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A B S T R A C T

The multilevel thresholding is one important operation in computer vision, which is a subfield of artificial
intelligence (AI), used to understand and interpret the data in the real world. The existing entropic methods,
based on the histogram of an image for the multilevel thresholding mostly deal with the maximization of the
entropic information excluding the shred boundary, which reduces the accuracy. These problems lead to the
poor thresholding accuracy and a lower speed. To address the problem, we propose a novel interdependence
based technique that uses the shred boundary, which is a minimization problem. A firsthand objective function
is investigated, which takes care of the shred boundary. The traditional multilevel thresholding techniques are
computationally expensive due to the exhaustive search process, an alternate method is to use the evolutionary
computation based on a nature-inspired algorithm. In this paper, a new optimizer called adaptive equilibrium
optimizer (AEO) is also proposed for multilevel thresholding, an improvement over the basic equilibrium
optimizer (EO) by implementing an adaptive decision making of dispersal for nonperformer search agents.
The AEO performance is compared with state-of-the-art algorithms — equilibrium optimizer (EO), gray wolf
optimizer (GWO), whale optimization algorithm (WOA), squirrel search algorithm (SSA) and the wind driven
optimization (WDO) algorithm, using standard benchmark functions. Based on the qualitative and quantitative
analysis, the AEO outperformed EO, GWO, WOA, SSA, and WDO. The optimal thresholds are obtained by
minimizing the objective function using the AEO. For the experiment, 500 images of the BSDS 500 dataset are
considered. Popular metrics such as the peak signal to noise ratio (PSNR), structural similarity index (SSIM),
and the feature similarity index (FSIM) are considered for a quantitative analysis. Remarkable differences
in the thresholding accuracy are observed with a simultaneously decreasing computational complexity. The
merits of the paper are highlighted to ensure its future use in the world of engineering applications using soft
computing, a subfield of the AI.
. Introduction

Image segmentation is a fundamental step of the image processing
n which an image is segmented into different segments based on its
haracteristics — the intensity, contrast, and texture. Image threshold-
ng is the simplest approach in the image segmentation. It uses the basic
ssumption of the object and the background that has distinct gray
evel distributions. Based on this assumption, the gray level histogram
ontains multiple picks. The corresponding threshold values can be
btained for the multilevel image thresholding. The various global
hresholding methods are described in Fu and Mui (1981), Pal and
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Pal (1993), Sahoo et al. (1988), Sankur and Sezgin (2001), Sezgin
and Sankur (2004) and Zhang et al. (2008). The thresholding methods
are classified by parametric and non-parametric approaches. The non-
parametric approach of thresholding methods uses some maximization
criteria to obtain the threshold values (Bohat and Arya, 2019). Some of
the non-parametric classical thresholding methods are Otsu’s method
(Otsu, 1979), Kapur’s entropy (Kapur et al., 1985), Tsallis entropy
(Pavesic and Ribaric, 2000; Portes de Albuquerque et al., 2004; Tsallis,
2001) and Masi entropy (Khairuzzaman and Chaudhury, 2019; Masi,
2005; Nie et al., 2017) based on maximization criterion determined
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from the histogram of a target image. Otsu’s thresholding method is
a nonparametric and unsupervised nature of the threshold selection
based on discriminant criterion by maximizing the intra-class variance
among the foreground and background classes. The Kapur’s entropy
obtained the threshold by using the maximization criterion of the
entropic information among the different classes. The Tsallis entropy
is a non-extensive entropy, which is an extension to Boltzmann–Gibbs
entropy. Nature-inspired algorithms are a more practical approach to
lower the computational complexity of multilevel thresholding. The
Masi entropy is a generalized entropy that can manage the addi-
tive/nonextensive information that occurs in a physical system. Apart
from these techniques, another thresholding method named Johannsen
and Bille method (Johannsen and Bille, 1982) use entropic information
from the histogram for bi-level thresholding by minimizing the interde-
pendence of two classes and show some impressive results as described
in Sahoo et al. (1988).

The thresholding methods are classified as the bi-level thresholding
and the multilevel thresholding based on the number of thresholds used
to segment the image. The bi-level threshold uses one threshold value
to segment the entire image into the foreground and the background
regions. However, a set of two or more thresholds is used to segment
the whole image in the multilevel thresholding. The multilevel thresh-
olding is strongly recommended over bi-level thresholding for superior
performances (Agrawal et al., 2017). As the number of thresholds in-
creases in the multilevel thresholding, it provides superior performance
with a cost of computational time complexity. The computational time
increases due to the complexity of a simple exhaustive search, which is
𝑂
(

𝐿𝐾) for 𝐾 thresholds (Yin, 1999). The complexity can be reduced
sing recursive algorithms (Liao et al., 2001; Peng-Yeng and Ling-Hwei,
994; Yin and Chen, 1997) to obtain the optimal thresholds with the
elp of lookup tables. When the number of thresholds increases, the
omputation time increases even by using the recursive algorithms
Song et al., 2017). Therefore, the problem still exists. To overcome the
omputation time complexity, nature-inspired optimization algorithms
re utilized in the multilevel thresholding.

The recent developments in the nature-inspired optimization algo-
ithms have shown their strong potential to be used in the optimization
roblems. These algorithms are — equilibrium optimizer (EO) (Fara-
arzi et al., 2020) inspired by dynamic and equilibrium state of control

olume mass balance model, gray wolf optimizer (GWO) (Mirjalili
t al., 2014) stimulated by leadership and hunting mechanism of gray
olves, whale optimization algorithm (WOA) (Mirjalili and Lewis,
016) inspired by social behavior of humpback whales, squirrel search
lgorithm (SSA) (Jain et al., 2019) motivated by foraging behavior
f southern flying squirrels, and wind driven optimization (WDO)
Bayraktar et al., 2013) inspired by air parcels in N-dimensional space
sing Newton’s second law is good to obtain the optimal solution on
ts capacity. Sometimes a basic version of the algorithm is not perfect
or all types of problems, so modifying or hybridizing the algorithms
mproves the performance. In this regard, some recent advancements in
he optimization are — GWO with fuzzy weight hierarchical operator
Rodríguez et al., 2017), continuous Karnik–Mendel method using the
ype-2 fuzzy system for harmony search (HS) and differential evolution
DE) (Castillo et al., 2019), fuzzy adaptive multi-objective evolutionary
lgorithm (FAME) (Santiago et al., 2019) based on fuzzy interfer-
nce system, multi-objective hierarchical genetic algorithm (MOHGA)
Melin and Sánchez, 2018) optimization of modular neural network and
onstrued real parameter optimization (Rodríguez et al., 2020) using a
irefly algorithm (FA) and gray wolf optimizer (GWO).

To overcome the computational time complexity issue in the mul-
ilevel thresholding, researchers extensively use soft computing, a sub-
ield of the AI. The gray wolf optimizer (GWO) is used to obtain the
hreshold value in the multilevel thresholding using Otsu’s between-
lass variance and Kapur’s entropy in Khairuzzaman and Chaudhury
2017), which shows better performance than the particle swarm op-
imization (PSO) and bacteria foraging optimization (BFO). A krill
2

herd optimization (KHO) is used to determine the optimal threshold
values based on Otsu’s and Kapur’s entropy as objective functions
(Baby Resma and Nair, 2018), which shows that the KHO has an
advantage in computational time over BFO, PSO, genetic algorithm
(GA) and moth-flame Optimization (MFO). Similarly, El Aziz et al. show
better performance in the multilevel thresholding using Otsu’s and Ka-
pur’s entropy methods with the help of a whale optimization algorithm
(WOA) by lowering the processing time (El Aziz et al., 2018). The PSO
with Masi entropy as an objective function for multilevel thresholding
is proposed in Khairuzzaman and Chaudhury (2019), which shows im-
proved performance over Kapur’s entropy. Martino and Sessa propose
multilevel thresholding using maximizing the fuzzy entropy with the
help of a variant of the PSO named as chaotic Darwinian particle swarm
optimization (CDPSO) as an optimizer (Martino and Sessa, 2020),
which shows improvements over the results and CPU computational
time. The crow search algorithm (CSA) with Kapur’s entropy is used
to get the optimal threshold values for the multilevel thresholding in
Upadhyay and Chhabra (2019), which shows that the CSA present
better quality and consistency. Kandhway and Bhandari proposed Masi
entropy as an objective function for multilevel thresholding using a
water cycle algorithm (WCA) in Kandhway and Bhandari (2019), which
interpreted that Masi entropy method outperformed Tsallis entropy.
The symbiotic organisms search (SOS) is used to find the optimal
threshold values in Küçükuğurlu and Gedikli (2020) with the help of
Kapur’s entropy, which shows a performance improvement over the
PSO, GA, GWO, artificial bee colony (ABC) and the firefly algorithm
(FA) approach. Developments of hybridizing/modifying the nature-
inspired optimization algorithms, to achieve the best in multilevel
thresholding, are found in the literature. The hybrid bat algorithm
with genetic crossover operation and smart inertia weight (SGA-BA)
(Yue and Zhang, 2020), Hybrid-heuristic method (as a combination
of genetic algorithm (GA), sine cosine algorithm (SCA), artificial bee
colony (ABC) algorithm, firefly algorithm (FA) and social-spider op-
timization (SSO) algorithm) (Elaziz et al., 2020) uses the Otsu’s and
Kapur’s entropy for the multilevel thresholding. Recently, differential
evolutionary adaptive Harris hawks optimization (DEAHHO) using a
novel 2-D practical Masi entropy as an objective function of the mul-
tilevel thresholding technique is proposed in Wunnava et al. (2020),
which shows the potential of the hybridization of the optimization
algorithms to overcome the disadvantage of the basic algorithm. This
has motivated the authors to explore a new method for the multilevel
image thresholding to enrich the computer vision field of the AI.
Although there are several methods (discussed above), this work is
an attempt to achieve significant progress in the world of engineering
applications, specifically segmentation, in the field computer vision, a
subfield of the AI, to understand and interpret the object classification,
identification, localization, and description.

