
International Journal of Computer Information Systems and Industrial Management Applications.  

ISSN 2150-7988 Volume 14 (2022) pp. 191-203 

© MIR Labs, www.mirlabs.net/ijcisim/index.html                                                                                                                 

 

 

MIR Labs, USA 
 

Received: 27 December, 2021; Accepted: 5 April, 2022; Publish: 24 April, 2022 

Optimizing Fuzzy C Means Clustering Algorithm: 

Challenges and Applications 
 

Amrita Bhattacherjee 1, Sugata Sanyal 2, Ajith Abraham 3 

 
1 Department of Statistics, St. Xavier’s College, Kolkata – 700016, India 

amritab1211@gmail.com 

 
2 School of Technology & Computer Science, Tata Institute of Fundamental Research, 

Mumbai – 400005, India 
sanyals@gmail.com 

 
3 Machine Intelligence Research Labs (MIR Labs) Scientific Network for Innovation and Research Excellence, Auburn,  

Washington 98071, USA 
ajith.abraham@ieee.or 

 

 

Abstract: The Fuzzy C-Means clustering technique is one 

of the most popular soft clustering algorithms in the field 

of data segmentation. However, its high time complexity 

makes it computationally expensive, when implemented 

on very large datasets. Kolen and Hutcheson [1] proposed 

a modification of the FCM Algorithm, which dramatically 

reduces the runtime of their algorithm, making it linear 

with respect to the number of clusters, as opposed to the 

original algorithm which was quadratic with respect to the 

number of clusters. This paper proposes further 

modification of the algorithm by Kolen et. al., by 

suggesting effective seed initialisation (by Fuzzy C-

Means++, proposed by Stetco et. al. [2]) before feeding the 

initial cluster centers to the algorithm. The resultant 

model converges even faster. Empirical findings are 

illustrated using synthetic and real-world datasets. Finally, 

we check the algorithm’s robustness to perturbations in 

the data. 

 

Keywords: Clustering, Fuzzy partitions, Time complexity, 
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I. Introduction 
Cluster analysis or clustering is a method of grouping data 

points into different clusters or categories such that objects 

within the same cluster are more similar to each other than 

objects in different clusters. The objects are grouped together 

based on some similarity measure, which is specified 

depending on the data at hand and the objective of the task. 

This method has widespread application, ranging from pattern 

recognition and market segmentation to image processing and 

various other fields of data analysis.  

The Fuzzy C-Means algorithm is one such clustering 

algorithm, which facilitates soft partitioning of the objects in 

the dataset. The earliest applications of clustering primarily 

focused on ‘crisp’ partitions of objects, where each point 

either fully belongs to a category or does not belong to a 

category at all. This approach relied on the idea that an object 

in a category does not bear any resemblance to any of the 

categories except to the one it belongs to. Soft partitions, on 

the other hand, rely on the idea that each object is 

characterised by the extent to which they belong to all the 

clusters/categories. A measure of this extent of an object’s 

resemblance to each cluster is introduced by Zadeh (1965) [11] 

in the form of what is now known as a ‘membership function’. 

The final goal is to create partitions or clusters with soft or 

fuzzy margins. As stated by Bezdek et. al. [3]: “A fuzzy c-

partition of (the dataset) X is one which characterizes the 

membership of each sample point in all the clusters by a 

membership function which ranges between 0 and 1”. The 

detailed definition of fuzzy c-means (FCM) partitioning and 

the corresponding algorithm, as proposed by Bezdek et al. [3], 

is given in Section 3.1. 

The main limitation of this algorithm is its time complexity 

and memory requirements. The algorithm alternates between 

estimating cluster centers from the membership matrix and 

updating the membership matrix based on the cluster centers. 

As such, the membership matrix, which is of the order of the 

number of objects to be clustered, is repeatedly accessed and 

updated, on every iteration. This greatly affects the speed of 

the algorithm when the dataset is very large. This problem has 

been widely addressed in the literature. This paper focuses on 

the modification proposed by Kolen and Hutcheson (2002) [1], 

where the membership matrix is not generated (or updated) 

iteratively. This modification generates an algorithm which 

has a time complexity of O(ncp) as opposed to Bezdek’s 

original FCM Algorithm, which had a time complexity of 

O(nc2p), where n is the number of objects in the dataset, c is 

the number of clusters and p is the number of features of each 

object/point in the data. Let us call this algorithm FCM-U, 

where U refers to the membership matrix. 

This paper employs the FCM-U algorithm and pairs it with 

the popular approach of effective seed initialisation for even 

faster convergence. Here, the FCM++ algorithm (proposed by 

Stetco et. al. [2]) is implemented for effective seed 

initialization. On clubbing these two algorithms together, the 

model runs faster and empirically converges earlier than the 

FCM-U algorithm. The following section discusses some 



Bhattacherjee et al. 

