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A B S T R A C T

A large-scale analysis of diurnal and seasonal mood cycles in global social networks has been performed
successfully over the past ten years using Twitter, Facebook and blogs. This study describes the application
of remote biometric technologies to such investigations on a large scale for the first time. The performance of
this research was under real conditions producing results that conform to natural human diurnal and seasonal
rhythm patterns. The derived results of this, 208 million data research on diurnal emotions, valence and facial
temperature correlate with the results of an analogical Twitter research performed worldwide (UK, Australia,
US, Canada, Latin America, North America, Europe, Oceania, and Asia). It is established that diurnal valence
and sadness were correlated with one another both prior to and during the period of the coronavirus crisis, and
that there are statistically significant relationships between the values of diurnal happiness, sadness, valence
and facial temperature and the numbers of their data. Results from the simulation and formal comparisons
appear in this article. Additionally the analyses on the COVID-19 screening, diagnosing, monitoring and
analyzing by applying biometric and AI technologies are described in Housing COVID-19 Video Neuroanalytics.
. Introduction

Daily fluctuations in the rhythms of human behavior and phys-
ology, which occur due to light and social cues, show remarkable
ifferences due to their individuality (Leone et al., 2017). Diurnal
hythms, either under constant conditions or in idealized light-dark
urroundings, have been the focus of many research studies, although
he effects of social pressures such as timetables for employment and
ducation on the daily and seasonal activity rhythms of individuals
ave attracted relatively little attention, and few studies have been
arried out in this area.

Physiology organization on a timely basis is critical for human
ealth. Sleep–wake behavior, hormone secretion, cellular function and
ene expression are systems that recur in strict rhythms on a twenty-
our-hour basis (Bedrosian and Nelson, 2017). A biological network
f fundamental value for harmonizing human biology with its sur-
oundings, in the opinion of Yang et al. (2013), is the molecular
lock. This clock affects the daily fluctuations in human activities, body
emperature, mood, blood pressure and hormonal secretion patterns.

Surveys assessing diurnal collective emotions have typically been
arried out by administering questionnaires to several dozens or hun-
reds of people. Very large scales have been available currently due to
ig data of written texts on the Internet relevant to collective emotion
nalyses (Sano et al., 2019). An analysis of affective cycles in global

∗ Corresponding authors.
E-mail addresses: arturas.kaklauskas@vgtu.lt (A. Kaklauskas), ajith.abraham@ieee.org (A. Abraham).

social networks has been successfully conducted over the past 10 years
using Twitter (Dodds et al., 2011; Lampos et al., 2013; Roenneberg,
2017; Dzogang et al., 2018), Facebook (Pellert et al., 2020) and blogs
(Sano et al., 2019). As reported by Liang and Shen (2018), social media
platforms have shown regular daily patterns of user activities in prior
studies. Clear cycles based on weekly and seasonal behaviors appear
as collective emotions. Sano et al. (2019), who spent 10 years examin-
ing collective emotions based on 3.6 billion blog articles originating
in Japan, have identified such periodic behavior using a dictionary-
based method. Dzogang et al. (2018) conducted another study that
involved taking samples of Twitter contents in the United Kingdom
at hourly intervals over four years. Their work revealed a strong,
diurnal rhythm in most psychometric variables, and showed that 85%
of the variance across 24-hour profiles could be explained by only
two independent factors. Dodds et al. (Golder and Macy, 2011) also
examined expressions made on Twitter, finding temporal variations in
happiness and information levels when viewed on hourly and annual
scales. Their dataset consisted of over 46 billion words making up
nearly 4.6 billion expressions, which were posted by over 63 million
individual users over 33 months. Pellert et al. (2020) empirically tested
a computational model of affective dynamics, studying a large-scale
dataset of updates on Facebook statuses by employing text analysis
techniques. After stimulation was applied, affective states returned
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exponentially to an individual-specific baseline. The quantification of
these states is as valence and arousal. A somewhat positive valence
value and a moderate arousal point below the midpoint are, on average,
at this baseline (Pellert et al., 2020). The two fundamental dimensions
of mood, i.e. positive affect (PA) and negative affect (NA), and their
diurnal rhythms were studied by Clark et al. (1989), who found that
there was significant diurnal variation in PA but none in NA.

Updated outlooks on collective human behaviors are now part of the
data available to people involved with the Internet, and more and more
people are partaking of such innovations in current times. The identi-
fication and analysis of collective diurnal and seasonal emotions were
a previously non-existent area of research, as social media have taken
off in popularity and become widespread only over the last 10 years or
so (Sano et al., 2019). Policies regarding actions and decision making
and their diurnal rhythms require not only the application of extracted
and traced collective emotions (Leone et al., 2017) but also analyses
of language changes (Dzogang et al., 2018), hedonic behavior, music
(Park et al., 2019), natural disasters (Sano et al., 2019), reproductive
cycles (Wood et al., 2017), and so on. Constant diurnal rhythms in
policies regarding actions and decision-making have also been discov-
ered by Leone et al. (2017), who report that in the morning, actors are
likely to follow policies focused on prevention and involving slower,
more accurate decisions. Later in the day, actions tend to focus more
on promotion, involving faster but less accurate decisions. Language
undergoes dramatic changes between day and night, as conclusively
shown by Dzogang et al. (2018). These changes reflect the differences
in the concerns of individuals and their fundamental cognitive and
emotional processes. Major changes in neural activity and hormonal
levels give rise to these shifts (Dzogang et al., 2018). A pattern of
monotonically improving, weekly returns characterizes the day-of-the-
week effect, as revealed by the enormous amount of evidence found by
Zilca (2017). There is a day-of-the-week effect, which can be explained
by behavior. A monotonic improvement in mood is seen over the course
of a week (Zilca, 2017). One hypothesis for this is based on biology, and
claims that human reproductive cycles adapt to seasonal cycles that
are hemisphere-dependent. Another hypothesis is cultural, and claims
that cultural factors such as holidays primarily cause this variance in
conception dates (Wood et al., 2017). There is a strong relevance of
a weekday to long-short anomaly returns. An analysis by Sano et al.
(2019) examines collective emotion caused by natural disasters. One
example is in Japan, showing much tension in April when school starts,
which is likely to be the reason. Again, in Japan, whenever there are
consecutive holidays, the incidence of suicide increases (Sano et al.,
2019). Park et al. (2019) studied the diurnal and seasonal patterns in
affective preference by analyzing global music streaming data.

Global research (Zillmann, 1988; Damasio, 1994; Simon, 1997;
Kahneman, 2011) indicate that emotions play an exceptional role in
decision-making (see Method). The studies conducted as part of this
research are innovative, since this is the first time biometric data have
been gathered remotely on a large scale for the testing of collective
emotions. The purpose of this research is to establish human affective
rhythms (diurnal rhythms and seasonal patterns).

Until now biometric research has been executed on a large scale,
not remotely. Various vendors, including Fitbit, Microsoft, Google,
Android, Apple and Samsung, adopt particular approaches to the way
continuous data, such as skin temperature, heart rate and others, can
be collected from wearables, including from sensors, into third-party
systems (Arriba-Pérez et al., 2016). Fitbit (an activity tracker) followed
with analogous research. This was the biggest ever collection of heart-
rate data with more than 150 billion hours of data taken from users of
the widespread fitness tracker (Sherman et al., 2019). Various Emotion
APIs including Microsoft Azure, Affectiva, Face Reader by Noldus and
the Kairos API execute emotion recognition and analysis from the facial
expressions in any image or video. For example, Affectiva has examined

3,289,274 faces worldwide, both online and offline (Magdin et al.,
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2019). AffectNet, a large-scale facial expression image database, in-
cludes one million facial images along with the labeling of expressions,
valence and arousal (Ueda and Okajima, 2019).

There have previously been no tools for analyzing biometric data
remotely on a large scale (Kaklauskas et al., 2019, 2020), and studies of
diurnal and seasonal mood techniques, technologies and systems have
therefore been primarily limited to Twitter, Facebook and blogs for
large-scale research. Nonetheless, technical and technological oppor-
tunities have been developed over the course of the Fourth Industrial
Revolution for implementing remote biometric analyses on emotions in
public spaces in real time. The biometric data that have been gathered
in this way have permitted researchers to analyze the behaviors of
large, diverse groups of people in real time. The use of remote biometric
technologies has hitherto been rare (Kaklauskas et al., 2019, 2020),
although such studies could prove helpful in analyzing human diur-
nal rhythms and seasonal patterns when integrated with data on the
environment, levels of pollution, weather cycles and social activities.

The contents of this manuscript are as follows. Section 2 describes
the screening, diagnosing, monitoring and analyzing of COVID-19
by applying biometric and AI technologies. Subsequently Section 3
presents the Diurnal, Seasonal and COVID-19 Analysis, Multimodal,
Biometric (CABER) Method. Section 4 explains the ROCK and Hous-
ing COVID-19 Video Neuroanalytics. Lastly, the results, a discussion,
conclusions and potential future work are described in Sections 5 and
6.

2. Screening, diagnosing, monitoring and analyzing COVID-19 by
applying biometric and AI technologies

Research in the areas of large-scale screening, diagnostics, monitor-
ing, analysis and COVID-19-based categorizations of people by symp-
toms have wrought much honor and recognition to numerous scientists
and practitioners for their achievements. Their applications for ac-
complishing such work includes wearable technologies, early warning
systems, biometric monitoring technologies, IoT based systems, Internet
of Medical Things and other tools pertinent to the COVID-19 pandemic.