The focus of the work is to investigate a novel interdependence
based multilevel thresholding technique and an efficient
nature-inspired optimization algorithm to achieve optimal threshold
values to preserve more information. The idea of the interdependence
based bi-level thresholding is found in Johannsen and Bille (1982).
This idea is used here to develop new theoretical contributions to
the multilevel thresholding of gray level images by minimizing the
interdependency. In this context, a novel objective function is inves-
tigated to minimize the entropic interdependencies between various
classes. This is an interesting contribution of the present work. As
the computational time increases with the number of thresholds, an
exhaustive search using the traditional procedures is a difficult task,
that requires an optimizer. This warrants us to investigate a novel
nature-inspired optimization algorithm. For this purpose, recently the
equilibrium optimizer (EO) proposed in Faramarzi et al. (2020) is
considered. The EO is inspired by the dynamic and the equilibrium
states of the control volume mass balance model. In this algorithm,
the search agents update the position concerning the equilibrium

candidates, to reach the optimal solution (equilibrium state). However,
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the search agents position update always depends on the equilibrium
state, which may restrict the exploration capability of the EO. To avoid
this, we suggest an adaptive position update strategy for the search
agents based on the current fitness value; and coined as an adaptive
equilibrium optimizer (AEO). This is another interesting contribution
of the paper. A qualitative and quantitative analysis of AEO is per-
formed with the help of a set of twenty-three well-known benchmark
functions (Liang and Suganthan, 2005; Naik and Panda, 2016; Yao
et al., 1999). The performance is compared with state-of-the-art nature-
inspired algorithms such as EO, GWO, WOA, SSA, and WDO. The AEO
is ranked one based on Friedman mean rank. The AEO performed well,
it encourages to employ the AEO as an optimizer to find the optimal
threshold values using interdependence based multilevel thresholding.
To demonstrate the feasibility and superiority, the method is evaluated
using the Berkeley Segmentation Data Set (BSDS 500). The segmented
images using the optimal threshold values obtained are evaluated statis-
tically using a well-known Wilcoxon test. Different performance metrics
are also considered for quantitative analysis. Thresholded images are
displayed in the result and discussion section to provide a qualitative
analysis. Based on the nonparametric statistical test (Wilcoxon test),
our technique outperforms other methods in multilevel thresholding.

The organization of the paper is as follows. Section 1 is devoted to a
brief introduction. The problem formulation based on interdependence
based objective function for multilevel thresholding is presented in
Section 2. The development of a new optimization algorithm coined as
the AEO is presented in Section 3. The proposed method for multilevel
image thresholding is described in Section 4. Results and discussions
are highlighted in Section 5. Conclusions are drawn in Section 6.

2. Problem formulation

2.1. Multilevel thresholding

Let us consider an image 𝐼 of size 𝑀 ×𝑁 , with 𝐿 gray levels in the
range [0, 𝐿 − 1], then the probability of each gray level is expressed as

𝑝𝑖 =
𝑛𝑖

𝑀 ×𝑁
, 𝑖 ∈ [0, 1,… , 𝐿 − 1] , (1)

here 𝑛𝑖 represents the number of pixels with the 𝑖th gray level and
𝐿−1
𝑖=0 𝑝𝑖 = 1, 𝑝𝑖 ≥ 0.

Let the 𝐾 threshold values 𝑡1, 𝑡2,… , 𝑡𝐾 divide the image into 𝐾 + 1
lasses as 𝑀𝑖 where 𝑖 = 1, 2,… , 𝐾 + 1 in the multilevel thresholding.
he 𝑀1 is the foreground class, 𝑀𝑖=2,3,…,𝐾 are the intermediate classes
nd 𝑀𝐾+1 is the background class. Then the different classes in the
ultilevel thresholding are defined as:
[

0, 𝑡1 − 1
]

∈ 𝑀1
[

𝑡1, 𝑡2 − 1
]

∈ 𝑀2
⋮

𝑡𝐾 , 𝐿 − 1
]

∈ 𝑀𝐾+1

(2)

.2. The proposed interdependence based objective function for multilevel
hresholding

The bi-level thresholding method based on the interdependency is
ound in Johannsen and Bille (1982). The authors use the entropic in-
ormation form the histogram to divide the gray level distribution into
wo parts by minimizing an interdependence function. A comparison of
heir method with other bi-level thresholding techniques is discussed in
ahoo et al. (1988).

The optimal threshold 𝑡∗ is chosen by minimizing the interdepen-
ence using the relation
∗ = arg min

0<𝑡<𝐿−1

{

𝑆𝑓
(

𝑀𝑓
)

+ 𝑆𝑏
(

𝑀𝑏
)}

, (3)

here entropic information of the foreground class 𝑀𝑓 consisting of
ray level 0, 𝑡 is defined as 𝑆 and the other background class 𝑀
[ ] 𝑓 𝑏

3

able 1
et of gray level and threshold values as the shred boundary for different classes of
he entropic information.
Class Entropic

information
Set of gray
level

Threshold value as
shred boundary

𝑀1 𝑆1 [0, 𝑡1] 𝑡1
𝑀2 𝑆2 [𝑡1 , 𝑡2] 𝑡1, 𝑡2
𝑀𝑖=3,4,…,𝐾 𝑆𝑖=3,4,…,𝐾 [𝑡𝑖−1 , 𝑡𝑖] 𝑡𝑖−1, 𝑡𝑖
𝑀𝐾+1 𝑆𝐾+1

[

𝑡𝐾 , 𝐿 − 1
]

𝑡𝐾

consisting of gray level [𝑡, 𝐿 − 1] is defined as 𝑆𝑏. The 𝑆𝑓
(

𝑀𝑓
)

and
𝑆𝑏

(

𝑀𝑏
)

are calculated as

𝑆𝑓
(

𝑀𝑓
)

= log𝑒

( 𝑡
∑

𝑖=0
𝑝𝑖

)

− 1
∑𝑡

𝑖=0 𝑝𝑖

[

𝑝𝑡 log𝑒 𝑝𝑡 +

( 𝑡−1
∑

𝑖=0
𝑝𝑖

)

log𝑒

( 𝑡−1
∑

𝑖=0
𝑝𝑖

)]

,

(4)

and

𝑆𝑏
(

𝑀𝑏
)

= log𝑒

(𝐿−1
∑

𝑖=𝑡
𝑝𝑖

)

− 1
∑𝐿−1

𝑖=𝑡 𝑝𝑖

[

𝑝𝑡 log𝑒 𝑝𝑡 +

( 𝐿−1
∑

𝑖=𝑡+1
𝑝𝑖

)

× log𝑒

( 𝐿−1
∑

𝑖=𝑡+1
𝑝𝑖

)]

. (5)

It is observed that the entropic information calculation of 𝑆𝑓 and 𝑆𝑏
depends on the threshold value 𝑡, which is the shred boundary of the
foreground and the background class. Let us extend the concept of the
bi-level thresholding to the multilevel thresholding for 𝐾 number of
thresholds. This is one of the main contributions of our paper. The
corresponding entropic information for the 𝐾+1 classes is referred to as
𝑆𝑖 where 𝑖 = 1, 2,… , 𝐾+1. The set of gray levels used for the calculation
of the entropic information for various classes is displayed in Table 1.

The entropic information 𝑆𝑖=1,2,…,𝐾+1 of the different classes for the
multilevel thresholding is formulated as

𝑆1
(

𝑀1
)

= log𝑒

( 𝑡1
∑

𝑖=0
𝑝𝑖

)

− 1
∑𝑡1

𝑖=0 𝑝𝑖

[(𝑡1−1
∑

𝑖=0
𝑝𝑖

)

× log𝑒

(𝑡1−1
∑

𝑖=0
𝑝𝑖

)

+ 𝑝𝑡1 log𝑒 𝑝𝑡1

]

𝑆2
(

𝑀2
)

= log𝑒

( 𝑡2
∑

𝑖=𝑡1

𝑝𝑖

)

− 1
∑𝑡2

𝑖=𝑡1
𝑝𝑖

[

𝑝𝑡1 log𝑒 𝑝𝑡1 +

( 𝑡2−1
∑

𝑖=𝑡1+1
𝑝𝑖

)

× log𝑒

( 𝑡2−1
∑

𝑖=𝑡1+1
𝑝𝑖

)

+ 𝑝𝑡2 log𝑒 𝑝𝑡2

]

⋮

𝑆𝑖
(

𝑀𝑖
)

= log𝑒

( 𝑡𝑖
∑

𝑖=𝑡𝑖−1

𝑝𝑖

)

− 1
∑𝑡𝑖

𝑖=𝑡𝑖−1
𝑝𝑖

[

𝑝𝑡𝑖−1 log𝑒 𝑝𝑡𝑖−1 +

( 𝑡𝑖−1
∑

𝑖=𝑡𝑖−1+1
𝑝𝑖

)

× log𝑒

( 𝑡𝑖−1
∑

𝑖=𝑡𝑖−1+1
𝑝𝑖

)

+ 𝑝𝑡𝑖 log𝑒 𝑝𝑡𝑖

]

⋮

𝑆𝐾+1
(

𝑀𝐾+1
)

= log𝑒

(𝐿−1
∑

𝑖=𝑡𝐾

𝑝𝑖

)

− 1
∑𝐿−1

𝑖=𝑡𝐾
𝑝𝑖

[

𝑝𝑡𝐾 log𝑒 𝑝𝑡𝐾

+

( 𝐿−1
∑

𝑖=𝑡𝐾+1
𝑝𝑖

)

log𝑒

( 𝐿−1
∑

𝑖=𝑡𝐾+1
𝑝𝑖

)]

(6)

The optimal threshold values
(

𝑡∗1 , 𝑡
∗
2 ,… , 𝑡∗𝐾

)

are obtained by minimizing
the interdependency using the relation
(

𝑡∗1 , 𝑡
∗
2 ,… , 𝑡∗𝐾

)

= arg min
0<𝑡∗1<𝑡

∗
2<⋯<𝑡∗𝐾<𝐿−1

{

𝑆1
(

𝑀1
)

+ 𝑆2
(

𝑀2
)

+⋯

( )}
+𝑆𝐾+1 𝑀𝐾+1 . (7)
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Need to mention that Eq. (7) is proposed here as the objective func-
tion, which is to be minimized by an optimizer. The idea is very
intriguing, because it takes the shred boundary into consideration. This
section shows the originality over other methods. To be specific, this
kind of minimization function was never used (as per our knowledge)
for the multilevel image thresholding application. The shred bound-
ary between various classes are minimized with simpler calculations,
which is interpreted from the Eqs. (6) and (7) . Further analysis and
interpretations are found in the results and discussion section.

3. The proposed adaptive equilibrium optimizer (AEO)

In this section, we propose an adaptive equilibrium optimizer
(AEO), which is another contribution of the work. This is an advance-
ment to the equilibrium optimizer (EO) (Faramarzi et al., 2020). The
originality of the proposal is based on random dispersal of nonper-
former particles (search agents) in the search space, which is decided
adaptively from the fitness value. This feature makes it more attractive
for optimization. The EO is inspired by the dynamic and equilibrium
state of the control volume mass balance model, based on the physics
principle of mass conservation during entering, leaving, and generating
in a control volume.