 

192 

related works in reducing time complexity of the FCM 

Algorithm, followed by short descriptions of the original FCM 

algorithm, the FCM++ approach and the FCM-U algorithm. 

Then, the proposed model is defined, followed by a 

comparative analysis of the results obtained when this 

algorithm is employed for clustering datasets. In Section 5, we 

check the robustness of the proposed algorithm against 

perturbations in the data. Finally, some further scopes of 

improvement are discussed. 

 

II. Related works 

Several researchers have proposed methods to tackle the 

problem of high computational cost that comes with 

implementation of the Fuzzy C-Means algorithm.  

In 1986, Cannon, Dave and Bezdek [4] proposed an 

Approximate Fuzzy C-Means algorithm where the exact 

variates in the equation are replaced with integer/real-valued 

estimates. With their approach, they sped up the computation 

six times that of the original FCM implementation, while 

keeping the accuracy of cluster results unchanged. Tolias and 

Panas [5] applied spatial constraints on image segmentation 

problems using a fuzzy rule-based system, which showed 

reduced computational time. In 1994, Kamel and Selim [6] 

proposed two algorithms that converged faster than the FCM 

algorithm, having adopted a continuous process where the 

algorithm starts updating the membership values as soon as a 

part of cluster centers are updated. Their algorithm found 

manyfold applications in Pattern Recognition problems and 

were very effective in speeding up the algorithm. While [4], 

[5], [6] and [7] proposed modifications in the computation 

itself, some researchers applied modifications in handling the 

data instead. In 1998, Cheng et. al. [7] proposed a multi-stage 

random sampling approach where the cluster centers are 

estimated after taking repeated random samples from the data. 

Then, the centroids are initialised over the entire data. This 

process reported a speed-up of 2-3 times than the original 

algorithm. Note that the algorithmic iterations of the original 

FCM algorithm is preserved. The data feed is manipulated to 

obtain gain in time. The problem of time complexity is so 

influential in this algorithm that research in this field 

continued during the past two decades and is still ongoing. In 

2007, Hore et. al. [8] proposed a single-pass fuzzy c-means 

algorithm using weighted point calculation. In 2002, Kolen 

and Hutcheson [1] proposed a modification which eliminates 

the task of repeatedly updating the membership matrix, this 

reducing the time complexity to a linear function of the 

number of clusters; as opposed to the original algorithm which 

was a quadratic function of the number of clusters. This was 

particularly beneficial for large datasets. In fact, this paper 

implements this approach in the proposed algorithm along 

with effective seed initialisation. In 2001, Hung and Yang [9] 

proposed the psFCM algorithm which used a simplified subset 

of the original data to speed up the convergence. Unlike [7], 

here, the subset of the data is further simplified to obtain 

approximate results. Several approaches were made to 

eliminate initial bias and reduce the time taken for 

convergence of the FCM algorithm. These research works 

mainly focused on modifying the initial centroids which are 

passed to the algorithm. Effective seed initialisation shows 

promising result in removing initial bias of the FCM algorithm. 

In 2015, Stetco, Zeng and Keane [2] extended the idea of K-

Means++ [10] algorithm into the standard version of Fuzzy C-

Means. 

Research to speed up the Fuzzy C-Means algorithm is 

mainly motivated by its potential to be applicable in a myriad 

of disciplines. The concept of fuzzy sets has been a long-

standing tool in different fields of study and research. Tlili et 

al. [18] applied this concept as fuzzy cognitive maps for 

effective risk management in software projects. They 

implemented fuzzy cognitive maps with Reinforcement 

Learning to obtain a model that could efficiently study project 

risk management as a decision validation tool. While this 

paper shows the application of fuzzy sets in computer 

applications and economics, Aggarwal et al. [19] presented 

another application of fuzzy logic in the field of medicine. 

They formulated a fuzzy logic based interface which predicted 

the risk of onset of depression, based on four predictor 

variables. This paper deals with a specific shortcoming of the 

algorithm and a possible algorithmic modification to tackle it 

from two different perspectives. For readers interested in more 

versatile research trends involving this algorithm, Nayak et al. 

[20] provides an excellent review report of the advances of 

this algorithm over the decade of 2000 to 2014. 