Modern healthcare methods and systems have suffered a never
before experienced crisis by the emergence of the COVID-19 pandemic.
Remote monitoring became a primary means of healthcare provision
for safeguarding millions of Americans as a result of the resource
constraints, when this pandemic hit its first peak (Hollander and Carr,
2020).

Symptomatic people, as researchers have discovered, often indi-
cate a drop in heart rate variability, although their resting heart rate
and breathing rate rise. So long as measurements could capture such
changes in a person, health can be treated as much as a week prior to
a potential reporting of such disturbing symptoms. As many as 72% of
the people suffering from COVID-19 most often report feeling fatigue.
The other symptoms frequently reported by patients were headaches
by 65%, body aches by 63%, a loss of taste and smell sensations by
60% and coughing by 59%. Researchers have discovered that as few as
55% of people ailing with COVID-19 reported having a fever, which is
alarming, because merely temperature screening may be insufficient to
denote such an infection (Terry, 2020).

Clinical care as well as the research in this field are bound to
adopt remote monitoring permanently. The needs for convenience and
security have opened opportunities for greater use of Telehealth and
remote real-time monitoring of vital signs. Measurements of vital signs
can be taken safely and conveniently within people’s homes by employ-
ing biometric monitoring technologies (BioMeTs). BioMeTs can serve a
number of clinical requirements for adequate responses to the COVID-
19 pandemic. It can be applied for assisting initial physical evaluations
of people, contributing to the triage of patients indicating COVID-
19 symptoms and even for monitoring patients after their discharges
from a hospital to lessen the risk of readmission. BioMeTs currently

come in numerous versions for remote collections of vital signs for
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many days. The signs collected include body temperature, heart rate,
BP, blood oxygen saturation (SpO2) and respiratory rate. These are
needed for the overall care of people suffering from COVID-19. A
number of research studies employ wearables like WHOOP, Oura Ring
and smartwatches. These are in appropriate positions to undertake
investigations regarding the use of BioMeTs measurements, not only
for early detection of the illness but also as a means for predicting the
possible severity of it (Manta et al., 2020).

While people are isolated during this pandemic, there is the poten-
tial of discretely applying Doppler radar for data on breathing-related
information. This adapted, battlefield radar for biomedical purposes
has the ability to view people’s bodies beneath their clothing in order
to record their breathing frequency rates, heart rates, tidal volume
and pulse pressure. The aim of such testing is finding ways to ease
lockdowns meant to restrict coronavirus infections. Furthermore such
technology for sensing respiration in an inconspicuous manner is ca-
pable of monitoring pulse, heart rate variability and respiratory rates.
Thereby early-stage symptoms of COVID-19 can be easily captured
(Islam et al., 2020).

The spread of coronavirus infections can also be greatly curtailed by
the use of wearable technology. This technology can gather numerous
sorts of data including heart rate, blood pressure, body temperature,
ECG, lung sound, levels of blood oxygen saturation (SpO2) and the like
(Ding et al., 2020).

The physiological stress on the body caused by the COVID-19 virus
rises. This generally causes a rise in heart rate as well. Wearable remote
monitoring systems, once upgraded, could offer healthcare solutions
that are cost-effective and timely. Furthermore these offer an entire
range of help over the course of managing COVID-19 illnesses for
patients, covering early warning systems for preventative purposes,
diagnosis, treatment and, finally, rehabilitation (Islam et al., 2020).

Health monitoring must track the primary metrics of people. The
IoT based system has been recommended by Tamilselvi et al. (2020)
for this purpose. The system is fully capable of tracking body temper-
ature, heart rate, eye movement and percentage of oxygen saturation.
Furthermore this system offers integrated heartbeat, SpO2, temperature
and eye blink sensors to handle the gathering of data. The Arduino-UNO
has also been recommended as a processing device.

Physicians must identify clinically meaningful changes in vital signs
when they monitor for COVID-19 or any other changes in health status.
Various technologies are potentially able to assist in such efforts to
denote health deviances from their normal variations. Deviances can
be due to biological variability, time of day, food and drink, age, a
person’s exercise or underlying physiological conditions (Li et al., 2017;
Izmailova et al., 2019; Buekers et al., 2019).

The accuracy of a wearable is not the only consideration involving
the product. People are not likely to use a product if wearing it is
uncomfortable. To name two examples, sticky adhesives and bulky
smart clothing will simply never be adopted by all people, whether they
are patients or not (Manta et al., 2020).

Management of the medical and logistical aspects of the COVID-
19 crisis evidently required a real-time, command and control tool for
hospitals. The requirement for maximizing the efficiency of hospitals is
a system capable of integrating clinical data on patients, medical staff
status, inventories of critical clinical resources and asset allocations into
one dashboard. The development of the CoView™ System addressed
such a goal. It was able to join together defense concepts, big data ana-
lytics and health care protocols. Decision-makers can use this system to
respond efficiently and optimally, because this system provides needed
evidence pertinent to the status of all COVID-19 patients at all hospitals
and admission facilities. The system is capable of analyzing aggre-
gated data from patient monitors and electronic charts by employing
artificial intelligence algorithms. It then permits appropriately alerting
medical staffs regarding a worsening health among certain patients
on an individual basis or analyzing treatment procedures at specific
hospitals. High-level experts acting as professional advisors are able to
3

monitor every hospital for its current situation along with its schedules
of treatments and their effectiveness. Thereby such experts can assist
hospital staffs everywhere in the country as required. Hospital occu-
pancy, patient conditions, logistics and other similar factors must enter
into a centralized, real-time review to establish the status of hospitals.
Effective decision-making and resource allocations fundamentally rely
on this sort of overview (Abbo et al., 2020).

One monitoring technology used for measuring breathing and heart
rates involves thermal imaging techniques (Hu et al., 2018). Others
include breathing dynamics (Pereira et al., 2015) and respiration rate
(Lewis et al., 2011). A recommendation offered by Jiang et al. (2020)
involves use of a portable non-contact method. It is meant to screen
the health conditions of people by analyzing respiratory characteristics
even while people are wearing their face masks. This is possible with
the application of a device mainly consisting of a FLIR one thermal
camera and an Android phone. Its use includes monitoring possible
COVID-19 patients by inspecting them in practical scenarios such as
in hospitals or for pre-inspections at schools. Health screenings were
performed by Jiang et al. (2020) by virtue of combining the RGB
and thermal videos, which they acquired from the dual-mode cam-
era and from deep learning architecture. A respiratory data capture
technique was first accomplished by Jiang et al. (2020) on people
wearing face masks by employing facial recognition. Next, they applied
a bidirectional GRU neural network with an attention mechanism to the
respiratory data to arrive at a final health screening result. Respiratory
health status can be recognized to an 83.7% accuracy rate on the
real-world dataset, as the results of validation experiments indicate
regarding the Jiang et al. (2020) Model.

When it comes to predicting respiratory symptoms over the course
of COVID-19 progression, Dhanapal et al. (2020) recommend a Per-
vasive computational model with wearable devices system. Breathing
rate, inhale–exhale rate, temperature ratio and shortness of breath
the focus of the information examined. Deep-learning computational
models depict and process the difference between normal and abnormal
breathing conditions. This recommended approach gathers data on
how far away people are from the sensory devices, regardless of the
cloth used to construct the facemask, the angles of measurement and
other information, which is appropriate for classification purposes. The
results of the recommended system are at a 94% rate of accuracy.
Their precision, rate of recall and F1-measure display as averages in
the performed experiments. Automatic encoders obtain possible traits
by virtue of the machine-learning algorithms. These are possible due to
the simplicity of large-scale screening and monitoring as well as their
being requirements (Dhanapal et al., 2020).

The three levels of severity of the COVID-19 viral infection, ac-
cording to the categorizations by the latest clinical research, are mild,
moderate and severe. Different respiratory symptoms are observable
at each level, ranging from, e.g., the dry cough occurring in mild
infections, to shortness of breath in moderate illnesses and onward to
the severe dyspnea and respiratory distress, when the respiratory fre-
quency > 30 breaths/min, which is also known as tachypnea, in cases
of severe illness (Cascella et al., 2020). Despite the three categories,
actually, all such breathing deviations progress to abnormal articu-
lation variations. Subsequently, the employment of automatic speech
and voice analysis for assistance in diagnosing COVID-19 are expected
to have great interest, since these are non-invasive and inexpensive
(Han et al., 2020). Cases of intelligent speech analysis relevant for
COVID-19 diagnosis among patients have been the focus of Han et al.
(2020) for developing potential, future use. Currently Han et al. (2020)
have already built audio-only based models from an analysis of patient
speech recordings for automatic categorization of patient health states
by four aspects: illness severity, sleep quality, fatigue and anxiety. Such
experimentation by Han et al. (2020) indicate a .69 percent average
rate of accuracy relevant to the severity of illness, derived from the
number of hospitalization days.