3.1. Mathematical modeling of AEO

Let the search agents are related to the concentration in a search
space and initialized at iteration 𝑖𝑡𝑒𝑟 = 1 as follows:

𝐶𝑖 (𝑖𝑡𝑒𝑟 = 1) = 𝐿𝐵 + 𝑟𝑎𝑛𝑑𝑖 (1, 𝑑) ∗ (𝑈𝐵 − 𝐿𝐵) , 𝑖 = 1, 2,… , 𝑁 (8)

The 𝐿𝐵 and 𝑈𝐵 are the lower and the upper bound of the search space,
𝑁 is the number of search agents, 𝑑 is the dimension of the problem
and 𝑟𝑎𝑛𝑑𝑖 is a one-dimensional vector consisting of the random numbers
in the range of [0, 1]. The position of the 𝑖th search agent for a control
olume 𝑉 in EO is updated as

�⃗� (𝑛𝑒𝑤) = 𝐶𝑒𝑞 (𝑖𝑡𝑒𝑟) +
(

𝐶𝑖 (𝑖𝑡𝑒𝑟) − 𝐶𝑒𝑞 (𝑖𝑡𝑒𝑟)
)

∗ 𝐹𝑖 (𝑖𝑡𝑒𝑟) +
�⃗�𝑖 (𝑖𝑡𝑒𝑟)

𝜆𝑖 (𝑖𝑡𝑒𝑟) ∗ 𝑉

×
(

1 − 𝐹𝑖 (𝑖𝑡𝑒𝑟)
)

. (9)

The 𝐶𝑒𝑞 is the randomly chosen equilibrium candidate from an equi-
librium pool 𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 of four best search agents 𝐶𝑒𝑞(1), 𝐶𝑒𝑞(2), 𝐶𝑒𝑞(3),
𝐶𝑒𝑞(4); and the average of these four search agents is 𝐶𝑒𝑞(𝑎𝑣𝑒). The
𝐶𝑒𝑞(1), 𝐶𝑒𝑞(2), 𝐶𝑒𝑞(3), 𝐶𝑒𝑞(4) are decided using their fitness values 𝑓𝑖𝑡
(

𝐶𝑒𝑞(1)

)

, 𝑓𝑖𝑡
(

𝐶𝑒𝑞(2)

)

, 𝑓𝑖𝑡
(

𝐶𝑒𝑞(3)

)

and 𝑓𝑖𝑡
(

𝐶𝑒𝑞(4)

)

. For a minimization
problem, the equilibrium candidates and their fitness values are de-
cided with the help of a sorted list. The fitness values of all 𝑁 search
agents are given as:

𝑓𝑖𝑡 =
(

𝑓𝑖𝑡1, 𝑓 𝑖𝑡2,… , 𝑓 𝑖𝑡𝑁
)

(10)

These values are arranged in ascending order:

[𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡, 𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥] = 𝑠𝑜𝑟𝑡 (𝑓𝑖𝑡) (11)

Then, the equilibrium candidates and their fitness are described as:

𝑓𝑖𝑡
(

𝐶𝑒𝑞(1)

)

= 𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡 (1) and 𝐶𝑒𝑞(1) = 𝐶 (𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥 (1))

𝑓𝑖𝑡
(

𝐶𝑒𝑞(2)

)

= 𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡 (2) and 𝐶𝑒𝑞(2) = 𝐶 (𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥 (2))

𝑓𝑖𝑡
(

𝐶𝑒𝑞(3)

)

= 𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡 (3) and 𝐶𝑒𝑞(3) = 𝐶 (𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥 (3))

𝑓𝑖𝑡
(

𝐶𝑒𝑞(4)

)

= 𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡 (4) and 𝐶𝑒𝑞(4) = 𝐶 (𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥 (4))

𝐶𝑒𝑞(𝑎𝑣𝑒) =
1
4

(

𝐶𝑒𝑞(1) + 𝐶𝑒𝑞(2) + 𝐶𝑒𝑞(3) + 𝐶𝑒𝑞(4)

)

(12)

Finally, the equilibrium pool is expressed as

𝐶 =
{

𝐶 ,𝐶 , 𝐶 , 𝐶 , 𝐶
}

. (13)
𝑒𝑞,𝑝𝑜𝑜𝑙 𝑒𝑞(1) 𝑒𝑞(2) 𝑒𝑞(3) 𝑒𝑞(4) 𝑒𝑞(𝑎𝑣𝑒)

4

The exponential term 𝐹𝑖 to assist the EO for the exploitation and the
xploration is calculated for the 𝑖th search agent as

�⃗� (𝑖𝑡𝑒𝑟) = 𝑎1𝑠𝑖𝑔𝑛
(

𝑟1 − 0.5
)

⎡

⎢

⎢

⎣

𝑒−𝜆𝑖
(

1− 𝑖𝑡𝑒𝑟
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟

)

(

𝑎2
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟
)

⎤

⎥

⎥

⎦

. (14)

Note that 𝑎1 is used to control the exploration, 𝑎2 is used to control the
exploitation, 𝑠𝑖𝑔𝑛 is to control the direction of search depending on a
random number 𝑟1 in between [0, 1], 𝜆𝑖 (𝑖𝑡𝑒𝑟) is a random vector of d
imension in the interval [0, 1] for the 𝑖th search agent in 𝑖𝑡𝑒𝑟 iteration,
𝑡𝑒𝑟 is the current iteration and 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 is the maximum number of
terations the EO will go through in the position update.

The generation rate �⃗�𝑖 help in the exploration using the participa-
ion probability of 𝐶𝑒𝑞 . The �⃗�𝑖 is defined as

⃗𝑖 (𝑖𝑡𝑒𝑟) = �⃗�𝑖,0 (𝑖𝑡𝑒𝑟) ∗ 𝐹𝑖 (𝑖𝑡𝑒𝑟) . (15)

he �⃗�𝑖,0 (𝑖𝑡𝑒𝑟) and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐺𝐶𝐹 𝑖 (𝑖𝑡𝑒𝑟) are evaluates as

⃗𝑖,0 (𝑖𝑡𝑒𝑟) = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐺𝐶𝐹 𝑖 (𝑖𝑡𝑒𝑟)
(

𝐶𝑒𝑞 (𝑖𝑡𝑒𝑟) − 𝜆𝑖 (𝑖𝑡𝑒𝑟)
)

(16)

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝐹 𝑖 (𝑖𝑡𝑒𝑟) =
{

0.5𝑟1 𝑟2 ≥ 𝐺𝑃
0 𝑟2 < 𝐺𝑃

(17)

here 𝐺𝐶𝐹 is the generation rate control factor and 𝐺𝑃 is the gen-
ration probability, 𝑟1 and 𝑟2 are the random numbers in the interval
0, 1].

It is observed that the position of the search agents in the next
teration always depends on the equilibrium pool, which consists of
our best positions and an average among the best post position. This
arrows the boundary of the search space during an exploration in each
rogressive iteration, which leads to the search agent falling into a local
inimum. To overcome this problem, we suggest an adaptive equilib-

ium optimizer (AEO), in which search agents go for a random dispersal
or a nonperformer. An adaptive decision is taken with the help of
he current fitness of the search agents and the average fitness of all

search agents. This is mathematically modeled for the minimization
roblem is defined as

�⃗� (𝑖𝑡𝑒𝑟 + 1) =

{

𝐶𝑖 (𝑛𝑒𝑤) 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) < 𝑓𝑖𝑡𝑎𝑣𝑔 (𝑖𝑡𝑒𝑟)
𝐶𝑖 (𝑛𝑒𝑤)⊗ (0.5 + 𝑟𝑎𝑛𝑑 (1, 𝑑)) 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) ≥ 𝑓𝑖𝑡𝑎𝑣𝑔 (𝑖𝑡𝑒𝑟)

(18)

here
represents the element-wise multiplication.

𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) represents the fitness value of the 𝑖th search agent at an
teration 𝑖𝑡𝑒𝑟.
𝑖𝑡𝑎𝑣𝑔 (𝑖𝑡𝑒𝑟) represents the average fitness of all search agents at an

teration 𝑖𝑡𝑒𝑟, and is calculated as

𝑖𝑡𝑎𝑣𝑔 (𝑖𝑡𝑒𝑟) =
1
𝑁

𝑁
∑

𝑖=1
𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) . (19)

The AEO also inherits the concepts of memory saving form EO, in which
the fitness value of the current iteration and the previous iteration
are compared and updated if it achieves a better fitness value. This is
expressed as

𝐶𝑖 (𝑖𝑡𝑒𝑟) =

⎧

⎪

⎨

⎪

⎩

𝐶𝑖 (𝑖𝑡𝑒𝑟) 𝑖𝑡𝑒𝑟 > 1 𝑎𝑛𝑑 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) < 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟 − 1)

𝐶𝑖 (𝑖𝑡𝑒𝑟 − 1) 𝑖𝑡𝑒𝑟 > 1 𝑎𝑛𝑑 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) ≥ 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟 − 1)

𝐶𝑖 (𝑖𝑡𝑒𝑟) 𝑖𝑡𝑒𝑟 = 1

(20)

and

𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) =

⎧

⎪

⎨

⎪

⎩

𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) 𝑖𝑡𝑒𝑟 > 1 𝑎𝑛𝑑 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) < 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟 − 1)
𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟 − 1) 𝑖𝑡𝑒𝑟 > 1 𝑎𝑛𝑑 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) ≥ 𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟 − 1)
𝑓𝑖𝑡𝑖 (𝑖𝑡𝑒𝑟) 𝑖𝑡𝑒𝑟 = 1

(21)
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Fig. 1. Qualitative metric for unimodal benchmark functions F1, F2, F3, F4, F5, F6, and F7.
3.2. Pseudocode of the AEO

In the beginning, assign the number of the search agents 𝑁 , max-
imum number of iterations 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, search dimension 𝑑, and the free
parameters 𝑎 , 𝑎 , 𝐺𝑃 , 𝑉 .
1 2

5

3.3. Performance evaluation of the AEO

This section describes the performance of the AEO, compared with
the EO (Faramarzi et al., 2020). We have taken a set of 23 well-known
benchmark functions from the literature (Liang and Suganthan, 2005;
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Fig. 2. Qualitative metric for multimodal benchmark functions F8, F10, F13, F14, F17, and F18.
1

Naik and Panda, 2016; Yao et al., 1999) to investigate the perfor-
mance of the AEO. The benchmark functions are divided into three
groups such as unimodal benchmark functions with scalable dimension
(F1–F7), multimodal benchmark functions with scalable dimension
(F8–F13), and multimodal benchmark functions with fixed dimension
(F14–F23). The unimodal benchmark functions have unique minima,
so it helps to recognize the exploitation performance of the algorithm,
whereas the multimodal benchmark functions have many local minima,
so it helps to recognize the exploration performance of the algorithm
by avoiding local minima to reach the global minima. The performance
of the AEO is compared with some recent promising optimization
algorithms — EO (Faramarzi et al., 2020), GWO (Mirjalili et al., 2014),

WOA (Mirjalili and Lewis, 2016), SSA (Jain et al., 2019), and WDO

6

(Bayraktar et al., 2013). The qualitative measure comprised of the
search history, trajectory, average fitness, convergence curve, and box-
plot. Whereas the quantitative measure comprises of the average ‘Ave’
and standard deviation ‘Std’ values of the specific benchmark functions
along with the convergence curves (the best fitness vs. iteration).