III. Fuzzy C-Means (FCM) Algorithm and its 

variants 

Let 𝑋 =  {𝑋1, 𝑋2, … , 𝑋𝑛} be a set of 𝑛  points in ℛ𝑝 , the p-

dimensional Euclidean space. For 1≤ 𝑐 ≤ 𝑛, 𝑐 ∈ 𝒩, the set of 

natural number, a fuzzy c-partition of 𝑋  is represented by 

(𝑈, 𝑋) where, 𝑈 is a matrix of order 𝑛 × 𝑐, that is – 

𝑈 = ((𝑢𝑖𝑗))
𝑛×𝑐

 

where, 𝑢𝑖𝑗 denotes the membership value of the 𝑖𝑡ℎ point in 𝑋 

to the 𝑗𝑡ℎ  fuzzy set. Here, 1 ≤ 𝑖 ≤ 𝑛  and 1 ≤ 𝑗 ≤ 𝑐 . The 

values of the membership matrix are subject to the following 

conditions: 

1. 0 ≤ 𝑢𝑖𝑗 ≤ 1,  ∀ 𝑖, 𝑗 

2. ∑ 𝑢𝑖𝑗
𝑐
𝑗=1 = 1,  ∀ 𝑖 

3. 0 < ∑ 𝑢𝑖𝑗
𝑛
𝑖=1 < 𝑛,  ∀ 𝑗 

     The FCM algorithm defines a constant 𝑚, which is called 

the fuzziness parameter and corresponds to the degree of 

fuzziness of the clusters.  

By convention, we take 𝑚 > 1. The FCM Algorithm then 

defines ‘cluster centers’ 𝒗𝒋, 1 ≤ 𝑗 ≤ 𝑐 as: 

𝑣𝑗 =
∑ 𝑥𝑖𝑢𝑖𝑗

𝑚𝑛
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1

                                              (1) 

The membership function is typically defined as: 

𝑢𝑖𝑗 = (∑ (
𝑑𝑖𝑗

𝑑𝑖𝑘
)

2
𝑚−1

𝑐

𝑘=1

)

−1

, 

 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑐                      (2) 

where, 

𝑑𝑖𝑗 = ‖𝑥𝑖 − 𝑣𝑗‖ is the distance of the 𝑖𝑡ℎ point in 𝑋 to the 𝑗𝑡ℎ 

cluster center. 

The cost function is defined as: 

𝐽𝑚(𝑈, 𝑉; 𝑋) = ∑ ∑ 𝑢𝑗𝑖
𝑚‖𝑥𝑖 − 𝑣𝑗‖

2
𝑐

𝑗=1

𝑛

𝑖=1

               (3) 

     Therefore, the Fuzzy C-means algorithm as proposed by 

Bezdek is given by: 
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Algorithm  1 : FCM 

1. Fix c, m. Choose an initial membership matrix U(0) 

2. At step k, compute the means 𝒗𝒋, 𝟏 ≤ 𝒋 ≤ 𝒄 using 

equation 1 

3. Update membership matrix U(k), using equation 2 

4. Repeat steps 2 and 3 until: 

 || U(k+1) – U(k)|| < ∈. Or, until k reaches the 

maximum number of permissible iterations 

A. Effective Seed Initialization and Eliminating the U-

Matrix 

The Fuzzy C-Means ++ algorithm as proposed by Stetco et.al. 

uses effective seed initialisation to determine the starting 

values for the FCM algorithm. Before stating the algorithm, 

we state some notations : 

c : number of clusters  

p : dimension of the datapoints  

s : the spreading factor  

V : the c x p prototype matrix  

X : the n x p data matrix 

 They defined a value 𝑃𝑖 , corresponding to the ith data point 

in X, given by:  

𝑃𝑖 =
𝑑𝑠(𝑥𝑖, 𝑉)

𝑠𝑢𝑚(𝑑𝑠)
                         (4) 

where, 𝑑𝑠(𝑥𝑖, 𝑉) denotes the distance (raised to the power s) 

from a point 𝑥𝑖 ∈ 𝑋 to its closest representative in R.  The 

value of s controls the spreading factor of the algorithm. A 

small value of s will choose centers which are very close to 

each other, whereas a very large value of s might lead to the 

choice of outliers as cluster centers. When s  is taken to be 

zero, the algorithm reduces to random seed initialisation. 

Further, the first point is randomly chosen and determines the 

selection of all the other centers. With the values and 

parameters defined above, the FCM++ algorithm by Stetco 

et.al. is as given in Algorithm 2. 

 

Algorithm – 2: FCM++ initialisation 

function FCM++(X,c) 

begin 

 V = V ∪ random point from dataset 

 while sizeOfV<k do 

 begin 

  choose 𝑥𝑖 ∈ 𝑋 with probability 𝑃𝑖 

  V = V ∪ 𝑥𝑖 

 end 

 return V 

end //FCM++ ends here 

We now state the algorithm as proposed by Kolen et.al. which 

constitutes the main body of the algorithm. In 2002, John 

Kolen and Tim Hutcheson proposed a modification in the 

algorithm which reduced the time of computation drastically. 

They eliminated the storage of the membership matrix at every 

iteration, and directly computed the updated cluster centers 

and is detailed in Algorithm 3. 