The class of CIoT that is specific for the medical industry is the

Cognitive Internet of Medical Things (CIoMT). It holds a key position
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in smart healthcare. The availability of remote data on patients in real
time to medical personnel include physiological data like body tem-
perature, blood pressure, heart rate, glucose level, EEG, ECG, oxygen
level and such as well as psychological data like speech, expression,
and such. The IoMT delivers such data remotely (Yang et al., 2020).
Real-time communications of medical data are possible via Internet,
and all hospital units caring for COVID-19 patients have extensive
interconnections with Internet, making information transmittals both
cost and time efficient. Real-time clinical parameters are available due
to the assistance from CIoMT sensors, including the Electroencephalo-
gram (EEG) sensor, Electrocardiogram (ECG) sensor, Blood pressure
sensor, Pulse Oximeter, Electromyography (EMG) sensor and others.
Such data is useful when assessing the severity an illness and when
employing predictive analysis. Thereby, by monitoring feedback on
patients, it becomes possible to prescribe effective treatments of the
disease (Swayamsiddha and Mohanty, 2020).

Next, the COVID-19 time series can be forecast a hybrid intelligent
approach, as Castillo and Melin (2020) explain, by a combination of
fractal theory and fuzzy logic. The complexity of dynamics in the
time series of countries around the world can be measured by the
mathematical concept of fractal dimension. Castillo and Melin (2020)
provide a key contribution by proposing the hybrid approach, which
combines the fractal dimension and fuzzy logic, that then facilitates fast
and precise COVID-19 time series forecasting. Use of the information
in a short window assists decision-makers in taking immediate actions
needed in the fight against the pandemic according to this proposed
approach. Meanwhile this same approach is also beneficial in the use
of the longer window, such as the 30-day one, for long-term decisions,
as per the study by Castillo and Melin (2020). Self-organizing maps
were applied by Melin et al. (2020) for their analysis of the spatial
evolution of the global coronavirus pandemic. The clustering abilities of
these self-organizing maps served as the basis in this Melin et al. (2020)
analysis to spatially group countries. Such groupings form in terms
of similarities relevant to their coronavirus cases. These have enabled
the use of similar strategies to benefit similarly behaving countries in
managing the virus and curtailing its contagion.

The central objective for the study by Dansana et al. (2020) was
a classification of X-ray images in three categories — those of peo-
ple ill with pneumonia, ill with COVID-19 and healthy people. The
two algorithms used were convolution neural networks and decision
tree classification. Dansana et al. (2020) were able to infer highly
satisfactory performances by the fine-tuned version of the VGG-19,
Inception_V2 and decision tree model. These indicated a 91% rate of
increase in training and validation accuracy compared to that of the
Inception_V2 (78%) and the decision tree (60%) models.

Clinical trials applying marketable wearables for identifying and
screening COVID-19 have been enacted recently by an entire array of
universities like, e.g., Stanford University, Florida Atlantic University,
McMaster University, Central Queensland University and University of
California San Francisco; scientific research institutes like, e.g., Scripps
Research Institute; hospitals like, e.g., Cleveland Clinic and companies
like, e.g., AVA Sensors and NEC XON. These studies examined different
physiological parameters of people like, e.g., temperature, heart and
respiratory rates, heart rate variability, activity and sleep levels, oxy-
gen saturation, sleep measures, galvanic skin response, electrodermal
activity, electrocardiogram, blood pressure and others.

Some of the health metrics that consumer devices can measure quite
easily include, e.g., respiration rate, heart rate and heart rate variabil-
ity. These are notable for their ability to foresee early symptoms of
potential illnesses. An additional feature is the ability of mobile appli-
cations accompanying wearable devices to gather data on related, self-
reported symptoms and demographics. Such consumer devices can play
valuable roles in the battle against the COVID-19 pandemic (Natarajan
et al., 2020). Two approaches for assessing COVID-19 were considered
by Natarajan et al. (2020). These were a symptom-based approach

and a physiological signs-based technique. Illness usually raises the
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respiration rate and heart rate; whereas, heart rate variability generally
drops. An early diagnosis of this condition is possible by recording
a history of such measurements. Such a history aids in tracking the
progress of the illness as well (Natarajan et al., 2020). The digital
infrastructure for remote patient monitoring has come into prominence
during the recent COVID-19 pandemic. The clear-cut need is for har-
nessing and leveraging it. Tests and related vaccines are implemented
slowly, making clear the deficiencies in disease detection and in the
monitoring of health at both the individual level and for the entire
population. The assistance for accomplishing these tasks can come
from wearable sensors. Numerous physiological parameters can be
accurately measured remotely due to the developed, integrated sensor
technology. Such measurements have proven beneficial for tracking the
progress of a viral disease. This technology has a wide range of impact.
For example, a person who is under quarantine at home may suddenly
require better care, and this technology can be brought into play.
Another example might involve an entire community under threat of an
oncoming outbreak of illness that vitally needs immediate intervention
(Seshadri et al., 2020).

Physiological metrics have been correlated with daily living and
human performance pertinent to the functionality of this technology.
Nonetheless, this technology must translate into predictions of COVID-
19 cases. People wearing devices that are joined to predictive platforms
could receive alerts regarding changes in their metrics whenever they
correspond with possible COVID-19 symptoms. Depersonalized data
gathered on the basis of neighborhoods or zip codes, especially during
a second wave, could prove valuable for public health officials and
researchers for tracing and alleviating the spread of this virus. Once
certain persons are identified with a COVID-19 diagnosis, others with
whom they have associated, such as families, coworkers and persons
encountered in businesses and other facilities, can also be engaged
into remote monitoring. Thereby very needed data regarding the speed
of disease transmission and the beginning of its pertinent symptom
manifestations can be detected (Seshadri et al., 2020).

3. Diurnal, seasonal and COVID-19 analysis multimodal biometric
(CABER) method

Lately, one of the main worldwide topics of the motivation of
COVID-19 research constitutes large-scale screening, diagnosis, moni-
toring, and categorization of people based on the presence of COVID-19
symptoms. The motivation and goals for having the willingness to
conduct all such studies is to minimize or entirely eliminate the ongoing
coronavirus pandemic. Motivation and objective have been upgraded
for the present research under performance here by employing the Di-
urnal, Seasonal and COVID-19 Analysis Multimodal Biometric (CABER)
Method. Its use is meant to establish people’s emotions as well as
their affective and physiological states with an objective to minimize
bad moods during the COVID-19 period. This is accomplished in con-
junction with analyzing public spaces for improving urban activities
during coronavirus lockdown in six ways (see Section 4 ‘‘Discussion
and conclusions’’).

Theories, data, location and time
The Diurnal, Seasonal and COVID-19 Analysis Multimodal Biometric

Method was developed during this research. This method measures
and analyzes the human diurnal and seasonal rhythm correlations and
patterns by biometrical techniques.

Mood stimulates the choices of activities (e.g. entertainment) to
pursue, thereby providing quite a thorough explanation known as the
Mood Management Theory (Zillmann et al., 1980). An inherent as-
sumption of this theory is that people are generally motivated towards
pleasure, a state of a positive mood as well as an opposition towards
negative states. The premise that is fundamental to mood management
is that the motivations of people are to increase or retain pleasurable
states and to reduce or eliminate painful states; therefore people will

S1
arrange their surroundings to accommodate such states . For example,
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media selection seem to contain two primary factors that associate with
mood management. For one, consumers generate surroundings that
will foster desirable levels of arousal, or a good mood, also associated
with pleasure. The other is generating surroundings that will reduce or
eliminate a painful, or bad mood (Strizhakova and Krcmar, 2007).

Behavior and decision-making choices develop as a result of how
emotions arise, which constitutes the essence of the Somatic marker
hypothesis expounded by Damasio (1994). A brief explanation is that
somatic markers denote the sorts of feelings, which emotions stimulate.
Learning entails a connection of certain emotions and feelings, which
can forecast the results of certain kinds of scenarios. An alarm sounds
whenever a negative somatic marker associates with some specific
future result. Meanwhile, incentive becomes aroused whenever the
association involves a positive somatic marker (Damasio, 1994).

Various diurnal and seasonal cultural activities influence happiness,
valence and face temperature values. Additionally weather and climate
affect human behavior to an important degree. Nevertheless, people
always have an entire array of similar alternative choices, which they
can select depending on their internal state of mind, needs, tempera-
ment, personality, surrounding environment, time of the year, weather
(temperature, rain, humidity) and climatic conditions. For example,
the length of the day and happiness correlate with the overall level of
sunshine, its duration and air temperature, which, on their own accord,
influence the priorities people set for themselves and the activities they
choose.

An investigation was performed in Vilnius from the end of 2017 and
during 2018. The study was on the influence of the holidays and events
on the happiness (H) and valence (V) of people by employing remote
biometrics. The studies indicated that people are happier during the
holidays and various events. They are the happiest during Christmas
(HChr = 0.136, VChr = −0.078), the New Year (HNewYear = 0.128,
NewYear = −0.096), the March 2–4, 2018 Kaziukas Fair (HKF = 0.193,
KF = −0.09709), February 16 Restoration of Lithuania’s independence
HFeb16 = 0.140176, VFeb16 = −0.046), when the average monthly levels
f happiness and valence were generally lower at the time (HDec =
.121, VDec = −0.10727, HJan = 0.115, VJan = − = −0.1047, HFeb = 0.135,
Feb = −0.136, HMarch = 0.140 and VMarch = −0.13433). For example,
elebrating the beginning of the New School Year on 2018 September
(H = 0.2527, V = −0.0339) shows an increase in the average level

f happiness by 27.11% and in valence by 55.91%, compared to the
verage during the rest of September (H = 0.1988, V = −0.0762).