To maintain the consistency among the optimization algorithms,
we have taken 𝑁 = 30 and 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 500. For the scalable bench-
mark functions (F1–F13), the scalable dimensions are taken as 𝑑 =
0, 20, 30, 60, 100, 150, 200, 300, 500 for providing a quantitative perfor-

mance measure. Each benchmark function goes through 30 indepen-
dent runs to record and compare the performances. The parameters

used for the experiments are shown in Table 2
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Fig. 3. Convergence curves of sample unimodal benchmark functions (𝑑 = 30).
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.3.1. Qualitative analysis (search history, trajectory, and average fitness)
f AEO

The qualitative analysis of the several unimodal benchmark func-
ions is presented in Fig. 1, and multimodal benchmark functions are
resented in Fig. 2 of the AEO, which comprise of metrics: search
istory, trajectory, and average fitness history. The search history
etric shows the position of all particles in the first two dimensions
ithin the first iteration to the maximum iterations. From the second

olumn of Figs. 1 and 2, it is visualized that a higher concentration
f positions is aggregated nearer to the optimal solutions space more
ffectively during the unimodal benchmark functions than the multi-
odal benchmark functions. The trajectory metric shows the diversity

f 1st particle in search space for a 𝑑 dimensional problem. The
rajectory curve presented in the third column of Figs. 1 and 2 reveals
 s

7

hat, in the initial generation the positions of particle start with a
arge variation that covers the whole search space, however, as the
ptimization progresses, the positions of the particle converge to the
olution space by following an oscillatory behavior. The average fitness
istory metric with a decreasing trend (minimization problem) or an
ncreasing trend (maximization problem) shows how the optimizer uses
he collaborative approach of particles to update their positions to
each the solution space. The average fitness history curve in the fourth
olumn of Figs. 1 and 2 with a decreasing trend shows the stability.
ased on the search history, trajectory and average fitness history
etrics reveal that the AEO uses the exploration and the exploitation
imultaneously more effectively to reach the optimal solutions.
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Fig. 4. Boxplot of sample unimodal benchmark functions (𝑑 = 30).
Fig. 5. Convergence curves of sample multimodal benchmark functions (𝑑 = 30 for F8, F9 and F10).
3.3.2. AEO performance on the unimodal benchmark functions
The unimodal benchmark functions have unique minima and ex-

plore the exploration capability of the algorithm. Statistical results
are presented in Table 3, and the sample convergence curves of the
benchmark functions are displayed in Fig. 3 (for 𝑑 = 30). For the
benchmark functions F1–F4, the AEO outperforms the EO in both
8

the average and standard deviation values. For the other benchmark
functions F5–F7, the AEO exhibits noteworthy differences in the aver-
age and standard deviation values, it performs well. The convergence
curves presented in Fig. 3 also explains that the AEO has a better
exploration than the EO, to get the optimal minimum. To understand
the performance of the AEO vs. other algorithms over 30 independent
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T
P

Fig. 6. Boxplot of sample multimodal benchmark functions (𝑑 = 30 for F8, F9, and F10).
able 2
arameter settings.
Algorithm Parameters Values

AEO/EO Control the exploration (𝑎1) 2
Control the exploitation (𝑎2) 1
Generation probability (𝐺𝑃 ) 0.5

GWO 𝑎 [2, 0]

WDO RT coefficient 5
Gravitational constant 0.2
Coriolis effect 0.4
Maximum allowed speed 0.3

SSA Gliding constant (𝐺𝑐 ) 1.9
Scaling factor (𝑠𝑓 ) 18
Predator presence probability (𝑃𝑑𝑝) 0.1

WOA 𝑎 [2, 0]
𝑏 1
𝑙 [−1, 1]

runs, a boxplot of optimal fitness is presented in Fig. 4, which rev-
els that AEO is more consistent among all optimization algorithms.
The Friedman mean rank for benchmark functions F1–F7 (with 𝑑 =
10, 20, 30, 60, 100, 150, 200, 300, 500) are evaluated based on the results
obtained and presented in Table 3. It reveals that the AEO ranked first
for the unimodal scalable benchmark functions. From this, it is implicit
that the AEO has a better exploration ability.

3.3.3. The AEO performance on the multimodal benchmark functions
The multimodal benchmark functions have many local minima and

explore the exploitation capability of the algorithm, we present the sta-
tistical result of scalable dimension in Table 4 and the fixed dimension
in Table 5. Moreover, the AEO outperforms for multimodal benchmark
functions F8 to F11, except F12 and F13 where AEO performs be-
low WDO. The convergence curve of sample benchmark functions is
presented in Fig. 5, which shows the AEO and EO perform similarly
in multimodal benchmark functions. Still, AEO shows a little faster
in convergence than EO, and quite more for GWO, WDO, SSA, and
WOA. The distribution of results obtained from 30 independent runs is
9

shown using a boxplot in Fig. 6, which reveals AEO is more consistent
among all presented optimization techniques to get optimal solutions.
The Friedman mean rank for multimodal benchmark functions F8–F13
and F14–F23 ranked first among all presented optimization algorithms.
From this, it is implicit that the AEO has a better exploitation ability.

3.3.4. Scalability analysis
This section presents a scalability assessment to investigate the

influence of dimensions on the optimal results of the AEO. The exper-
iments are performed with 10, 20, 30, 60, 100, 150, 200, 300, and
500 dimensions on the scalable unimodal and multimodal benchmark
functions F1–F13. The average and the statistical results of scalable
benchmark functions presented in Tables 3 and 4, and a graphic
representation of the average results are shown in Fig. 7. If we analyze
Tables 3 and 4 and Fig. 7, the AEO outperforms in most of the test cases
benchmark functions, such as F1–F4, F6, F9–F11. However, the AEO
performs a similar way in F5, F7–8, F12–13 with the EO, and the AEO
lags WDO for the test cases benchmark functions F12–13. To summarize
the comparisons, we perform Friedman mean rank test on the average
value and presented in Fig. 8. Results reveal that the AEO ranked first
in all dimensions.

3.4. Discussion on results of AEO

As per the qualitative and the quantitative analysis discussed in
the previous section, the AEO has shown an improvement over its
predecessors EO, and superiority over some recent successful optimizers
like GWO, WDO, WOA, and SSA. The AEO can be used for a wide
range of optimization problems, as it has shown less impact when
dimensions change from low dimensions to high dimensions, that is
revealed from Tables 3 and 4, and Figs. 7 and 8. Although the most
of the optimization problems shown similar results in multimodal
benchmark functions with fixed dimensions, still the AEO has achieved
improvement when compared with another optimizer. The Friedman’s
mean rank outcome from average fitness of 30 independent runs for
500 iterations with 30 particles (population) are presented in Tables 3–
5 and Fig. 8, which marked the AEO as first ranked in all possible
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Fig. 7. Scalability results from comparisons of scalable unimodal and multimodal benchmark functions F1–F13.
test cases like the unimodal benchmark functions (F1–F7), the mul-
timodal benchmark functions with scalable dimensions (F8–F13), the
multimodal benchmark functions with fixed dimensions (F14–F23) and
scalability analysis. Finally, the AEO has overcome the problem of the
EO with a random dispersal to nonperformer search agents positions.
10
It is reiterated that the AEO decides the dispersal of a nonperformer by
adaptively from the current and the previous fitness values. This helps
the AEO to maintain a good balance between the exploration and the
exploitation to reach optimal solutions.
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Table 3

SA WOA
ve Std Ave Std
.3385E−36 7.3044E−36 2.9497E−39 9.9167E−39
.1652E−22 1.3330E−21 6.7521E−22 1.4549E−21
.4167E−16 1.2524E−15 7.5096E−16 1.2641E−15
.5774E−09 6.2982E−09 3.9021E−09 3.6575E−09
.7479E−06 4.6122E−06 9.2337E−06 9.9596E−06
.7610E−04 1.0491E−03 6.9700E−04 8.0738E−04
.3053E−03 4.2312E−03 5.6752E−03 3.3776E−03
.4021E−01 9.0584E−02 1.2671E−01 1.0283E−01
.6574E+00 1.3959E+00 3.0701E+00 2.0514E+00
.2626E−22 3.5153E−22 1.6237E−22 2.9070E−22
.1613E−13 7.0630E−13 3.4231E−13 3.0351E−13
.0896E−09 1.1934E−09 1.1282E−09 1.1825E−09
.5341E−06 4.5786E−06 8.7926E−06 5.9859E−06
.1103E−04 2.5882E−04 5.1440E−04 2.2165E−04
.9160E−03 2.0356E−03 7.8144E−03 2.8995E−03
.7441E−02 1.2811E−02 3.9092E−02 1.3885E−02
f NaN Inf NaN
f NaN Inf NaN