     

We use the following notations: 

c : number of clusters  

p : dimension of the datapoints  

n : number of data points  

m : the fuzziness coefficient  

V : the c x p prototype matrix  

J : the current cost measure  

X : the n x p data matrix 

Algorithm – 3: Eliminating U-Matrix 

function UpdateV(V,c,X,p,n,m)  

begin 

//save the current V matrix  

oldV=V  

//Initialise cost at 0  

J = 0  

rowsumU = 0  //c-dimensional vector  

V = 0  //initialise new V matrix to zero  

for k=1 to n do  

begin 

//Calculate the distances from the current datapoint X[i] to 

the centers in oldV  

//Calculate the numerators and denominators of equation 2 

for this data point  

//initialise accumulator for denominator in equation 2  

denom3 = 0  

for i = 1 to c do  

begin 

//calculate distance between current 

datapoint and ith cluster center  

dsqr[i] = (||X[k]-oldV[i]||)2  

//save numer3[i] for future use  

numer3[i] = (dsqr[i])(1/m-1)  

//Update denom3  

denom3 = denom3 + 1/numer3[i] 

end 

for i = 1 to c do 

begin 

u = (numer3[i]*denom3)(-m) 

//Update the cost (optional) 

J = J + dsqr[i]*u 

//Update numerator of prototype centers 

V[i] = V[i] + u*X[k]//p-vector operation 

//Update future denominators of centers 

rowsumU[i] = rowsumU[i] + u 

end //for i = 1 to c 

end //for k = 1 to n 

 //Combine numerator and denominators  

 for i = 1 to c do 

  V[i] = V[i]/rowsumU[i] 

 return V,J 

end //UpdateV ends here 

 

We use the above algorithms to derive the proposed 

algorithm. 
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B. Proposed Algorithm 

This paper implements an algorithm which combines the 

previous methods into a single implementation. In other words, 

we first generate a prototype matrix using effective seed 

initialisation (FCM++), and then use this initial prototype 

matrix as the starting point of the algorithm as stated in 

Section 3.1. Additionally, some modifications were made so 

that the algorithm works even when the cluster centers are 

points from the dataset itself. The algorithm is as stated below: 

Step 1 : Run algorithm 2 to obtain initial cluster centers 

Step 2 : Pass V obtained in Step 1 to algorithm 3. Run 

algorithm 3 with some modifications. The modified version 

is given below – 

function ModifiedUpdateV(V,c,X,p,n,m)  

begin 

oldV=V  

J = 0  

rowsumU = 0   

V = 0   

for k=1 to n do  

begin 

denom3 = 0  

flag = -1 

//flag to check the equality of points with 

cluster centers 

for i = 1 to c do  

begin  

dsqr[i] = (||X[k]-oldV[i]||)2  

if dsqr[i]==0: 

 flag=i 

 continue to next i 

numer3[i] = (dsqr[i])(1/m-1)  

denom3 = denom3 + 1/numer3[i] 

end 

for i = 1 to c do 

begin 

 if i==flag: 

 u=1 

 V[i] = V[i] + X[k] 

 rowsumU[i] = rowsumU[i] + 1 

 else: 

u = (numer3[i]*denom3)(-m) 

J = J + dsqr[i]*u 

V[i] = V[i] + u*X[k] 

rowsumU[i] = rowsumU[i] + u 

end //for i = 1 to c 

end //for k = 1 to n 

   

 for i = 1 to c do 

  V[i] = V[i]/rowsumU[i] 

 return V,J 

end 

IV. Experimental Results  

 

Kolen and Hutcheson [1] illustrated the performance impacts 

of their modification in great detail. The algorithm 

implemented in this paper shows further improvement in 

computation speed owing to effective seed initialisation. The 

results are illustrated on 4 datasets – the Iris Dataset [12], 

Wine Dataset [13] and 2 synthetic datasets generated from 

gaussian distributions. The time for convergence (to reach the 

same cost value) was measured (in seconds) for both the 

original FCM algorithm and the proposed modified algorithm 

while varying the number of clusters. The empirical findings 

are Tabulated in Tables 1 to 4. 

 

Number 

of 

clusters 

Algorithm Used 

Original FCM Proposed FCM 

2 0.058 0.021 

3 0.147 0.047 

4 0.193 0.072 

5 0.299 0.093 

6 0.384 0.101 

Table 1 Time for convergence for the Iris dataset 

   Table 1 indicate that the proposed algorithm provides a 

considerable gain in time due to faster convergence with the 

same cost value. The time taken for convergence is plotted in 

Figure 1. The black points are the time taken (in seconds) by 

the original algorithm, plotted against the number of clusters 

specified to the algorithm. To compare the rate of change in 

time taken for each algorithm, a simple linear regression is 

fitted for each of them. The following graph gives a visual 

representation of the results obtained. 