Positive thoughts assist an organism to release chemical materials
or aiding the production of happiness hormones. An elevated mood
orms conditions for more effective brain activity, greater creativity,
tronger immunity and, therefore, greater success at life itself. The
rain is hardwired by nature to scan for the negative (Ho et al., 2015).
hus, it is advisable to analyze emotional issues in the morning and at
ight, when the mood is at its best.

This research investigates changes in levels of happiness, sadness
nd valence among depersonalized individuals on hourly, daily and
easonal bases, and measurements and recordings were taken in Vilnius
n real time, between November 22, 2017 and May 20, 2020. An
mpact assessment regarding data protection for the Sensor Network
as completed prior to beginning data gathering, as required by GDPR

equirements and the applicable laws of the Republic of Lithuania. IP
ameras and FaceReader 8 devices were set up to record data from
nonymous passersby at seven corners of Vilnius city streets: Kareiviu
t., Kalvariju St. and Ozo St.; Zygimantu St. and T. Vrublevskio St.; San-
ariskiu St. and Baublio St.; Sventaragio St. and Pilies St.; Sventaragio
t. and Gedimino Pr.; Pamenkalnio St., Jogailos St., Islandijos St. and
ylimo St.; and Sventaragio St., T. Vrublevskio St. and Gedimino Pr. A
otal of 180 million data items relating to emotions and valence were
athered from these seven sites. The values assigned to the emotional
tates (happy, sad, angry, scared and disgusted) ranged between zero
nd one, whereas the values of valence ranged between −1 and one.

The results of worldwide research (Bryant and Zillmann, 1984;

osonogov et al., 2017; Cruz-Albarran et al., 2017) indicate that human c
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kin temperature rises as positive or negative emotions rise. Home-
stasis is a manifestation when the system retains a stable condition
or itself. Even though hormones partly regulate homeostasis, it is the
ervous system that ultimately regulates it. The nervous system returns
ome standard parameter such as temperature, which has deviated from
ts normal level. An argument promoted by Zillmann et al. (1980)
egarding mood involves the subconscious of people when they selects
ertain activities like media choices. The subconscious directs the re-
ention of homeostasis (beings required to regulate body temperature,
tc.) by normalizing arousal, which has been at an overly high state
Bryant and Zillmann, 1984). It acts to better states of negative moods
Zillmann et al., 1980; Strizhakova and Krcmar, 2007).

The FLIR A35SC infrared camera took 27,948,477 temperature mea-
urements from depersonalized passersby between September 19, 2020
nd November 2, 2020, in Vilnius, at the corner between Šventaragio
t. and Pilies St.

A value, the date and time of collection and the location of the
ollected measurement identified every single item of collected data on
appiness, sadness, valence and temperature. Local times were used in
his study. FaceReader 8 was used to analyze the incidence of positive
r negative valence for the emotions experienced by the passersby.
here was one positive emotion (happy), and the remainder were
egative (sad, angry, scared and disgusted). Valence was calculated by
aking the intensity of ‘‘happiness’’ and subtracting the intensity of the
trongest negative emotion (FaceReader, 2016). In this way, we merged
ositive and negative emotions into a single value, known as valence.

No demographic data (such as gender, nationality, ethnicity, educa-
ion, age, religion and socioeconomic status e.g. income, education and
ccupation) were gathered on the passersby in this study. This research
nvolved innovative experiments with primary, remotely accumulated,
iometric data, and testing was conducted on a large scale in order
o examine collective emotions. This study therefore extends existing
esearch involving daily and seasonal biometric studies of collective
motions, to the best of our knowledge, since it covers a much more
aried range of socioeconomic and demographic groupings.

ssessing the accuracy of data and results through verification and
alidation

All the accumulated data were validated and verified in a double-
hecking process.

Two objective datasets of basic human emotions, both of which are
vailable to the public, served as the basis for validation of FaceReader,
erformed by Lewinski et al. (2014). These authors also assessed the
ccuracy of facial expression recognition. There were scores reported
o FaceReader of which 89% were matching in 2005. FaceReader 6.0
as shown to be capable of distinguishing 88% of the target emotional

abels from the Warsaw Set of Emotional Facial Expression Pictures
WSEFEP) and the Amsterdam Dynamic Facial Expression Set (ADFES).
hen, there is the agreement index pertinent to the Facial Action
oding System (FACS). It achieved an average score of 0.69 for both
atasets, which indicates an 85% rate for the recognition of human
motions. The first two datasets were also examined by Lewinski et al.
2014), who calculated an 87% accuracy of recognition of human
motions for ADFES and an 82% rate for WSEFEP. The authors of
hese studies claim that over the past decade, FaceReader has been
roven to be a reliable indicator of basic human emotions based on
acial expressions. They also assert that it can be similarly reliable
hen used with FACS coding. Researchers report an 88% accuracy for

he recognition of basic emotions by FaceReader 6.0. The FaceReader
greement index accuracy for FACS is 0.69 (Lewinski et al., 2014).
ther scholars have obtained similar results in tests of the validity of
aceReader and its accuracy, and their outlooks on Noldus Information
echnology, the producer of this equipment, tend to be similar.

FaceReader 8.0 software has been applied for writing this article
n an artificial intelligence technique regarding machine learning. This
aceReader 8.0 software for an artificial intelligence technique in ma-

hine learning has also been applied in other studies, which are further
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briefly presented. The validation of automated facial coding (AFC) by
FaceReader artificial intelligence software was presented by Lewinski
et al. (2014). Another study relevant to consumer preferences of bev-
erages, which was conducted by Gonzalez Viejo et al. (2019), applied
artificial intelligence as the basis for analyzing emerging technologies
for the purpose of quality assessments. This same FaceReader software
had been used by Viejo et al. (2019) for assessing food and beverages.
It involved recognizing facial expressions to study their relationships to
emotions. An interesting combination of robotics and computer vision
techniques with non-invasive consumer biometrics appears in the study
by Viejo et al. (2018). These biometrics consist of FaceReader™ 7.0
software, an infrared thermal camera and an eye tracking device. This
study also involves a sensory questionnaire, which used machine learn-
ing for evaluating different features of beer foamability. Viejo et al.
(2018) hold the view that their study shows potential opportunities for
applying artificial intelligence (AI) by using robotics, computer vision
and machine learning algorithms. These then perform quick screenings
of carbonated brewages.

The accuracy of the infrared camera FLIR A35SC was ±2% (FLIR),
while its thermal sensitivity was < 0.05 ◦C. A calibration certificate
issued by the manufacturer of this camera confirms all pertinent cal-
culations and measurements. Annual metrological verifications are also
issued for thermographic cameras to ensure that the error rate pertinent
to the manufacturer-set measurements does not deviate. The thermal
data transferred are processed as part of the data validation, thus
ensuring high quality in terms of accuracy, update status, complete-
ness, consistency across data sources, relevance, reliability, appropriate
presentation, meaningfulness and accessibility. The processing also
double-checks the accuracy and suitability of the data. Such a step
in data processing has uncovered inaccuracies in some of the data,
thereby assuring immediate next steps to resolve the problems. Data
can also be deleted whenever problems prove insurmountable, and,
thereby, inaccurate, incomplete, rounded off, heaped, censored and/or
missing data then cease to be problematic. An analysis of average
facial temperature involved a selected range that was segmented using
thermal imaging. However, this sort of measurement is only applicable
to the average facial temperature of a crowd, and temperature values
that could distort the results of the study were deemed unnecessary
and eliminated. At the data processing stage, we also eliminated the
average temperatures of people in the background, that is, outside the
observation zone (Kaklauskas et al., 2019).

Non-normal distributions prior to and during the quarantine pe-
riod

In this subsection, we give a brief discussion of non-normal distri-
butions of happiness, valence, sadness and temperature.

Figure S1 displays the non-normal distributions of the average
values of (a) happiness, (b) valence, (c) sadness and (d) temperature
among all passersby in Vilnius City, prior to and during the coronavirus
quarantine period.

A total of 29,129,036 (657,574) data items were collected on diur-
nal happiness in Vilnius before (during) the coronavirus crisis, and a
non-normal distribution histogram was generated (see Fig. S1a). The
average value of happiness prior to the quarantine period was 𝜇 =
0.1168, with standard deviation 𝜎2 = 0.1758. However, the average
happiness value during the quarantine period was 𝜇 = 0.1022, with
standard deviation 𝜎2 = 0.1447. As we can see, the average value
of happiness decreased by 12.5% during the quarantine period. In
both instances, a Kolmogorov–Smirnov test for normality indicates that
the values of this variable both prior to and during the quarantine
period do not show a normal distribution (p < 0.05). The non-normal
distributions prior to and during the coronavirus quarantine period
are similar since, in both instances, their skewness is positive and the
kurtosis is greater than three. The extra value noted at the left of
the distribution is due to more happiness scores taken from passersby
equaling less than 0.1 (see Fig. S1a and Table S1a).
6

The stimulus associated with a valence value can be represented as a
continuum, from pleasant to unpleasant or from attractive to aversive.
Emotional valence forms one of the two axes (or dimensions) on which
an emotion can be located in factor analysis and multidimensional
scaling studies; the other is arousal (APA Dictionary of Psychology).
A total of 29,169,150 data items on valence were gathered in Vil-
nius before the coronavirus crisis, and 675,294 during the quarantine
period. The mean of the valence prior to the quarantine period was
𝜇 = −0.1280, while the standard deviation was 𝜎2 = 0.2897. However,
the average valence during the quarantine period was 𝜇 = −0.2138,
while the standard deviation was 𝜎2 = 0.3257. A possible conclusion
is that before the quarantine period, the values of valence were more
concentrated near the average, whereas during quarantine, the values
were more scattered around the average. The mean value of valence
decreased by 67.03% during the quarantine period. In both instances, a
Kolmogorov–Smirnov Test indicates that these values are not normally
distributed (p < 0.05). Prior to quarantine, the asymmetry and excess
coefficients of the valence variable were 0.312 and 1.335, respectively.
The Kolmogorov–Smirnov test criterion of p < 0.001 for valence indi-
cates that the skew was statistically significantly different from normal
during the quarantine period. During quarantine, the asymmetry and
excess coefficients of the valence variable were −0.029 and 0.124,
respectively. The distribution of the variable therefore has a noticeably
negative asymmetry (although this is not especially large, as defined by
a value of ±2 or more). The distribution curve differs only in the sense
that during quarantine, the distribution curve of the values has a longer
left slope. Nevertheless, in both cases, parametric tests are applicable
in the analysis (see Fig. S1b and Table S1b).