.9823E−17 7.0295E−17 3.5277E−18 9.0570E−18

.8598E−05 8.1933E−05 1.5580E−05 3.5330E−05

.8543E+00 5.7429E+00 1.0422E+00 2.4691E+00

.9241E+03 4.7592E+03 4.4956E+03 5.4226E+03

.8678E+04 1.7309E+04 3.9996E+04 2.1330E+04

.3111E+05 5.0500E+04 1.3124E+05 4.5275E+04

.6221E+05 8.6973E+04 2.6220E+05 7.6059E+04

.5477E+05 1.9045E+05 6.9466E+05 2.0119E+05

.8587E+06 4.9196E+05 1.9359E+06 4.1922E+05

.8198E−11 9.0734E−11 2.2915E−11 6.2927E−11

.2940E−05 7.8481E−05 1.8814E−05 2.2233E−05

.7120E−03 1.0197E−02 5.0713E−03 8.7062E−03

.0281E+01 9.7119E+00 1.5436E+01 1.5235E+01

.9166E+01 1.1014E+01 6.5336E+01 1.4628E+01

.8649E+01 4.0413E+00 8.7372E+01 3.8829E+00

.3556E+01 1.4524E+00 9.2933E+01 2.7598E+00

.6089E+01 1.5464E+00 9.6042E+01 9.8502E−01

.8230E+01 4.8144E−01 9.7991E+01 6.8908E−01

.2254E+01 3.8294E+01 1.6470E+01 3.4752E+01

.7058E+01 3.5070E+01 2.0925E+01 2.5369E+01

.6658E+01 1.0116E+00 2.6944E+01 1.2324E+00

.7647E+01 8.2064E−01 5.7480E+01 9.9571E−01

.7651E+01 6.9779E−01 9.7830E+01 6.4219E−01

.4869E+02 4.0912E−01 1.4857E+02 1.0652E+00

.0506E+02 6.0856E+00 2.0504E+02 9.0256E+00

.9036E+02 2.5587E+02 5.9006E+02 3.0587E+02

.1364E+04 1.2938E+04 2.0353E+04 3.3220E+04

.7990E−05 8.6139E−06 8.3979E−03 4.5895E−02

.5413E−01 2.1790E−01 1.9850E−01 1.3692E−01

.0184E+00 3.2902E−01 9.6081E−01 4.6154E−01

.1198E+00 7.2415E−01 5.1897E+00 7.2566E−01

.3157E+01 8.8141E−01 1.2758E+01 7.9493E−01

.4022E+01 8.4490E−01 2.4047E+01 8.9284E−01

.6189E+01 1.0980E+00 3.5820E+01 9.6328E−01

.0154E+01 1.3365E+00 6.0766E+01 1.1043E+00

.1408E+02 3.2280E+00 1.1376E+02 3.3826E+00

.1785E−03 1.7338E−03 2.0580E−03 1.5065E−03

.6615E−03 2.2990E−03 3.8072E−03 2.5942E−03

.4960E−03 4.4971E−03 6.5680E−03 4.6452E−03

.7639E−02 8.9648E−03 1.7781E−02 9.4189E−03

.9831E−02 1.3097E−02 3.6096E−02 1.5912E−02

.8456E−02 2.3114E−02 6.1403E−02 2.7317E−02

.0116E−01 4.4452E−02 8.6556E−02 3.1257E−02

.9301E−01 5.9751E−02 1.7110E−01 6.8587E−02

.2942E−01 2.7879E−01 6.4550E−01 3.4484E−01

.2143 4.0873
4

11
Statistical results and comparison of the unimodal benchmark functions with the scalable dimensions.
Function d AEO EO GWO WDO S

Ave Std Ave Std Ave Std Ave Std A
F1 (Sphere model) 10 4.5316E−128 1.2329E−127 2.5568E−67 9.2181E−67 5.1084E−10 1.4067E−09 3.3229E−03 8.5025E−03 1

20 1.4971E−110 7.4082E−110 2.8626E−48 5.1861E−48 4.1337E−06 1.2062E−05 1.7855E−02 3.6388E−02 5
30 1.6176E−104 7.4697E−104 1.0581E−41 1.3061E−41 3.8610E−04 9.9033E−04 6.0504E−02 8.8863E−02 5
60 2.7966E−100 7.1987E−100 1.1877E−32 2.7083E−32 5.0168E−02 1.2317E−01 5.1678E−02 9.6092E−02 3
100 1.4718E−97 4.9262E−97 5.7333E−29 9.3923E−29 9.0294E−01 1.1478E+00 1.1722E−01 3.3193E−01 6
150 1.2204E−95 5.0463E−95 4.0602E−27 4.4389E−27 2.7766E+00 3.0093E+00 8.0352E−03 2.5388E−02 7
200 1.8336E−94 5.1294E−94 1.2680E−25 1.1855E−25 1.2327E+01 1.4356E+01 2.7509E−02 4.8174E−02 6
300 4.0213E−94 9.1279E−94 4.4098E−24 5.6717E−24 5.9041E+01 6.3804E+01 9.3741E−02 4.3170E−01 1
500 3.5620E−78 1.4821E−77 1.4974E−19 1.6282E−19 3.1166E+02 2.8138E+02 2.1659E−02 3.2244E−02 2

F2 (Schwefel’s
problem 2.22)

10 2.6834E−67 6.9476E−67 1.0145E−36 2.5460E−36 3.5171E−06 6.7766E−06 1.0597E−01 1.5820E−01 1
20 2.8542E−59 9.3956E−59 7.9549E−27 7.8606E−27 2.0630E−04 2.4654E−04 4.5465E−01 4.6465E−01 5
30 1.3763E−56 3.6496E−56 6.8708E−23 6.3923E−23 1.6601E−03 2.0888E−03 6.9059E−01 7.7976E−01 1
60 2.6816E−53 7.8539E−53 1.7674E−18 1.3208E−18 3.3874E−02 3.4720E−02 5.5575E−01 7.2388E−01 7
100 1.9910E−52 3.3578E−52 2.9862E−16 3.5418E−16 2.3522E−01 1.3212E−01 6.6586E−01 8.8375E−01 6
150 4.0437E−51 8.7123E−51 4.2037E−15 2.8741E−15 7.1735E−01 3.8017E−01 1.5355E+00 1.7385E+00 6
200 8.4881E−51 3.5927E−50 1.5758E−14 1.1305E−14 1.3906E+00 7.0255E−01 1.0684E+00 9.0240E−01 3
300 1.5588E−50 2.6408E−50 5.7519E−14 3.8077E−14 Inf NaN 2.4747E−01 3.3736E−01 In
500 3.6954E−43 9.0843E−43 1.2469E−11 8.5066E−12 Inf NaN 2.9763E−01 2.7871E−01 In

F3 (Schwefel’s
problem 1.2)

10 2.5216E−68 1.3804E−67 2.2123E−32 7.4651E−32 3.0891E−01 7.4527E−01 2.6508E−02 1.6525E−02 1
20 6.1403E−49 3.3622E−48 4.0193E−15 1.7044E−14 2.5682E+02 4.2221E+02 2.0069E−01 9.7281E−02 2
30 4.2442E−38 2.3009E−37 2.7162E−09 1.0977E−08 1.6541E+03 2.2046E+03 5.0269E−01 2.2895E−01 1
60 1.2351E−18 5.1367E−18 2.3321E−02 4.9967E−02 1.6802E+04 1.0276E+04 2.9492E+00 9.9418E−01 4
100 4.0057E−09 1.9844E−08 2.9897 7.4947 7.2166E+04 2.9155E+04 9.6933E+00 5.3503E+00 3
150 4.6219E−05 1.7824E−04 1.1369E+02 2.0820E+02 1.8282E+05 8.1588E+04 1.9061E+01 7.3273E+00 1
200 3.3762E−04 1.6857E−03 1.8027E+03 4.1867E+03 3.5535E+05 1.2849E+05 3.1446E+01 9.6460E+00 2
300 2.0010E+00 1.0683E+01 8.7442E+03 1.0751E+04 8.1465E+05 2.5414E+05 1.4032E+03 7.2415E+03 6
500 264.2696 777.6426 5.5807E+04 5.2259E+04 2.4589E+06 5.9266E+05 2.1073E+02 1.3409E+02 1

F4 (Schwefel’s
problem 2.21)

10 4.0835E−58 8.5382E−58 1.1785E−24 2.1915E−24 4.7277E−02 8.5411E−02 6.4406E−03 2.0959E−02 2
20 4.5978E−50 7.8460E−50 1.5123E−13 3.8708E−13 3.6040E+00 5.5432E+00 3.1747E−02 5.0612E−02 4
30 1.9382E−46 9.1426E−46 1.9287E−10 2.0685E−10 1.1079E+01 8.4198E+00 2.4113E−02 5.9060E−02 5
60 2.5526E−43 7.7436E−43 3.7825E−06 6.1035E−06 4.8503E+01 1.4377E+01 6.5580E−02 8.5759E−02 1
100 4.5302E−42 1.4249E−41 0.0026 0.0057 6.8613E+01 8.7373E+00 3.5387E−02 6.6557E−02 6
150 1.3343E−39 6.8886E−39 2.7564E+00 1.2760E+01 7.6819E+01 6.3137E+00 3.8671E−02 7.5310E−02 8
200 5.0219E−39 1.9689E−38 2.3775E+01 2.9738E+01 8.0801E+01 5.2242E+00 2.8747E−02 7.4142E−02 9
300 1.3230E−39 4.4055E−39 6.2908E+01 2.1770E+01 8.5304E+01 4.2162E+00 4.8115E−02 1.0063E−01 9
500 5.0507E−28 2.3494E−27 75.6817 14.2782 8.8927E+01 3.7229E+00 1.9637E−02 6.2745E−02 9

F5 (Generalized
Rosenbrock’s
function)

10 5.0683 0.1557 5.1564 0.1463 1.1102E+01 1.3406E+01 9.0502E+00 2.7065E−01 2
20 1.5198E+01 1.7091E−01 1.5300E+01 2.0529E−01 1.8836E+01 2.3528E−01 2.2730E+01 3.3047E+00 2
30 25.3250 0.2357 25.3666 0.2843 2.8989E+01 4.6666E−01 3.4311E+01 6.9136E+00 2
60 5.5660E+01 4.2432E−01 5.5932E+01 7.9099E−01 7.7830E+02 1.9843E+03 7.0275E+01 1.8283E+01 5
100 96.0017 0.8157 96.3462 0.8454 5.4554E+03 8.3235E+03 1.0496E+02 1.3446E+01 9
150 1.4687E+02 7.6849E−01 1.4735E+02 1.0043E+00 5.1941E+04 9.5179E+04 1.5178E+02 6.6057E+00 1
200 1.9703E+02 7.7957E−01 1.9717E+02 8.6248E−01 2.6035E+05 3.3267E+05 2.0127E+02 6.8933E+00 2
300 2.9726E+02 5.4191E−01 2.9759E+02 3.6366E−01 7.1900E+05 9.8545E+05 3.0082E+02 6.3638E+00 5
500 497.6544 0.2157 497.9012 0.2839 4.8829E+06 5.5241E+06 5.0207E+02 1.0662E+01 1