 
Figure 1. Iris Dataset performance 

 

The regression equations obtained are: 

 

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (0.0804 × 𝑁) − 0.1054 

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.0206 × 𝑁) − 0.0156 

 

where, N represents the number of clusters. The regression is 

done keeping the number of features in the dataset constant. It 

can be noted visually from the graph that the time taken by the 

original algorithm is consistently higher than that by the 

proposed algorithm. In addition, the rate of increase in time as 

the number of clusters increases can be obtained from the 

regression equations as follows: 

 

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.0804 
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.0206 

 

   Clearly, the rate of increase in time for a unit increase in the 

number of clusters is approximately 4 times higher for the 
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original algorithm than that for the proposed algorithm. This 

validates a considerable amount of savings in time, especially 

for higher number of clusters. 

   The time taken are recorded while keeping the cost value 

constant for a given number of clusters, which enables a fair 

comparison. The cost is calculated using (3). For perspective, 

the performance of the proposed algorithm in predicting the 

correct clusters can be visually estimated by looking at the 

following graphs. Figure 2 represents the true clusters as 

available in ground truth labels of the dataset. 

 
Figure 2(a). Iris dataset: True clusters  

 
Figure 2(b). Iris dataset: Predicted clusters (red stars 

indicate the predicted cluster centers) 

 

   The Wine Dataset contains data on the results of a chemical 

analysis of 3 different types of wine grown in the same region 

in Italy. The 13 different features for each datapoint are 

actually the amount of each of the 13 different constituents 

found in the analysis. The attributes are real-valued numbers. 

There is a total of 178 datapoints. The time for convergence 

(to reach the same cost value) was measured (in seconds) for 

both the original FCM algorithm and the proposed modified 

algorithm while varying the number of clusters and the results 

are depicted in Table 2.  

 

 

 

Number 

of 

clusters 

Algorithm Used 

Original  

FCM 

Proposed  

FCM 

2 0.184 0.074 

3 0.619 0.321 

4 0.794 0.288 

5 2.493 0.504 

6 2.501 0.915 

Table 2 Time for convergence for the Wine dataset 

 

The proposed algorithm, once again, shows significant 

economy in terms of time taken till convergence. A similar 

study is done to obtain simple linear regression equations for 

each of the algorithms. The regression lines are plotted against 

the number of clusters in Figure 3. 

 

 
Figure 3. Wine Dataset performance 

 

The regression equations obtained are: 

 

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (0.6508 × 𝑁) − 1.285 

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.1865 × 𝑁) − 0.326 

 

where, N represents the number of clusters. The regression is 

done keeping the number of features in the dataset constant. 

It can be noted visually from the graph that the time taken by 

the original algorithm is consistently higher than that by the 

proposed algorithm. In addition, the rate of increase in time as 

the number of clusters increases can be obtained from the 

regression equations as follows: 

 

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.6508 
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.1865 

 

Here, the rate of increase in time for a unit increase in the 

number of clusters is approximately 3.5 times more for the 

original algorithm than that for the proposed algorithm. The 

time taken are recorded while keeping the cost value constant 

for a given number of clusters, which enables a fair 

comparison. The cost is calculated using (3). Figure 4 

illustrates the true clusters and the predicted clusters for the 

Wine dataset. 
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Figure 4(a). Wine data set : True clusters 

 
Figure 4(b). Wine data set: Predicted clusters (red stars 

indicate the predicted cluster centers) 

 

Isotropic gaussian blobs are generated using Python’s Scikit-

learn library. The dataset generated for this problem contains 

3 clusters where cluster centers are generated at random from 

the interval (-10, 10). The standard deviation for each cluster 

is set at 1 (to maintain homoscedasticity). The random state is 

fixed at ‘0’. Under the above conditions, 300 points are  

generated, each having 3 features. The points are plotted on a 

2-dimensional space for visualisation in Figure 5.  

 

 
Figure 5. Isotropic gaussian blobs 

 

The time for convergence (to reach the same cost value) was 

measured (in seconds) for both the original FCM algorithm 

and the proposed modified algorithm while varying the 

number of clusters and the results are illustrated in Table 3 and 

the time taken over the number of clusters is depicted in Figure 

6. 

