However, testing other methods of effective seed initialisation

(preferably along with Hutcheson and Kolen’s [1] algorithm)

might yield promising results.

 Combining other time-reduction approaches like random

sampling of the datapoints or multi-stage random sampling [7]

have been proven to be very successful. Pairing this strategy

with the proposed algorithm is expected to perform extremely

well for large datasets. Another open field of application is

image segmentation. FCM algorithm finds manifold

implementations in image segmentation problems, where the

image sizes are quite high. In such a scenario, modifying the

algorithm to accommodate image data and effectively

reducing its runtime will open new avenues. The authors of

this paper are looking into a similar implementation on image

data, and tailor the time complexity reduction approach

towards image-segmentation problems.

References

[1] Kolen, John F., and Tim Hutcheson. "Reducing the time

complexity of the fuzzy c-means algorithm." IEEE

Transactions on Fuzzy Systems 10.2 (2002): 263-267.

[2] Stetco, Adrian, Xiao-Jun Zeng, and John Keane. "Fuzzy

C-means++: Fuzzy C-means with effective seeding

initialization." Expert Systems with Applications 42.21

(2015): 7541-7548.

[3] Bezdek, James C., Robert Ehrlich, and William Full.

"FCM: The fuzzy c-means clustering

algorithm." Computers & geosciences 10.2-3 (1984):

191-203.

[4] Cannon, Robert L., Jitendra V. Dave, and James C.

Bezdek. "Efficient implementation of the fuzzy c-means

clustering algorithms." IEEE transactions on pattern

analysis and machine intelligence 2 (1986): 248-255.

[5] Tolias, Yannis A., and Stavros M. Panas. "On applying

spatial constraints in fuzzy image clustering using a fuzzy

rule-based system." IEEE Signal Processing Letters 5.10

(1998): 245-247.

[6] Kamel, Mohamed S., and Shokri Z. Selim. "New

algorithms for solving the fuzzy clustering

problem." Pattern recognition 27.3 (1994): 421-428.

[7] Cheng, Tai Wai, Dmitry B. Goldgof, and Lawrence O.

Hall. "Fast fuzzy clustering." Fuzzy sets and systems 93.1

(1998): 49-56.

[8] Hore, Prodip, Lawrence O. Hall, and Dmitry B. Goldgof.

"Single pass fuzzy c means." 2007 IEEE International

Fuzzy Systems Conference. IEEE, 2007.

[9] Hung, Ming-Chuan, and Don-Lin Yang. "An efficient

fuzzy c-means clustering algorithm." Proceedings 2001

IEEE International Conference on Data Mining. IEEE,

2001.

[10] Arthur, David, and Sergei Vassilvitskii. k-means++: The

advantages of careful seeding. Stanford, 2006.

[11] Zadeh, Lotfi A. "Fuzzy Sets, Information and Control, 8:

338-353." MathSciNet zbMATH (1965).

[12] https://archive.ics.uci.edu/ml/datasets/iris (accessed on

April 05, 2022)

[13] https://archive.ics.uci.edu/ml/datasets/wine (accessed on

April 05, 2022)

[14] Dua, D. and Graff, C. (2019). UCI Machine Learning

Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:

University of California, School of Information and

Computer Science

[15] https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.adjus

ted_rand_score.html (accessed on April 05, 2022)

[16] Rand, William M. "Objective criteria for the evaluation

of clustering methods." Journal of the American

Statistical association 66.336 (1971): 846-850.

[17] Hubert, Lawrence, and Phipps Arabie. "Comparing

partitions." Journal of classification 2.1 (1985): 193-218

[18] Tlili, A., Chikhi, S. and Abraham, A. “Project Risks

Management: Applying Extended Fuzzy Cognitive

Maps with Reinforcement Learning”. International

Journal of Computer Information Systems and Industrial

Management Applications. 12.182-192 (2020): 2150-

7988

[19] Aggarwal, A., Choudhury, T., and Dewangan, B. “A

Fuzzy Interface System to Predict Depression Risk”.

International Journal of Computer Information Systems

and Industrial Management Applications. 12.286-296

(2020):2150-7988

[20] Nayak, Janmenjoy, Bighnaraj Naik, and HSR Behera.

"Fuzzy C-means (FCM) clustering algorithm: a decade

review from 2000 to 2014." Computational intelligence

in data mining-volume 2 (2015): 133-149.

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/wine
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html