We collected 30,538,597 (878,167) items of data on sadness before
(during) the coronavirus crisis. The average value of sadness prior to
the quarantine period was 𝜇 = 0.1338 and the standard deviation was
𝜎2 = 0.1603. During quarantine, the mean sadness was 𝜇 = 0.1540 and
the standard deviation was 𝜎2 = 0.2038. The mean value of sadness
increased by 15.1% during the quarantine period. A Kolmogorov–
Smirnov test of normality indicates that the values of this variable
were not normally distributed (p < 0.05) in both cases, i.e. prior to
and during quarantine. The skewness of the sadness variable and the
parameters of kurtosis serve as the basis for concluding that the sadness
values were concentrated closer to the average before the quarantine
period, whereas the values during quarantine were distributed more to
the right of the average. The scores for the sadness variable were not
normally distributed during the quarantine period, and had a positive
skew (skewness = 1.667) and a platykurtic distribution (kurtosis =
1.989) (see Fig. S1c and Table S1c).

A total of 27,948,477 items of data were gathered in Vilnius to
establish circadian temperature, between September 19, 2020 and
November 2, 2019. The 95% mid-range value of the facial temperatures
of passersby (between the 2.5th and 97.5th percentiles) was between
22.4861 ◦C (72.47498◦F) and 22.4870 ◦C (72.47660◦F). Facial temper-
atures had a standard deviation of 0.0002416 ◦C (32.00043◦F) (see Fig.
S1d and Table S1d). The cycle of mean body temperature varied during
the day, with lower temperatures in the morning and higher ones in the
afternoon and evening.

4. ROCK and housing COVID-19 video neuroanalytics

The H2020 ROCK project conducted in Vilnius city during which the
ROCK Video Neuroanalytics and related infrastructure were developed
involved studies of passers-by at eight sites in the city (Kaklauskas
et al., 2019). We analyzed the Vilnius Happiness Index (see https://api.
vilnius.lt/happiness-index) with ROCK Video Neuroanalytics in real-
time, also conducted different other activities (see https://Vilnius.lt/
en/category/rock-project/). The ROCK Video Neuroanalytics consists
of framework containing a Database Management Dystem, a Database,
Sensor Network, a Model Database Management System, a Model
Database and a User Interface. The kinds of states stored in the

https://api.vilnius.lt/happiness-index
https://api.vilnius.lt/happiness-index
https://api.vilnius.lt/happiness-index
https://vilnius.lt/en/category/rock-project/
https://vilnius.lt/en/category/rock-project/
https://vilnius.lt/en/category/rock-project/
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ROCK Video Neuroanalytics Database are emotional states (happy, sad,
angry, surprised, scared, disgusted or a neutral state), affective states
(boredom, interest and confusion) and physiological states (average
crowd facial temperature, crowd composition by gender and age groups
as well as heart and breathing rates), arousal and valence. These are the
MAPS data assembled in the Sensor Network. The subsystems contained
within the Model Database are the Data Mining Subsystem, Recommen-
dations Model, Decision Support and Expert Subsystem and Correlation
Subsystem. Meanwhile the Database consists of the developed Video
Neuroanalytics as well as the Historical, Recommendations, Decision
Support and Expert Subsystem Databases. Remote data generated from
affective, emotional and physiological parameter measurement devices
base the compilation of a Sensor Network. Such remote data consist
of MAPS data, sex, age (as per FaceReader 8), temperature (as per
Infrared Camera FLIR A35SC), breathing rate (as per Sensor X4M200)
and numbers of passersby (as per the H.264 Indoor Mini Dome IP
Camera).

A dependency was discovered in the pre-COVID-19 and post-COVID-
19 periods in an entire array of studies, including the research by
Speth et al. (2020), Karadaş et al. (2020), Nalleballe et al. (2020),
Altable and de la Serna (2020), Groarke et al. (2020) and Mishra and
Banerjea (2020). These two periods linked with neurological and neu-
ropsychiatric manifestations like apathy, confusion, anxiety and mood
disorders; neurological problems and symptoms that include stress
and mood as well as anxiety levels indicating depression. Therefore,
the research conducted by these same authors on potential COVID-19
infection includes supplemental analyses on emotional and affective
states.

A study pertinent to elderly age by Speth et al. (2020) discovered
baseline depressive mood and anxiety levels during the pre-COVID-
19 period, which positively associated with more depressive moods
and anxiety during the COVID-19 period. Headaches, stress, stroke,
itch, cerebrovascular dysfunction and BBB disruption are all examples
of COVID-19-caused symptoms stemming from numerous neurological
problems (Kempuraj et al., 2020). A study involving 239 patients
of which 133 were males and 106 were females, all with COVID-19
diagnoses, was performed by Karadaş et al. (2020). Of the 239 patients,
83, or 34.7% involved neurological findings. COVID-19 causes harm to
the nerve and muscle systems. Typical neurological symptoms include
headache, muscle pain, sleep disorder, impaired consciousness, smell
and taste impairments, dizziness and cerebrovascular diseases (Karadaş
et al., 2020).

Then, in 2020, a study was conducted by Nalleballe et al. (2020)
on 40,469 COVID-19 positive patients. Its finding was that 22.5% of
patients displayed neuropsychiatric symptoms associated with COVID-
19. A handful of minor studies corresponded with this same finding.
These had been performed by Mao et al. (2020) and Helms et al.
(2020). There appears to be a potentially strong relationship between
coronavirus infections and psychosis. COVID-19 patients display neu-
ropsychiatric symptoms, which customarily include anxiety, mood dis-
orders, headache, sleep disorders, encephalopathy, stroke, seizures and
neuromuscular complications (Nalleballe et al., 2020). Neuropsychi-
atric symptoms appear from the start of a COVID-19 illness whether
it is mild, moderate or severe. The kinds of neuropsychiatric symptoms
include anxiety, panic attacks, depression, mental confusion, acute con-
fusional syndrome, psychomotor excitement, psychosis and, possibly,
suicidal inclinations. The importance of these symptoms appearing
in COVID-19 cases is that patients suffer these in addition to the
customary symptoms of fever, cough and dyspnea. The suffering of such
an illness further causes apathy, anorexia and muscular pain (Altable
and de la Serna, 2020).

Morbidity and mortality have outcropped significantly during the
ongoing COVID-19 pandemic due to neurological complications. A
large number of hospitalized patients indicate neurological symptoms
in addition to a respiratory insufficiency. Such symptoms appear as a

wide range of maladies from a headache and loss of smell, to confusion
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and disabling strokes (Groarke et al., 2020). Coronavirus-caused neuro-
logical maladies constitute clear-cut pathogenic symptoms. The damage
caused by neurological impairments can extend from general, cognitive
and motor dysfunctions up to a wide spectrum of CNS anomalies
like anxiety and other kinds of audio-visual incapacities (Mishra and
Banerjea, 2020).

The Housing COVID-19 Video Neuroanalytics will be developed
over the course of implementing the MICROBE Project by adapt-
ing the ROCK Video Neuroanalytics for a potential analysis of neg-
ative emotions and the coronavirus. The Housing COVID-19 Video
Neuroanalytics framework consists of the ROCK Video Neuroanalyt-
ics and e-Questionnaire COVID-19 Symptom Surveys, e.g., see https:
//covid-19.ontario.ca/self-assessment/ and https://www.mayoclinic.
org/covid-19-self-assessment-tool. It additionally contains a Correla-
tion Subsystem and a COVID-19 Subsystem and User Interface. The
Correlation Subsystem (see Section 5 ‘‘Results’’) is capable of an-
alyzing different correlations relevant to the MAPS metrics on the
diurnal, seasonal and coronavirus lockdown along with their impact
on people. Meanwhile users can manage the Housing COVID-19 Video
Neuroanalytics by the convenience of the provisions from the User
Interface.