 

Number of 

clusters 

Algorithm Used 

Original  

FCM 

Proposed  

FCM 

2 0.115 0.043 

3 0.126 0.037 

4 0.461 0.126 

5 0.642 0.225 

6 0.840 0.267 

Table 3 Time of convergence for Gaussian dataset (Type 1) 

 

 
Figure 6. Isotropic gaussian blobs dataset performance 

 

Referring to Figure 6, the regression equations obtained are: 

 

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (0.197 × 𝑁) − 0.345 

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.064 × 𝑁) − 0.115 

 

where, N represents the number of clusters. The number of 

features in the dataset is kept constant. It can be noted visually 

that the time taken by the original algorithm is consistently 

higher than that by the proposed algorithm. In addition, the 

rate of increase in time as the number of clusters increases can 

be obtained from the regression equations as follows: 

 

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.197 
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.064 

 

Here, the rate of increase in time for a unit increase in the 

number of clusters is approximately 3 times more for the 

original algorithm than that for the proposed algorithm. Hence, 

we can conclude that the proposed algorithm facilitates a 

significant amount of savings in time to converge to the same 

clustering result. Figure 7 illustrates the true and predicted 

clusters of this simulated dataset.  
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Figure 7(a). Isotropic gaussian blobs dataset: True clusters 

 

 

 
Figure 7(b). Isotropic gaussian blobs dataset: Predicted 

clusters (red stars indicate the predicted cluster centers) 

 

    As illustrated in Figure 8, samples from 4 gaussian 

distributions of varying means and standard deviations are 

taken to create overlapping clusters. For this particular 

evaluation, the means of the 4 distributions are taken as (-3,1), 

(2,2), (1,-3) and (5,4) with respective standard deviations 1, 

0.5, 1.5 and 2 respectively. 250 points are generated from each 

of these distributions (making a total of 1000 datapoints). The 

time for convergence (keeping the cost same) is measured in 

seconds for both the original and the proposed algorithm are 

depicted in Table 4 and the clustering results are illustrated in 

Figures 9-10. 

 

 
Figure 8. Gaussian Dataset (Type 2) 

 

Number 

of 

clusters 

Algorithm Used 

Original  

FCM 

Proposed  

FCM 

2 0.738 0.321 

3 1.973 0.619 

4 1.264 0.442 

5 5.288 0.910 

6 12.016 2.402 

Table 4: Time of convergence for Gaussian dataset (Type 2) 

 

The time taken by each of the 2 algorithms is regressed 

separately on the number of clusters, and two regression 

equations are obtained. Note that even though the regression 

lines (Figure 9) seem to suggest that, for 2 clusters, proposed 

algorithm takes more time than the original algorithm, it can 

be seen from the plotted points that, in the data, the proposed 

algorithm does in fact take less time for all clusters. The 

regression equations obtained are: 

 

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (2.587 × 𝑁) − 6.093 

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.445 × 𝑁) − 0.842 

 

where, N represents the number of clusters. The number of 

features in the dataset is kept constant. 

It can be noted that the rate of increase in time as the number 

of clusters increases can be obtained from the regression 

equations as follows – 

 

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 2.587 
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.445 

 

Here, the rate of increase in time for a unit increase in the 

number of clusters is approximately 5 times more for the 

original algorithm than that for the proposed algorithm, which 

is especially pronounced for high number of clusters. Hence, 

we can conclude that the proposed algorithm facilitates a 

significant amount of savings in time to converge to the same 

clustering result. 
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Figure 9. Gaussian Dataset (Type 2) performance 

 

For visualisation, the true clusters are plotted below, followed 

by a graph illustrating the predicted clusters – 

 

 
Figure 10(a). Gaussian Dataset (Type 2): True clusters 

 

 
Figure 10(b). Gaussian Dataset (Type 2): Predicted 

clusters 

 

The next dataset is the Breast Cancer (Wisconsin) Dataset 

from the UCI ML Repository [14]. This data has 569 instances, 

where each datapoint has 30 attributes (after eliminating the 

ID Number and Diagnosis). The target values are the 

diagnosis outcomes – Malignant or Benign. The features were 

computed from a digitized image of a fine needle aspirate 

(FNA) of a breast mass. These features describe 

characteristics of the cell nuclei present in the image. Some of 

the features, for example, include mean radius,  mean texture, 

radial error and other measurements of the mass. The 

objective is to detect the diagnosis, given the feature vector. 

The time for convergence (to reach the same cost value) was 

measured (in seconds) for both the original FCM algorithm 

and the proposed modified algorithm while varying the 

number of clusters and the results are depicted in Table 5. 

 

Number 

of 

clusters 

Algorithm Used 

Original  

FCM 

Proposed  

FCM 

2 0.929 0.416 

3 6.331 2.426 

4 6.278 2.555 

5 8.809 4.092 

6 13.870 13.093 

Table 5 Time of convergence for Breast Cancer Dataset 

 

Clearly, the proposed algorithm converges much faster than 

the original one. As done with the previous datasets, a simple 

linear regression is implemented to obtain equations that 

indicate the rate of change in time. The regression lines are 

plotted against the number of clusters in Figure 11.  

 
Figure 11. Breast Cancer Dataset Performance 

 

The regression equations obtained are: 

 

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (2.836 × 𝑁) − 4.1 

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (2.701 × 𝑁) − 6.3 

 

where, N represents the number of clusters. The number of 

features in the dataset is kept constant. 