F6 (Step function) 10 3.3364E−19 7.2602E−19 5.6522E−19 1.3174E−18 1.5398E+00 3.2457E−01 2.2646E−02 1.4650E−02 1
20 1.4502E−08 2.9613E−08 1.6467E−08 3.6224E−08 3.0761E+00 4.8710E−01 1.2865E−01 7.3607E−02 2
30 6.4507E−06 4.9800E−06 9.0580E−06 5.6050E−06 5.2251E+00 5.1542E−01 3.3939E−01 1.8412E−01 1
60 2.9823E−01 1.9686E−01 3.6494E−01 3.2941E−01 1.2151E+01 6.9909E−01 1.2765E+00 6.8445E−01 5
100 3.4933 0.7013 3.8269 0.6037 2.2079E+01 1.4209E+00 2.5087E+00 2.2349E+00 1
150 1.0496E+01 7.7977E−01 1.1375E+01 1.1878E+00 3.9199E+01 7.1292E+00 5.1378E+00 4.6399E+00 2
200 1.9124E+01 1.2049E+00 2.1201E+01 1.3237E+00 5.5263E+01 8.8193E+00 1.0154E+01 8.3037E+00 3
300 3.8525E+01 1.6542E+00 4.1265E+01 1.6760E+00 1.2566E+02 7.3821E+01 2.3610E+01 1.8125E+01 6
500 89.8830 1.9246 94.6020 1.9554 4.2037E+02 2.3598E+02 6.0306E+01 3.5352E+01 1

F7 (quartic function
i.e. noise)

10 5.0627E−04 2.6553E−04 5.4887E−04 4.3071E−04 1.4166E−03 8.4512E−04 1.3156E−02 5.4455E−03 2
20 8.1107E−04 5.2313E−04 9.7291E−04 5.3133E−04 3.4759E−03 2.1234E−03 8.4674E−02 2.8876E−02 4
30 0.0011 5.8746E−04 0.0013 8.7949E−04 5.2565E−03 2.7974E−03 1.4960E−01 7.3841E−02 7
60 1.7706E−03 8.1064E−04 2.1920E−03 8.8486E−04 1.8822E−02 1.4451E−02 1.5858E−01 1.3293E−01 1
100 0.0023 8.4663E−04 0.0023 9.8342E−04 4.1072E−02 2.4209E−02 1.3056E−01 1.2743E−01 2
150 2.9994E−03 1.3424E−03 3.2257E−03 1.3433E−03 2.6492E−01 4.2684E−01 1.6668E−01 1.4212E−01 5
200 3.0900E−03 1.1734E−03 3.3418E−03 1.4411E−03 9.8855E−01 1.4425E+00 1.5085E−01 1.5197E−01 1
300 3.6678E−03 1.4375E−03 4.2898E−03 1.4205E−03 3.7849E+00 6.9597E+00 1.4468E−01 1.3637E−01 1
500 0.0048 0.0023 0.0060 0.0026 5.2912E+01 1.0638E+02 5.5271E+00 2.9843E+01 6

Friedman mean rank 1.1190 2.1825 5.3968 4.0000 4
Rank 1 2 6 3 5
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.2678E+03 3.1858E+02 −3.3848E+03 3.1606E+02
.9602E+03 5.7305E+02 −5.9901E+03 5.8047E+02
.3456E+03 7.5921E+02 −8.2966E+03 5.6016E+02
.4526E+04 6.8070E+02 −1.4478E+04 9.1612E+02
.0841E+04 1.0755E+03 −2.0715E+04 7.3723E+02
.6537E+04 9.8385E+02 −2.6843E+04 9.7697E+02
.1918E+04 1.3167E+03 −3.1734E+04 1.5030E+03
.1670E+04 1.7924E+03 −4.0501E+04 2.1503E+03
.7150E+04 3.1258E+03 −5.6972E+04 3.2086E+03
243E+00 4.2833E+00 2.3181E+00 3.0917E+00
540E+01 1.4813E+01 1.5215E+01 1.6554E+01
404E+01 4.9585E+01 4.0932E+01 4.2997E+01
327E+01 8.7817E+01 6.8535E+01 6.5683E+01
262E+01 4.4332E+01 1.9388E+02 2.6281E+02
687E+02 1.1881E+02 1.8685E+02 3.1506E+02
326E+02 7.7690E+01 1.6347E+02 1.8034E+02
699E+02 1.4448E+02 2.4542E+02 1.6141E+02
508E+02 1.8663E+02 3.6035E+02 1.9400E+02
386E−01 3.6361E+00 6.6344E−01 3.6338E+00
640E+01 1.0123E+01 1.0639E+01 1.0122E+01
964E+01 8.1183E+00 1.6623E+01 7.5612E+00
023E+01 4.3594E−02 1.8703E+01 5.0841E+00
482E+01 3.6803E+00 2.0158E+01 7.5603E−02
272E+01 7.1121E−02 2.0279E+01 6.1946E−02
334E+01 6.5235E−02 2.0340E+01 6.9929E−02
421E+01 5.7849E−02 2.0415E+01 5.7330E−02
478E+01 5.3609E−02 2.0483E+01 5.5186E−02
089E−02 7.5019E−02 5.0243E−02 4.6532E−02
292E−02 2.1325E−02 1.4796E−02 1.3319E−02
486E−02 2.2904E−02 1.4891E−02 1.5833E−02
902E−03 9.8989E−03 8.0005E−03 1.1314E−02
718E−03 1.1193E−02 7.3252E−03 1.3380E−02
707E−02 1.6291E−02 1.2740E−02 2.2524E−02
370E−02 1.9581E−02 1.1966E−02 1.8543E−02
620E−02 4.5935E−02 4.4488E−02 3.5748E−02
572E−01 1.4269E−01 3.0168E−01 1.5343E−01
023E−03 4.9447E−03 1.3181E−03 5.0044E−03
501E−02 1.5776E−02 1.9147E−02 1.9243E−02
587E−02 2.9948E−02 7.8106E−02 1.0446E−01
356E−01 1.0058E−01 2.5061E−01 7.4331E−02
596E−01 1.1612E−01 4.7849E−01 1.2550E−01
172E−01 6.5411E−01 8.7087E−01 4.0700E−01
132E+00 1.0729E+00 1.3642E+00 6.8488E−01
001E+00 3.6876E+00 4.5466E+00 5.1058E+00
733E+05 3.9811E+06 1.0890E+06 4.7425E+06
630E−03 3.0353E−02 1.5082E−02 5.7245E−02
547E−01 1.4123E−01 3.2363E−01 1.5141E−01
527E+00 3.0452E−01 1.0001E+00 2.1791E−01
793E+00 3.5972E−01 3.7585E+00 3.8329E−01
095E+00 5.1261E−01 7.7334E+00 4.0197E−01
263E+01 7.8934E−01 1.3305E+01 7.4707E−01
893E+01 2.6301E+00 2.0961E+01 2.9722E+00
852E+01 2.6357E+01 5.1780E+01 2.5799E+01
538E+04 1.4970E+05 6.4903E+04 2.1823E+05
833 4.1759

5

12
Table 4
Statistical results and comparison of the multimodal benchmark functions with the scalable dimensions.

Function d AEO EO GWO WDO SS
Ave Std Ave Std Ave Std Ave Std Av

F8 (Generalized
Schwefel’s problem
2.26)

10 −3.2154E+03 279.9362 −3.2052E+03 343.5169 −2.1691E+03 4.5415E+02 −1.4653E+03 2.8827E+02 −3
20 −6.2893E+03 4.7436E+02 −6.0277E+03 5.1587E+02 −3.4424E+03 6.4476E+02 −2.1444E+03 3.9810E+02 −5
30 −8.9160E+03 621.1704 −8.9108E+03 650.4205 −4.2359E+03 1.0159E+03 −2.7037E+03 5.1709E+02 −8
60 −1.6984E+04 1.1162E+03 −1.6649E+04 9.4210E+02 −6.1126E+03 1.4139E+03 −3.6347E+03 6.8416E+02 −1
100 −2.5828E+04 1.3485E+03 −2.5809E+04 1.6413E+03 −9.1387E+03 1.7121E+03 −4.7946E+03 9.3971E+02 −2
150 −3.4955E+04 1.8236E+03 −3.4479E+04 2.2652E+03 −1.1157E+04 2.2516E+03 −5.7916E+03 1.1259E+03 −2
200 −4.2766E+04 2.7479E+03 −4.1902E+04 2.4796E+03 −1.2648E+04 2.7262E+03 −7.2550E+03 1.2675E+03 −3
300 −5.6228E+04 3.6189E+03 −5.4752E+04 3.8690E+03 −1.5916E+04 3.5577E+03 −8.3155E+03 1.2499E+03 −4
500 −7.6181E+04 5.9297E+03 −7.5172E+04 4.9373E+03 −1.8393E+04 5.0405E+03 −1.0718E+04 2.0649E+03 −5

F9 (Genreralized
Rastrigin’s function)

10 0 0 0.0633 0.2524 1.4893E+01 1.1324E+01 1.5916E+01 5.6597E+00 3.0
20 0 0 2.6534E−01 1.4533E+00 5.7726E+01 4.2151E+01 5.1864E+01 1.2879E+01 1.3
30 0 0 0 0 9.6151E+01 6.6492E+01 1.0413E+02 1.7393E+01 4.5
60 0 0 0 0 1.5202E+02 1.0808E+02 2.9772E+02 2.0263E+01 6.9
100 0 0 0 0 2.7578E+02 1.4824E+02 5.9477E+02 2.8804E+01 8.2
150 0 0 7.5791E−15 4.1513E−14 3.1611E+02 3.1938E+02 7.6297E+02 4.1567E+02 1.5
200 0 0 0 0 4.4012E+02 2.9626E+02 1.1219E+03 5.5472E+02 1.4
300 0 0 0 0 3.9959E+02 2.2055E+02 1.1042E+03 1.1098E+03 2.4
500 0 0 2.4253E−13 4.7369E−13 5.2832E+02 2.1900E+02 1.1872E+03 1.8201E+03 3.6

F10 (Ackley’s
function)

10 4.4409E−15 0 4.4409E−15 0 1.5024E−05 3.2373E−05 7.3746E−02 1.1688E−01 6.6
20 5.1514E−15 1.4454E−15 6.8094E−15 1.7034E−15 9.2647E−04 2.1459E−03 2.5533E−01 2.2292E−01 1.0
30 5.9804E−15 1.7906E−15 9.1778E−15 2.6933E−15 4.0940E−03 6.5420E−03 2.5800E−01 2.8368E−01 1.5
60 6.8094E−15 1.7034E−15 2.0191E−14 4.4435E−15 2.9568E−02 3.4880E−02 1.0872E−01 1.5455E−01 2.0
100 6.8094E−15 1.7034E−15 3.4994E−14 5.7210E−15 2.0122E−01 3.0773E−01 7.4798E−02 9.2893E−02 1.9
150 7.1646E−15 1.5283E−15 5.8679E−14 1.1462E−14 4.4390E−01 4.1793E−01 7.0729E−02 8.8489E−02 2.0
200 6.8094E−15 1.7034E−15 9.0417E−14 2.3070E−14 7.4395E−01 4.7259E−01 2.5721E−02 5.5426E−02 2.0
300 7.5199E−15 2.0298E−15 1.9309E−13 8.9062E−14 1.0451E+00 4.9725E−01 3.9700E−02 4.8195E−02 2.0
500 7.5199E−15 2.0298E−15 1.4498E−11 8.4054E−12 1.5099E+00 4.7520E−01 2.5946E−02 3.0686E−02 2.0