Also, the developed Housing COVID-19 Video Neuroanalytics will
include specific measurements from wearable devices and the COVID-
19 Subsystem. Further, there is brief mention of some wearable mea-
surement devices, which collect different physiological data like heart
rhythm in a peaceful state and its variability, fatigue, bodily pain,
taste and smell, cough, fever and pf activity rate. The expectation is to
integrate all of these into the Housing COVID-19 Video Neuroanalytics.
Currently wrist monitors predominate in the market. Such monitors
include WHOOP, Apple Watch Series 4/5, Chest Patch sensor, Garmin
Vivoactive 4, Garmin Forerunner 945, Garmin Fenix 5, Garmin Venu,
Biostrap, Empatica Embrace, Fitbit Ionic, Fitbit Charge 4, Fitbit Versa
2 and Biobeat devices. The other monitoring devices under analysis
at this time include those made by the following companies: the Oura
ring, VivaLNK Vital Scout and VivaLNK Fever Scout epidermal patches,
BioIntellisense epidermal patch, Spire health tag that attaches to cloth-
ing, Hexoskin compression shirt, Biovotion Everion armband, Equivital
LifeMonitor chest strap, Cosinuss Two in-ear device, AIO Sleeve 2.0
arm. The prices for such monitoring devices range from $30 to $500
USD. Global practice indicates that the integration of multidimensional
biometrics and measurements show greater value for their predictive
abilities.

The Housing COVID-19 Video Neuroanalytics will include possible
monitoring COVID-19 infected by analyzing them in practical scenarios
such as universities, housing, and a neighborhood under the threat of an
oncoming outbreak of illness that vitally needs immediate intervention.

The COVID-19 Subsystem can trace symptoms relevant to a COVID-
19 infection in the future, which collects a human body’s heart and
breathing rates, temperature and other physiological (heart rhythm in a
peaceful state and the variability of heart rhythm, fatigue, bodily pain,
taste and smell, cough, fever, rate pf activity) data. This data is then
joined with the responses gathered from the surveys of daily symptoms,
thus predicting the possible onset of the illness. An upsurge in temper-
ature and other physiological data can denote a potential COVID-19
infection in a person, whenever data from the e-Questionnaire COVID-
19 Symptom Surveys combined with data from the Sensor Network so
indicate.

5. Results

Diurnal happiness, valence and temperature
The development of the Diurnal, Seasonal and COVID-19 Analysis

Multimodal Biometric Method took place while conducting the research
described herein. Biometrical techniques employed for this method
measure and analyze correlations and patterns relevant to human

diurnal and seasonal rhythms.

https://covid-19.ontario.ca/self-assessment/
https://covid-19.ontario.ca/self-assessment/
https://covid-19.ontario.ca/self-assessment/
https://www.mayoclinic.org/covid-19-self-assessment-tool
https://www.mayoclinic.org/covid-19-self-assessment-tool
https://www.mayoclinic.org/covid-19-self-assessment-tool
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The research presented here involves an analysis of hourly, daily
and seasonal changes in affect at the individual level between Novem-
ber 22, 2017 and May 20, 2020, in real time, in the city of Vilnius.
The data were gathered from depersonalized passersby at seven specific
sites with minimal intrusion, using IP cameras, FaceReader 8 and FLIR
A35SC infrared cameras, and three layers of biometric-emotional data
were collected. There was a recording of one happiness, sadness and
valence, and 22 temperature measurements were taken per second.
These data were collected and analyzed as follows:

• 1st layer: emotional states (happy, sad, disgusted, angry, scared;
values ranging from 0 to 1);

• 2nd layer: valence (values of valence ranging from −1 to 1);
• 3rd layer: average facial temperatures of the crowd.

he calculation of valence involved the intensity of ‘‘happiness’’ minus
he intensity of the highest-intensity negative emotion (sad, disgusted,
ngry, scared) (FaceReader, 2016); in this way, positive and negative
motions were combined into the single score of valence. A total of
08 million above data points were analyzed using the SPSS Statistics
oftware package. Fig. 1 presents the average values of (a) happiness,
b) valence and (c) temperature per weekday hour.

This research along with studies conducted worldwide (Kaklauskas
t al., 2019, 2020) indicate a dependent interrelationship between
appiness, sadness, valence and temperature. Other studies (McIntosh
t al., 1997; Robinson et al., 2012; Hahn et al., 2012) as well as
his research indicate a cyclical nature of happiness, sadness, valence
nd temperature over the course of a day. This became the basis for
aising the first hypothesis for this research that diurnal happiness,
adness, valence and temperature have statistical interrelationships
mong passersby in Vilnius. All of these variables were found to be
orrelated with one another, with the strongest correlation between
appiness and valence (r = 0.964). This was a positive, statistically

significant relationship with p < 0.001. There was a strong, negative
elationship between temperature and happiness (r = −0.756), which
as statistically significant with p < 0.001. Meanwhile, the relation-

hip between temperature and valence was negative with an average
trength r = −0.628, and was statistically significant with p < 0.001.
his means that as the values of happiness and valence decrease, the
alues of temperature increase, and vice versa.

In this research, a comparison was drawn between happiness
29,129,036) and valence (29,169,150) biometric data gathered in
ilnius and Golder and Macy (2011) positive affect data. Golder and
acy (2011) employed the Twitter data access protocol to collect data

n some 2.4 million English-speaking persons worldwide, gathering
09 million messages written between February 2008 and January
010. Positive affect data were scanned from the original article us-
ng DigitizeIt and GetData Graph Digitizer software. This comparison
ermitted cross-societal tests of the cultural and geographic influences
n positive affect patterns identified by Golder and Macy (2011) and
ilnius biometric data.

The correlation between hourly changes in positive affect in UK/
ustralia (US/Canada) as obtained by Golder and Macy (2011) and
appiness in Vilnius was r = 0.540, p < 0.001 (r = 0.586, p < 0.001),

and for valence, r = 0.595, p < 0.001 (r = 0.614, p < 0.001). This shows
a positive, statistically significant relationship of average strength (Ta-
ble 2). The patterns of happiness and valence diurnal rhythms (based
on local time) found in our research (Fig. 1) have similar shapes for
positive affect in UK/Australia and US/Canada.

The correlation between hourly changes in positive affect in English-
speaking persons worldwide as obtained by Golder and Macy (2011)
and diurnal happiness in Vilnius was r = 0.533, p < 0.001, and
for valence, r = 0.585, p < 0.001 (Table 2). The pattern of diurnal
rhythms for happiness in Vilnius and valence in this research (based
on local time) has a similar shape in comparison with positive affect in
English-speaking persons worldwide (Fig. 1).
8

Results of the correlation analysis appear in Table 2. The results of
the correlation analysis serve as the basis for drawing a conclusion that
there are statistically significant relationships (p < 0.01) between all
the variables used in this study. The strongest relationship is between
happiness and valence (r = 0.964), whereas the weakest, between
happiness and English-speaking persons worldwide (r = 0.533).

A regression analysis is performed to establish the dependency
f the happiness and valence variables (the dependent variables) on
ositive emotions UK/Australia, US/Canada and English-speaking per-
ons worldwide (ES) (the independent variables). The results of the
egression analysis for establishing the dependency of the independent
ariable happiness and valence on the selected dependent variables
ppear in regression equations:

𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠 = −1.022 − 11.381 ⋅ 𝑈𝐾
Australia + 34.324 ⋅ 𝑈𝑆

Canada − 0.093 ⋅ 𝐸𝑆

(1)

𝑉 𝑎𝑙𝑒𝑛𝑐𝑒 = −1.606 + 5.802 ⋅ 𝑈𝐾
Australia + 11.804 ⋅ 𝑈𝑆

Canada + 1.515 ⋅ 𝐸𝑆

(2)

The compiled regression models can be considered appropriate upon
inding that p < 0.05. The finding is that 35.0 percent of the changes
n the variables relevant to the UK/Australia, US/Canada and other
nglish-speaking persons worldwide (ES) are explainable by fluctua-
ions appearing in the happiness variable. Thus, there is the formulation
f a regression equation. 38.4 percent of the variations in variables
K/Australia, US/Canada and English-speaking persons worldwide can
e explained by the fluctuations in the valence variable. The compiled
egression equations serve as the basis for potentially forecasting the
iurnal happiness and valence levels in Vilnius City. Therefore, similar
egression equations can be derived and applied anywhere in the world.

An effort was undertaken to verify the possible forecasting capa-
ilities of Vilnius city happiness and valence of the positive emotion
ariables pertinent to the UK/Australia, USA/Canada and all the other
nglish-speaking countries. Then the significance of each positive emo-
ion variable pertinent to the forecast was established by employing a
imple neural network with one input neuron, one hidden layer and
ne output neuron. Upon performance of the analysis regarding the
orecasting abilities of Vilnius city happiness, it was established during
he testing process that 4.8 percent of the predictions were inaccurate.
uch a result is a sufficiently reasonable. We also found that the most
ritical variable in predicting Vilnius city happiness is the positive emo-
ion variables in the UK/Australia. In the meantime, upon performance
f the analysis pertinent to the ability of Vilnius city valence, as one
f the variables, in forecasting, 9.1 percent of the predictions proved
o be inaccurate. The most significant variable in predicting Vilnius
ity valence is the positive emotions UK/Australia variable. We noticed
hat the analyzed positive emotion variables are better suited to predict
ilnius city happiness. Meanwhile, the UK/Australia positive emotions
ariable is the most significant for forecasting both Vilnius city valence
nd happiness.

alence and sadness, before and during quarantine period
Research around the world as well as this work described herein in-

icate the interdependency of valence and sadness as well as their cycli-
al nature during the daytime. However, it remains unclear whether
r not such interdependency and this cyclical nature also prove true
uring the time of the coronavirus disease pandemic. Therefore, the
im of our research in Vilnius was to substantiate the second hypothesis
hat diurnal valence and sadness, before and during the quarantine
eriod, have a statistical dependency among passersby in Vilnius. To
chieve this goal, data on valence and sadness were compared prior
o the period of quarantine imposed due to the coronavirus crisis
November 22, 2017, to March 16, 2020), and during the coronavirus
pidemic in Vilnius (March 17, 2020 to May 20, 2020) (Fig. 2).