It can be noted that the rate of increase in time as the number 

of clusters increases are indicated by the slopes of the 

respective equations as follows – 

 

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 2.836 
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 2.701 

 

Here, the rate of increase in time for a unit increase 

in the number of clusters is more for the original algorithm 

than that for the proposed algorithm. Therefore, here as well, 

the proposed algorithm converges much faster than the 

original one, which is especially advantageous for datasets 

with a high number of features such as the one used here. 

Further, the true vs. predicted clusters are indicated in Figure 

12, to facilitate a visual representation of the clustering 

outcome. Here, each cluster represents a diagnosis, that is, one 

for benign and the other for malignant masses. 
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Figure 12(a). Breast Cancer Dataset : True clusters 

 

 

Figure 12(b). Breast Cancer Dataset : Predicted Clusters 

The yellow points represent benign masses while the purple 

ones represent malignant ones. Since the clusters have a very 

high overlap, standard global clustering techniques are not 

ideal for this dataset. Therefore, although most of the points 

are correctly clustered, a considerable number of ‘false 

positives’ can be seen in terms of diagnosis. However, its 

performance is equivalent to the that of the traditional FCM 

algorithm, in terms of cluster accuracy. Therefore, the purpose 

of the study is fulfilled. 

    We finally illustrate the algorithm’s performance over non-

convex datasets as well, keeping in mind that the cluster 

accuracy is expected to be lower for non-convex datasets 

compared to performance of algorithms like DBSCAN. 

However, we include this dataset in our study to demonstrate 

that the time conservation is maintained irrespective of the 

type of dataset used. For this, two crescents are generated 

using Python Scikit-learn’s make_moons() method. We 

generate 100 datapoints for each moon, making a total of 200 

points in the 2-dimensional dataset. We added a noise quotient 

of 0.08. The resultant dataset is shown in Figure 13. 

 

Figure 13. Crescents Dataset 

The time for convergence (to reach the same cost value) was 

measured (in seconds) for both the original FCM algorithm 

and the proposed modified algorithm while varying the 

number of clusters and the results are depicted in Table 6. 

 

Number 

of 

clusters 

Algorithm Used 

Original  

FCM 

Proposed  

FCM 

2 0.083 0.034 

3 0.314 0.213 

4 0.423 0.151 

5 0.515 0.214 

6 0.604 0.241 

Table 6 : Time of convergence for the crescents 

 

Time taken by the proposed algorithm is consistently lower 

than that by the original algorithm. Finally, a simple linear 

regression is implemented to obtain equations that indicate the 

rate of change in time. The regression lines are plotted against 

the number of clusters in Figure 14. 

  

 
Figure 14. Crescents Dataset performance 

 

The regression equations obtained are: 

 

𝑇𝑖𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (0.124 × 𝑁) − 0.109 

𝑇𝑖𝑚𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.041 × 𝑁) + 0.005 
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where, N represents the number of clusters. The number of 

features in the dataset is kept constant. 

The rate of increase in time as the number of clusters increases 

are indicated by the slopes of the respective equations as 

follows – 

 

𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.124 
𝑆𝑙𝑜𝑝𝑒 𝑓𝑜𝑟 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 0.041 

 

Here, the rate of increase in time for a unit increase in the 

number of clusters is approximately 3 times more for the 

original algorithm than that for the proposed algorithm. 

Therefore, although a global clustering algorithm is not the 

most appropriate model to cluster a pair of crescents, the 

proposed algorithm converges much faster than the original 

one. 

    The true vs. predicted clusters are shown in Figure 15. It is 

evident that the clustering is not perfect. This is an expected 

result.  

 
Figure 15(a). Crescents Dataset : True clusters 

 

 
Figure 15(b). Crescents Dataset : Predicted Clusters 

V. Check for Robustness 

This final section checks the proposed algorithm’s robustness 

to data perturbation. In other words, we check how resilient 

the proposed algorithm is to some noise/perturbation in the 

dataset. The procedure is explained as follows. 

     We randomly selected 20% points from the data at hand. 

To each point, we introduced some random noise. For each 

datapoint 𝑋𝑖 , we generate p number of observations from a 

Normal distribution with mean at zero and standard deviation 

of 0.15. We then add this p-dimensional vector to the p-

dimensional datapoint 𝑋𝑖 , to obtain the final perturbed 

datapoint. Mathematically, this can be expressed as – 

𝐹𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝑋𝑖 𝑤𝑖𝑡ℎ 𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑤𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 − 

𝑌𝑖
(𝑗)

= (1 + 𝑧(𝑗))𝑋𝑖
(𝑗)

,       

𝑤ℎ𝑒𝑟𝑒 − 

 𝑋𝑖
(𝑗)

 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ  𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 

 𝑧(𝑗)~𝒩(0,0.15) 

𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑝 

 

The vector 𝑌𝑖  is the final datapoint after necessary 

perturbation. The new dataset is so formed that it contains 80% 

points same as the original dataset and 20% perturbed points. 