F11 (Generalized
Griewank function)

10 8.2165E−04 0.0025 0.0066 0.0133 1.4413E−01 9.8746E−02 4.1536E+01 1.7944E+01 8.3
20 0 0 9.8589E−04 3.9691E−03 1.1596E−01 9.8018E−02 1.2849E+02 2.6187E+01 1.8
30 0 0 0 0 1.1051E−01 9.5677E−02 2.2792E+02 3.7495E+01 1.5
60 0 0 4.9419E−04 2.7068E−03 1.7565E−01 1.7175E−01 5.4450E+02 5.9104E+01 7.4
100 0 0 0 0 3.8520E−01 2.9057E−01 9.7253E+02 8.3378E+01 7.2
150 0 0 0 0 7.5865E−01 3.0555E−01 1.5513E+03 9.4995E+01 1.1
200 0 0 0 0 9.9413E−01 5.3231E−01 2.1258E+03 1.0187E+02 1.3
300 0 0 0 0 1.6791E+00 1.2232E+00 3.3015E+03 1.1318E+02 4.2
500 0 0 9.9920E−17 3.3876E−17 3.5160E+00 1.4153E+00 5.6355E+03 1.7792E+02 3.0

F12 (Generalized
penalized function 1)

10 1.5333E−20 4.0214E−20 1.6929E−19 6.0975E−19 1.1479E+00 8.7994E−01 6.7608E−04 3.3834E−04 1.3
20 9.4594E−10 1.4102E−09 1.0855E−09 1.6338E−09 9.9857E−01 8.4019E−01 4.7009E−04 2.6920E−04 2.3
30 5.2173E−07 5.0007E−07 7.6872E−07 6.0126E−07 1.3678E+00 1.6011E+00 1.5576E−02 4.8859E−02 5.0
60 5.6576E−03 4.1137E−03 5.6741E−03 3.3981E−03 7.1946E+00 7.4362E+00 2.7707E−03 1.2547E−02 2.3
100 0.0345 0.0082 0.414 0.0118 2.5435E+01 2.8487E+01 3.7504E−03 1.4142E−02 4.7
150 1.1323E−01 2.9546E−02 1.0973E−01 1.9684E−02 5.4380E+05 1.6721E+06 2.2329E−03 3.3197E−03 8.8
200 2.0845E−01 3.1078E−02 2.0568E−01 2.6382E−02 4.4398E+05 1.2292E+06 2.7505E−03 6.2477E−03 1.6
300 3.2934E−01 3.3608E−02 3.5403E−01 2.8132E−02 1.5890E+06 2.9230E+06 4.9705E−03 6.2435E−03 5.3
500 0.6438 0.0348 0.6966 0.0254 1.5884E+07 2.0471E+07 4.2476E−03 5.6032E−03 8.4

F13 (Generalized
penalized function 2)

10 1.8336E−18 4.7671E−18 2.3399E−18 6.6144E−18 8.1479E−01 1.6373E−01 1.9961E−03 2.3289E−03 9.9
20 1.0204E−02 2.6886E−02 5.0771E−03 1.9262E−02 1.8125E+00 2.9953E−01 6.0256E−03 5.0184E−03 2.7
30 0.0353 0.0529 0.0378 0.0543 3.3179E+00 6.2698E−01 1.1934E−02 1.9387E−02 1.0
60 1.2786E+00 3.6773E−01 1.3418E+00 3.7396E−01 2.7084E+01 2.6343E+01 1.5791E−02 5.2098E−03 3.6
100 5.9526 0.9817 5.9753 1.3649 1.1895E+03 3.9019E+03 4.9238E−02 7.6457E−02 7.6
150 1.2772E+01 7.6514E−01 1.3075E+01 1.0233E+00 1.3366E+04 4.0598E+04 4.6150E−02 7.2167E−02 1.3
200 1.7976E+01 5.7913E−01 1.8853E+01 4.6841E−01 2.0937E+06 6.9315E+06 1.6624E−01 2.9616E−01 2.0
300 2.8771E+01 3.5795E−01 2.9316E+01 2.9528E−01 4.6767E+06 7.2122E+06 1.1452E−01 1.4907E−01 5.1
500 49.5841 0.1305 49.1521 0.2423 1.7675E+07 2.6298E+07 1.8839E−01 2.2036E−01 5.5

Friedman mean rank 1.4815 2.0926 5.1111 4.0556 4.0
Rank 1 2 6 3 4
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WOA

Std Ave Std

1 0.3622 0.9980 1.7208E−12

0E−04 2.4212E−04 8.4577E−04 3.0028E−04

16 1.3389E−10 −1.0316 1.0951E−10

9 1.0605E−08 0.3979 3.1440E−08

2.9677E−08 3 2.4445E−08

96 3.9271E−03 −3.8607 3.5449E−03

48 0.1163 −3.1643 0.1559

82 3.1240 −4.9064 2.9191

67 3.5388 −7.1987 3.5411

41 3.5272 −7.6599 3.6578

3.25
3

13
Table 5
Statistical results and comparison of the multimodal benchmark functions with the fixed dimensions.

Function AEO EO GWO WDO SSA

Ave Std Ave Std Ave Std Ave Std Ave

F14 (Shekel’s foxholes
function, 𝑑 = 2)

0.9980 1.4867E−16 0.9980 1.5412E−16 10.4631 5.4391 3.5813 2.2029 1.064

F15 (Kowalik’s function,
𝑑 = 4)

0.0011 0.0037 0.0037 0.0076 0.0079 0.0092 5.0138E−04 1.9269E−04 7.065

F16 (Six-hump Camelback
function, 𝑑 = 2)

−1.0316 5.9752E−16 −1.0316 6.4539E−16 −1.0205 1.5582E−02 −1.0314 2.2288E−04 −1.03

F17 (Branin function,
𝑑 = 2)

0.3979 0 0.3979 0 0.3995 6.4766E−03 0.4711 2.0973E−01 0.397

F18 (Goldman-Price
function, 𝑑 = 2)

3 1.3550E−15 3 1.6759E−15 6.6159 9.3293E+00 3.9184 4.9291E+00 3

F19 (Hartman’s family,
𝑑 = 3)

−3.8628 2.4546E−15 −3.8625 2.6102E−15 −3.8527 1.7636E−02 −3.8524 7.4392E−03 −3.85

F20 (Hartman’s family,
𝑑 = 6)

−3.2841 0.0599 −3.2785 0.0659 −3.1686 0.1740 −3.1142 0.1257 −3.21

F21 (Sheke’s family, 𝑑 = 4,
local minima 𝑚 = 5)

−8.4539 2.4443 −8.4654 2.6807 −5.8907 3.4945 −4.6822 2.8030 −6.03

F22 (Sheke’s family, 𝑑 = 4,
local minima 𝑚 = 7)

−9.4716 2.1302 −9.1716 2.5380 −7.4809 3.5331 −5.1875 2.7700 −6.57

F23 (Sheke’s family, 𝑑 = 4,
local minima 𝑚 = 10)

−9.8154 1.8698 −9.3684 2.6898 −6.3692 3.8460 −4.9635 2.8264 −6.93

Friedman mean rank 1.95 2.35 5.00 5.20 3.25
Rank 1 2 4 5 3
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Fig. 8. Friedman’s mean rank based on the scalability results from comparisons of
scalable unimodal and multimodal benchmark functions F1–F13.

4. The proposed interdependence based multilevel thresholding
technique using AEO

The proposed multilevel thresholding method is used to divide
the original gray-level distribution into 𝐾 + 1 classes using 𝐾 opti-

um threshold values. The detailed steps of the proposed method are
escribed below. The flowchart is presented in Fig. 9.

The detail steps of the proposed multilevel thresholding approach
re described below:

Step 1: Input the gray level image, the number of thresholds , and
𝑑 in AEO.
Step 2: Compute the histogram of the input gray level image.
Step 3: Input the histogram and number of thresholds into the
AEO to compute the entropic information.
Step 4: Randomly initialize the position of 𝑁 search agents for 𝑑
dimension using the Eq. (8).
Step 5: Evaluate and update the optimal threshold values using
the AEO, by minimizing the objective function, using the Eq. (7),
till the termination criterion is not met.
Step 6: Output the optimal threshold value 𝐶𝑒𝑞(1) =

(

𝑡∗1 , 𝑡
∗
2 ,… , 𝑡∗𝐾

)

.

After the optimum threshold values are obtained, the reconstruction of
the image (thresholded image) using the threshold values is done.

5. Results and discussions

The experiments are conducted using MATLAB R2018b on Intel
core-i3 (6th Gen.) CPU with 8 GB RAM under the Windows 10 en-
vironment. For an effective illustration of our proposed algorithm,
experiments are performed on 500 images from the Berkeley Seg-
mentation Data set (BSDS500) (Martin et al., 2001). The different
threshold levels 𝐾 (2, 3, and 5) are used for the multilevel thresholding
performance evaluation. The test images from the BSDS500 are resized
to 256 × 256, and some sample images along with their histograms
are presented in Fig. 10. For a quantitative performance evaluation,
significant metrics like — the peak signal to noise ratio (PSNR)

(Agrawal et al., 2013), the feature similarity index for image (FSIM) F

14
Table 6
Statistical results and comparison of AEO, EO, GWO, WDO, SSA, and WOA (computed
over 500 images from BSDS 500).