A total of 30,538,597 data entries on average diurnal sadness were
ade before the coronavirus crisis and 878,167 during the quarantine
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Fig. 1. Average happiness (a), valence (b) and temperature (c) values on weekdays, by hour. Recordings are gathered every hour about changes among Vilnius passers-by on
the values of average (a) happiness, (b) valence and (c) temperature by Celsius degrees. Measurements of emotional (happiness, sadness, etc.) states and valence were recorded
every second. There were 22 temperature measurements taken per second and recorded. These values accumulate by weekdays at 95% confidence intervals. Colors clarify the
pertinent weekday. The hour beginning at midnight appears on the x axis. Meanwhile the y axis shows the average values of (a) happiness, (b) valence and (c) temperature by
Celsius degrees for each 24-hr. day, for 7 days. The measure of happiness can fluctuate between 0 and 1, while valence fluctuates between −1 to 1. The manuscript presents a
detailed description of Fig. 1 along with the derived results in comparison to studies from other parts of the world.
period. The relationship was found to be negative, with an average
strength of r = −0.508 and with statistical significance of p < 0.05.
Fig. 2b shows the average diurnal pattern of sadness in Vilnius before
and during the quarantine period on a weekly basis, as per each 24 h.
The sadness scores increased by 15.1% during the quarantine period,
rising from 0.1338 to 0.1540.

Seasonality
Seasonality has a strong influence on most life on Earth, and is a

central aspect of environmental variability, according to (Garbazza and
Benedetti, 2018). Fluctuations due to the seasons have been widely
9

recognized as affecting moods, and have significant effects on human
behavior. Even ancient medical texts mention this effect, and mod-
ern fMRI findings have substantiated the same idea (Garbazza and
Benedetti, 2018). Light and sunlight stimulate emissions of serotonin,
which contributes to wellbeing and happiness. Serotonin affects mood
levels, including anxiety and happiness, and sunshine acts on people
by making them happier, both emotionally and physically. Research
conducted around the world (Lambert et al., 2002) reveals a direct
dependency between the duration of sunshine, the conditional length of
a day and the rate of serotonin production in the brain. This research
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Fig. 2. Average diurnal patterns of valence (a) and sadness (b) over 24 h, before and during coronavirus quarantine. The average pattern of hourly changes in (a) valence and
b) sadness before and during the coronavirus period among passers-by in Vilnius as it appears when broken down by weekday at 95% confidence intervals. Colors indicate the
verage, diurnal pattern before and during the coronavirus period. The x axis shows the hour, beginning at midnight, and the y axis, the average values of (a) valence and (b)
adness each 24-hr. period, before and during the coronavirus period. The value of sadness fluctuates between 0 and 1. There is a positive relationship between the valence values
efore the quarantine and during the quarantine. This relationship has an average strength (r = 0.664) and it is statistically significant (p < 0.001). Valence decreased in Vilnius

during the time of the coronavirus epidemic by 67.03 percent, falling from −0.1280 to −0.2138. The derived sadness relationship proved to be negative with an average strength
at r = −0,508 and with statistical significance at p < 0.05. The mean value of sadness increased by 15.1% during the quarantine period.
therefore focused on variances in happiness and valence among indi-
viduals as the days changed in length due to the season. Variations of
happiness (Fig. 3a) and valence (Fig. 3a) relative to the duration of
monthly daylight were discovered at 95% confidence intervals among
Vilnius passersby over the course of this research. These data sup-
plement the global research under investigation, because data under
biometric analysis of such a huge capacity had never been employed
in the field of seasonality to date.

Diurnal data numbers
Cyclical human activities like the flows by pedestrians and by vehi-

cles traffic flows, which vary over the course of a day, also sometimes
have interdependencies, as global research has shown. However, it is
still unclear, whether the number of data values of diurnal happiness,
valence and facial temperature will correlate upon the performance
of biometric studies in real time. The data gathered as part of this
third hypothesis indicate that the weekly number of data on diurnal
happiness, sadness, valence and facial temperature are cyclical (Fig. 4)
and correlate with their values. There is a strong relationship between
the average values of diurnal happiness (r = −0.834, p < 0.001),
valence (r = −0.772, p < 0.001), sadness (r = −0.676, p < 0.001)
and facial temperature (r = 0.588, p < 0.001), and their numbers of
measurements. All relationships are statistically significant (p < 0.001).

Happiness, sadness and valence correlations
Weekly correlations of happiness, sadness and valence, obtained

between November 22, 2017, and March 16, 2020, are discussed in
this addendum.

Table S2 presents the correlation of happiness, sadness and valence
values by weekday.

The values of the diurnal happiness indices for all weekdays are
correlated with each other. The strongest correlation is between the
10
values for Wednesday and Thursday (r = 0.987, p < 0.001), and the
weakest is seen for Monday and Tuesday (r = 0.553, p < 0.001) (see
Table S2a).

The diurnal valence values for Monday are not correlated with the
valence values for any other weekday, although the valence values
for the other weekdays are correlated with each other. The strongest
correlation is between the values for Wednesday and Sunday (r = 0.929,
p < 0.001), and the weakest correlation is observed for Sunday and
Tuesday (r = 0.719, p < 0.001) (see Table S2b). Two daily peaks in
valence can be seen, one at 4 a.m. and the other close to midnight (see
Fig. S2a).

The values of diurnal sadness were correlated with each other over
each entire day, excluding Saturday and Sunday; a correlation between
these two days was not established. The strongest correlation appears
between Tuesday and Wednesday, with r = 0.949, p < 0.001, whereas
the weakest correlation is seen for Tuesday and Saturday with r =
0.424, p < 0.05. All correlations (except those for Saturday and Sunday)
are statistically significant (see Table S2c).

There are strong and average statistically significant relationships
between the values of diurnal happiness (r = −0.834, p < 0.001),
valence (r = −0.772, p < 0.001), sadness (r = −0.676, p < 0.001), face
temperature (r = 0.588, p < 0.001), and their numbers of measure-
ments.

In the literature on psychology, there is an abundance of evidence
that mood increases on Fridays and decreases on Mondays (Birru,
2018). A sample of 74 men and women who were employed in varied
occupations formed the object of a study by Ryan et al. (2010), who
investigated experiences on weekends and weekdays and their effects
on mood and wellbeing indicators, in conjunction with the effects

of work and leisure time activities. Both weekends and non-working
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Fig. 3. Variations of (a) happiness and (b) valence relative to duration of daylight per month. Average values of (a) happiness and (b) valence among passers-by in Vilnius are
examined by changes per monthly duration of daylight at 95% confidence intervals. The colors represent happiness (valence) and daylight hours. The x axis indicates the month,
beginning with the least number of daylight hours and ending with the greatest number of daylight hours. Two y axes show the average values of (a) happiness, (b) valence (left
axis) and duration of daylight (right axis) per month, over one year. This research containing 29,129,036 data items indicates a correlation between happiness and the length of
daytime of average strength at a 95% confidence level. However, this is statistically insignificant (r = 0.381; p > 0.05). The relationship between valence and the length of a day
is positive, albeit very weak (r = 0.076). However, it is statistically insignificant at p > 0.05 (Fig. 3b).
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times were associated with greater wellbeing. Ryan et al. (2010) also
found mediation of greater satisfaction via autonomy and relatedness
needs, and our research revealed similar results (Fig. S2b). The greatest
average values of valence in Vilnius were seen for Friday (M = −0.1191,
p < 0.001), Saturday (M = −0.1143, p < 0.001) and Sunday (M =

0.1060 ± 0.3028, p < 0.001).

verage circadian pattern of sadness during and prior to the
oronavirus quarantine period in Vilnius

Data on sadness were also compared during and prior to the coro-
avirus quarantine period in Vilnius (see Fig. 2).

The WHO declared the respiratory disease caused by the SaRS-CoV-
coronavirus a pandemic in March of 2020. Governments all over the
orld instituted measures involving isolation with differing degrees
f restriction to curtail the spread of this virus. Physical restraints
esulting from instituted lockdowns and social isolation had reasonably
ood effects in terms of limiting viral contagion, but mental health
uffered due to the onset of feelings such as uncertainty, fear and
espair. People are likely to suffer a ‘parallel pandemic’ very soon,
equiring help from mental health professionals. This ‘pandemic’ is
xpected to involve acute stress disorders, post-traumatic stress disor-
ers, emotional disturbances, sleep disorders, syndromes of depression
nd even suicides as a result (Mucci et al., 2020). Thirteen studies
ave reported results indicating that the imposition of quarantine is re-
ated to different negative psychosocial ailments including depression,
nxiety, anger, stress, post-traumatic stress, social isolation, loneliness
nd stigmatization (Röhr et al., 2020). As a disorder, depression can
esult in major costs to health, but often goes unnoticed when it
ffects university students. Students’ lifestyles very often cause them
 v

11
o sleep less, which in turn causes low energy, anxiety and sadness.
hese symptoms are also usually related to depression, and hence this
ondition does not receive the attention it deserves. It is assumed that
tudents are likely, e.g., to sleep less than needed (Sawhney et al.,
020). Sadness-related emotions, which affect people across genders
nd ages, frequently remain undifferentiated, and are not denoted as
etter-specified symptoms of depression. Thus, they are simply ascribed
o negative emotions without considering their emotional intensity
Willroth et al., 2020).