     The new dataset 𝑋′ is then fed to the proposed algorithm 

and the cluster outcome is noted. This output is then compared 

with that obtained with the original, unperturbed dataset and 

the degree of overlap is studied. If this degree of overlap is 

very high, we say that the algorithm is robust to perturbation. 

However, if the resulting clusters vary to a great extent from 

the clusters obtained from the original dataset, then we say that 

the algorithm is highly sensitive to perturbations. The degree 

of overlap is calculated by the adjusted rand score of the two 

clustering outputs for each dataset. The value of Rand Index, 

as defined in scikit-learn [15], computes a similarity between 

two clustering by considering all pairs of samples and 

counting pairs that are assigned in the same or different 

clusters in the original and perturbed clustering. This measure 

was first introduced by William Rand [16]. The Rand Index 

was then modified by Hubert and Arabie [17] and adjusted for 

chance, thus forming the ARI (or Adjusted Rand Index) score. 

The Adjust Rand Index score is therefore defined as follows – 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥

=  
𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥(𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥) −  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥
 

 

An ARI value of 1.0 indicates complete overlap between two 

clusters whereas an ARI value of 0 indicates no overlap. The 

results are tabulated in Table 7. 

 

Dataset Adjusted Rand Index 

Iris 0.912 

Wine 0.874 

Gaussian (Type 1) 0.997 

Gaussian (Type 2) 0.983 

Breast Cancer 0.974 

Crescents 0.979 

Table 7 : ARI for each dataset 
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The ARI values are very close to 1, indicating that the 

algorithm is highly robust to perturbations. The next figures 

show cluster outputs on the original vs. perturbed datasets for 

each dataset mentioned in Table 7. 

Figure 16(a). Iris Dataset – Cluster output on 

original dataset 

 

 

Figure 16(b). Iris Dataset – Cluster output on perturbed 

dataset 

  
Figure 17(a). Wine Dataset – Cluster output on original 

dataset 

 
Figure 17(b). Wine Dataset – Cluster output on perturbed 

dataset 

  

Figure 18(a). Gaussian Dataset (Type 1) – Cluster output on 

original dataset 

 
Figure 18(b). Gaussian Dataset (Type 1) – Cluster output on 

perturbed dataset 
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Figure 19(a). Gaussian Dataset (Type 2) – Cluster output on 

original dataset 

 
Figure 19(b). Gaussian Dataset (Type 2) – Cluster output on 

perturbed dataset 

  

Figure 20(a). Breast Cancer Dataset  – Cluster output on 

original dataset 

 
 

Figure 20(b). Breast Cancer Dataset  – Cluster output on 

perturbed dataset 

  

Figure 21(a). Crescents Dataset  – Cluster output on original 

dataset 

 
Figure 21(b). Crescents Dataset  – Cluster output on 

perturbed dataset 

 

VI. Conclusions 

 
Comparative analyses of the time taken for Algorithm 2 and 

Algorithm 3, when implemented individually are already 

elaborated in [3] and [2] respectively. This paper combined 

these algorithms and compared its performance with the 



Optimizing Fuzzy C Means Clustering Algorithm: Challenges and Applications 

 

203 

original Fuzzy C-Means algorithm to empirically confirm that 

it indeed accelerates the speed of the algorithm, which 

becomes more evident for larger datasets and higher number 

of clusters. In fact, the cluster accuracy stays intact (and in 

some cases, improves over the original FCM algorithm). 

Empirical results indicate faster convergence with very high 

cluster accuracy (as confirmed by Adjusted Rand Index during 

runtime). One can be interested in tailoring the algorithm to 

the specific data in hand. In this context, feature normalisation, 

feature engineering, sampling from the dataset could be viable 

options for further speeding up the convergence. The FCM 

algorithm largely depends on the initial centers selected. 

Further attempts could be made to eliminate the initial bias to 

ensure that the algorithm converges to a better solution. 

FCM++ has been proven to be a good approach in this context. 

However, testing other methods of effective seed initialisation 

(preferably along with Hutcheson and Kolen’s [1] algorithm) 

might yield promising results.    

    Combining other time-reduction approaches like random 

sampling of the datapoints or multi-stage random sampling [7] 

have been proven to be very successful. Pairing this strategy 

with the proposed algorithm is expected to perform extremely 

well for large datasets. Another open field of application is 

image segmentation. FCM algorithm finds manifold 

implementations in image segmentation problems, where the 

image sizes are quite high. In such a scenario, modifying the 

algorithm to accommodate image data and effectively 

reducing its runtime will open new avenues. The authors of 

this paper are looking into a similar implementation on image 

data, and tailor the time complexity reduction approach 

towards image-segmentation problems. 
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