𝐾 Statistical
parameter

Nature-inspired optimization algorithm

AEO EO GWO WDO SSA WOA

2 𝑓𝑖𝑡𝑎𝑣𝑒 0.1913 0.1939 0.2344 0.2669 0.1924 0.1921
𝑠𝑡𝑑 0.0659 0.0675 0.0662 0.0736 0.0670 0.0668
𝑃𝑆𝑁𝑅𝑎𝑣𝑒 21.6242 21.5260 21.3882 21.3594 21.3617 21.2602
𝑆𝑆𝐼𝑀𝑎𝑣𝑒 0.6537 0.6526 0.6483 0.6479 0.6467 0.6446
𝐹𝑆𝐼𝑀𝑎𝑣𝑒 0.6703 0.6702 0.6633 0.6643 0.6628 0.6619
𝐴𝑣𝑒_𝑡𝑖𝑚𝑒 0.6736 0.6794 0.6655 0.6628 0.6798 0.6635

3 𝑓𝑖𝑡𝑎𝑣𝑒 0.3833 0.3843 0.4922 0.5504 0.3900 0.3846
𝑠𝑡𝑑 0.0967 0.0978 0.0995 0.1180 0.1010 0.0984
𝑃𝑆𝑁𝑅𝑎𝑣𝑒 23.9297 23.8908 23.6699 23.6565 23.6445 23.5757
𝑆𝑆𝐼𝑀𝑎𝑣𝑒 0.7283 0.7267 0.7170 0.7189 0.7164 0.7132
𝐹𝑆𝐼𝑀𝑎𝑣𝑒 0.7424 0.7408 0.7307 0.7316 0.7298 0.7266
𝐴𝑣𝑒_𝑡𝑖𝑚𝑒 0.7102 0.7223 0.6869 0.6871 0.7337 0.7085

5 𝑓𝑖𝑡𝑎𝑣𝑒 0.9659 0.9661 1.2344 1.6000 0.9900 0.9688
𝑠𝑡𝑑 0.1642 0.1649 0.2044 0.3865 0.1660 0.1651
𝑃𝑆𝑁𝑅𝑎𝑣𝑒 27.0429 26.9574 26.5761 25.7083 26.9858 26.6650
𝑆𝑆𝐼𝑀𝑎𝑣𝑒 0.8090 0.8084 0.8036 0.7838 0.8054 0.8009
𝐹𝑆𝐼𝑀𝑎𝑣𝑒 0.8233 0.8225 0.8173 0.7997 0.8206 0.8162
𝐴𝑣𝑒_𝑡𝑖𝑚𝑒 0.7652 0.8052 0.7875 0.7813 0.8287 0.7783

(Zhang et al., 2011) and the structural similarity index for image (SSIM)
(Zhou et al., 2004) are considered.

To compare the performance of the proposed method, some of
the state-of-the-art nature-inspired optimization algorithms (EO, GWO,
WDO, SSA, and WOA) are considered. Nevertheless, it is crucial to
choose the control parameters to achieve the best results. The optimal
configuration and the parameters for AEO, EO, GWO, WDO, SSA, and
WOA are listed in Table 2, with the number of search agents 𝑁 = 30
and the maximum number of iterations max _𝑖𝑡𝑒𝑟 = 100. Then the same
parameters are used for all 500 images of the BSDS 500 dataset, for
evaluation. As nature-inspired algorithms have randomized behavior,
all the experiments are repeated for 30 times for each image.

The quantitative performance metrics are evaluated using the av-
erage fitness value (𝑓𝑖𝑡𝑎𝑣𝑒), standard deviation among the average
itness values (𝑠𝑡𝑑), the average PSNR (𝑃𝑆𝑁𝑅𝑎𝑣𝑒), the average SSIM
𝑆𝑆𝐼𝑀𝑎𝑣𝑒), the average FSIM (𝐹𝑆𝐼𝑀𝑎𝑣𝑒) and the average time is taken

(𝐴𝑣𝑒_𝑡𝑖𝑚𝑒) for an image. The quantitative performance comparisons are
presented in Table 6. As the method is a minimization problem, the
minimum value of 𝑓𝑖𝑡𝑎𝑣𝑒 shows a better result. The performance of
the AEO has shown a greater improvement over the GWO and DWO.
Noteworthy differences are seen over the EO, SSA, and WOA, resulting
in explicit improvements. The performance of the AEO in 𝐾 = 2 and
3 has significant improvement over the other algorithms. However, it
gives quite impressive results at 𝐾 = 5 while comparing the average
value of PSNR, SSIM, and FSIM results. Considering the average time
taken to get the optimal threshold value at the threshold level 𝐾 = 2
nd 3, the WDO is quicker than the other. Whereas the AEO is quicker
han the other methods while considering the higher threshold level
= 5.
The sample test images with the subject identification numbers

068, 35 010, and 105 019 (with three different modalities of the his-
ogram) are taken for the qualitative performance evaluation. Outputs
re visually illustrated in Figs. 11–13. The thresholded images corre-
ponding to the subject with identification number 8068 are presented
n Fig. 11. The results obtained for the subject 35 010 are presented in
ig. 12. The outputs for the subject 105 019 are presented in Fig. 13. It
an be easily visualized that the thresholded images using our method
ooks more like the original image. The convergence curves of the
verage fitness so far vs. iteration are shown in Fig. 14. The left side of

ig. 14 shows the convergence curves of the subject 8068 at a threshold
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Fig. 9. Flowchart of the suggested interdependence based multilevel thresholding technique using AEO.
evel 𝐾 = 5, middle of the Fig. 14 shows the convergence curve of
he subject 35 010 at a threshold level 𝐾 = 3, and the right side of
he Fig. 14 shows the convergence curves of the subject 105 019 at a
hreshold level 𝐾 = 2. From Fig. 14, it is observed that the tracking
f the optimal fitness value in AEO, EO, SSA, and WOA is much more
imilar. Hence, it is concluded that the equilibrium optimizer-based al-
orithm may be used to supplement other optimization algorithms. The
roposed multilevel thresholding technique may be explored further to
ncourage the researchers to work in the field of image processing.

A profound analysis is done in connection with the computation
ime. To make the method competent, we need to achieve faster
onvergence. The following Table 7 makes it explicit. The CPU time is
ompared with four other methods — Otsu’s between-class variance,
15
Tsallis entropy, Kapur’s entropy, and Masi entropy. Our method has
shown noteworthy differences. It enhances the computation speed be-
cause the computations involved in calculating the interdependency is
less compared to other ideas. For instance, at a threshold level 𝐾 = 5,
our method shows about 90% better performance than Otsu’s method.
However, it has shown about 5% speed improvement while considering
the Masi entropy at 𝐾 = 5. It seems that the Masi entropy-based
approach is the second contestant. To be precise, the proposed method
is much superior to other methods.

An in-depth statistical analysis is provided here for a completeness
of the work. It is found from the literature that the statistical results
are better analyzed with the help of Wilcoxon’s rank test, which is
a pair-wise test. This test detects the significant differences between
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Fig. 10. Sample test image (subject identification number 8068, 35 010, and 105 019)
along with their histograms form the BSDS 500 dataset.

the mean value among two pairs of samples. Here, we have taken
the average fitness value of 30 independent runs of all 500 images
from the BSDS 500 dataset as the samples. The suggested multilevel
thresholding method using the AEO algorithm is compared with the
other five nature-inspired algorithms. The p-value and the h indicator
are used to govern whether accept or reject the null hypothesis. The
16
Table 7
CPU time comparison of the AEO in a sample image (subject 8068) for different
multilevel thresholding techniques.

𝐾 Average time in seconds for ten independent runs

Proposed Otsu Tsallis Kapur Masi

2 0.6675 5.3392 0.8944 1.4861 0.7241
3 0.6921 6.6445 0.9361 1.5278 0.7569
5 0.7768 9.1651 1.0121 1.6038 0.8206

𝑝 is the statistical probability, ℎ = 1 means the null hypothesis can
be rejected at a 5% level of significance, and ℎ = 0 means the null
hypothesis can be accepted. Based on this, it is seen that the AEO
accepts the null hypothesis for EO and WOA algorithm while rejects the
null hypothesis in GWO, WDO, and SSA algorithms. From the statistical
data from Table 8, the AEO has shown significant improvement over
the GWO, WDO, and SSA algorithms. Whereas, as compared to EO and
WOA it has shown marginal improvement in multilevel thresholding
performance.

6. Conclusion

This paper proposes an adaptive equilibrium optimizer (AEO), an
improvement over the equilibrium optimizer (EO), by adapting the
adaptive decision making of dispersal of the nonperformer search
agents. The AEO shows better performance without increasing the
complexity of its predecessors EO. The qualitative and quantitative
analyses of the AEO are compared with other optimizers such as EO,
GWO, WDO, SSA, and WOA on well-known benchmark functions.
Results show the effectiveness of the AEO to obtain the optimal or
near-optimal solutions by proper maintaining the exploration and the
exploitation abilities. The AEO may be used to solve optimization
problems in the field of the artificial intelligence, to obtain the optimal
solutions. The AEO would be extended to multi-objective, to tackle
the multi-objective problems. The possible extension of the AEO with
a crossover–mutation scheme, chaos-based phases, opposition-based
learning are optimistic for the future work.

The effectiveness of the AEO in the multilevel thresholding, an
important operation of the computer vision, a subfield of the AI, to
understand and interpret the data in the real-world are taken for
experimentations. Unlike earlier approaches, which are mostly based
Fig. 11. Thresholded images with its corresponding threshold values of the subject 8068 using AEO, EO, GWO, WDO, SSA, and WOA.
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Fig. 12. Thresholded images with its corresponding threshold values of the subject 35 010 using AEO, EO, GWO, WDO, SSA, and WOA.
Fig. 13. Thresholded images with its corresponding threshold values of the subject 105 019 using AEO, EO, GWO, WDO, SSA, and WOA.
Table 8
The 𝑝-value of the Wilcoxon test for 500 images form the BSDS 500 dataset.

K AEO vs. EO AEO vs. GWO AEO vs. WDO AEO vs. SSA AEO vs. WOA

p h p h p h p h p h

2 0.3020 0 3.0150E−22 1 4.1628E−23 1 1.0096E−05 1 0.8923 0
3 0.5052 0 4.1628E−23 1 4.1628E−23 1 1.3988E−12 1 0.3912 0
5 0.7642 0 4.1628E−23 1 4.1628E−23 1 2.9765E−10 1 0.1336 0
on a maximization problem, this work is based on a minimization prob-
lem. Remarkable differences are observed in our case on the accuracy
plus the execution time because it tries to optimize the shred bound-
ary while using fewer computations to obtain the interdependency
between the different classes (regions). The suggested method could
extract the parts that have low-contrast inhomogeneous visual features.
Therefore, the method is well suited for solving complex segmentation
17
problems. It is reiterated that the method performs better than the
existing methods, because of the combined benefits of the impressive
accuracy and improved speed. Better performance is achieved, because
the shred boundary is optimized by minimizing the interdependency
between the different classes. The speed improvement is due to the
inherent fewer calculations. A comparison of thresholding results is

shown in this paper for convincing the readers. Further, statistical result
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Fig. 14. Convergence curves of AEO, EO, GWO, WDO, SSA, and WOA.
analysis encourages readers for their prospects. The future scope of this
work would be the multispectral satellite image analysis, breast cancer
thermogram image thresholding and brain magnetic resonance image
segmentation for smart healthcare services.
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