The first recorded outbreak of coronavirus (COVID-19) was in China
n December 2019. The disease has persisted, and has spread across
he globe since then. The consequences to both individuals and entire
ommunities have been devastating in humanitarian and economic
erms. Epidemics and pandemics of infectious and contagious diseases
an spark experiences of intense trauma for numerous people, which
ay lead to post-traumatic stress disorder, as discovered in earlier

nd current research (Boyraz and Legros, 2020). This includes a study
y Borgmann et al. (2014), who investigated individuals suffering
rom sadness and consequential post-traumatic stress disorder following
exual abuse in childhood by comparing them with healthy individuals.
s in the present research, Borgmann et al. (2014) found a negative
orrelation of sadness. Prior to and during the quarantine period of
uarantine, sadness among passersby in Vilnius had a derived relation-
hip that was negative. It had an average strength of r = −0.508, and
as statistically significant with p < 0.05 (Fig. 2).

he Artificial Intelligence Cluster Analysis
The Artificial Intelligence Cluster Analysis Method using k-means

lustering is meant for determining if the primary data of happiness,

alence and sadness can be divided into two clusters (see Fig. 6).
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Fig. 4. Diurnal number of data on (a) happiness and (b) facial temperature. Changes in the diurnal number of data on (a) happiness and (b) facial temperature levels among
Vilnius passersby appear on a per weekday basis, at 95% confidence intervals. The colors denote the weekdays. The hour of the measurement appears on the x axis, beginning at
midnight. The diurnal number of data levels on (a) happiness and (b) facial temperature per 24-hr. day, over a 7-day week appear on the y axis.
Table 1
Statistical interrelationships between diurnal happiness, valence and temperature for
passersby in Vilnius.

Happiness Valence Sadness Temperature

Happiness 1
Valence 0.964** 1
Sadness −0.871** −0.741** 1
Temperature −0.756** −0.628** 0.862** 1

**Correlation is significant at the 0.001 level (2-tailed).

The performed cluster analysis permitted arriving at the conclusion
that the happiness, valence and sadness variables have a significant
influence at p < 0.05. The values of the variables are assigned to the
clusters before and after a quarantine. Upon performing the analysis
pertinent to the dates of the variable weights designated by the cluster,
a conclusion can be reached. That is that the data falling into Cluster 1
pertain to those prior to the quarantine. Meanwhile Cluster 2 includes
the data during the quarantine. Therefore a conclusion can be drawn
that a quarantine significantly affects the values of the happiness,
valence and sadness variables.

Diurnal facial temperatures in Vilnius City: A regression equation
This section submits a diurnal regression equation. Its bases consist

of the data derived from the facial temperatures of passersby measured
for this research as well as from the mean diurnal musical intensity
data studied by Park et al. (2019). The calculation of this equation
comes from the regression of facial temperatures taken from passersby
12
in Vilnius City taken on a diurnal basis. Meanwhile the GetData Graph
Digitizer digitizing software scanned the mean musical intensity data
from the original article by Park et al. (2019).

Measurements of diurnal patterns of affective preferences were
taken from 765 million online music plays, which one million individ-
uals had streamed from 51 countries, constituting the dataset that Park
et al. (2019) had used for their analysis. Their study regarded the mean
measurement of musical intensity that could compare to arousal. These
scholars believed that there were highly comparable characteristics
between the arousal dimension and a measurement of their intensity.

Yet, different scholars (Dabbs and Moorer, 1975; Zenju et al., 2002,
2004; Salazar-López et al., 2015; Kosonogov et al., 2017) conducting re-
search expressed different opinions regarding how human arousal and
temperature correlated. Dabbs and Moorer (1975) found that an index
of arousal can be provided by human core temperature. A new marker
of emotional arousal is functional infrared thermal imaging, which
promises to become a method for measuring autonomic emotional
responses via facial, cutaneous, thermal variations (Kosonogov et al.,
2017). For example, participants involved in the study conducted by
Kosonogov et al. (2017) reacted with thermal responses more than with
emotional ones while viewing neutral pictures. These people indicated
no difference in responses between pleasant and unpleasant pictures.
However, their nose temperatures tended to fall in the presence of
negative valence stimuli and rise in the presence of positive emotions
and arousal patterns. This was the most important finding resulting
from the research. Additionally the changes in temperature were not

limited to the nose. Changes also appeared at the forehead, oro-facial
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Table 2
Correlations derived from the diurnal happiness and valence data of passersby in Vilnius with diurnal data on positive affect (PA)
taken from Twitter by Golder and Macy (2011).

Vilnius diurnal data Golder and Macy (2011) diurnal positive affect data

Hourly changes in positive affect in English-speaking
persons worldwide

Happiness Valence UK/Australia US/Canada

Happiness 1
Valence 0.964** 1
UK/Australia 0.540** 0.595** 1
US/Canada 0.586** 0.614** 0.960** 1
English-speaking
persons worldwide

0.533** 0.585** 0.835** 0.900** 1

**Correlation is significant at the 0.01 level (2-tailed).
Table 3
Descriptive statistics.

N Minimum Maximum Mean Std. Deviation

Facial temperature for
passers-by in Vilnius

24 22.025 22.724 22.403 0.203

The mean diurnal musical intensity data studied by Park et al. (2019)

Latin America (LA) 24 0.787 1.062 0.982 0.092
North America (NA) 24 0.507 0.809 0.711 0.102
Europe (EU) 24 0.533 0.751 0.688 0.074
Oceania (OC) 24 0.484 0.769 0.680 0.097
Asia (AS) 24 0.284 0.658 0.549 0.133
Table 4
Correlation analysis results.

Temperature for
passers-by in Vilnius

The mean diurnal musical intensity data studied by Park et al. (2019)

Latin America North America Europe Oceania Asia

Temperature 1
Latin America 0.890** 1
North America 0.859** 0.930** 1
Europe 0.950** 0.937** 0.876** 1
Oceania 0.866** 0.897** 0.983** 0.879** 1
Asia 0.850** 0.866** 0.923** 0.858** 0.945** 1

**Correlation is significant at the 0.01 level (2-tailed).
area, cheeks and, overall, over the entire facial area. Regardless of this,
it was primarily the temperature changes at the nose and, less impor-
tantly, over the entire thermic face that indicated positive correlations
with how the participants scored on empathy and how they ultimately
performed (Salazar-López et al., 2015). Another study, conducted by
Zenju et al. (2002, 2004), discovered a rise in nasal skin temperature
whenever the mood changed to a pleasant one and a drop whenever
the mood became unpleasant.

Meanwhile this research involved a comparison of the diurnal facial
temperatures discovered among passersby in Vilnius City with the
diurnal musical intensity measure found by Park et al. (2019). The basis
for this comparison consisted of the previously mentioned researches.
The results of this study appear next. Table 3 presents this study’s
descriptive statistical indicators relevant to its variable.

Forecasting temperature by AI methods requires employing a simple
neural network, containing one input neuron, one hidden layer and one
output neuron. Such a neural network is necessary for the establishment
of a teaching function. Linear regression establishes this sort of func-
tion. Upon performance of the Shapiro–Wilk Test, it was established
that the values of all the variables are not distributed according to
the Law of Normal Distribution (p < 0.05). Then, upon performance
of the regression analysis of the variables, the Spearman’s correlation
coefficient is calculated. The results of the correlation analysis appear
in Table 4.

All variable correlate with one another. This means there is a
statistically significant relationship between any two variables (p <
0.01). The strongest relationship established is between the variables
13
Table 5
Regression analysis results.

B Std. Error Beta t p

(Constant) 21.002 0.906 23.174 0
Latin America (LA) −0.622 1.878 −0.282 −0.331 0.744
North America (NA) −0.165 2.451 −0.083 −0.067 0.947
Europe (EU) 1.646 1.464 0.602 1.124 0.276
Oceania (OC) 1.459 1.54 0.697 0.947 0.356
Asia (AS) 0.008 1.278 0.005 0.006 0.995

OC and NA (rs = 0.983), while the weakest, between variables AS and
EU (rs = 0.858).

In order to establish the influence the independent variables (LA,
NA, EU, OC and AS) have on the analytical expression of the dependent
variable (Temperature), a regression analysis is performed. Its results
appear in Table 5.

It has been established that the linear regression model is suitable
for deliberation (p < 0.01). Meanwhile the changes in the values of
the independent variables (LA, NA, EU, OC and AS) are able to explain
87.2 percent of the dispersion of the dependent variable (Temperature).
Then the linear regression model is compiled:

Temperature = 21.002 − 0.622 ⋅ 𝐿𝐴 − 0.165 ⋅𝑁𝐴 + 1.646 ⋅ 𝐸𝑈

+1.459 ⋅ 𝑂𝐶 + 0.008 ⋅ 𝐴𝑆 (3)

The Temperature values calculated according to the compiled re-
gression equation and the measured Temperature values appear in
Fig. 5.
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Fig. 5. Measured and calculated temperature for passers-by in Vilnius values.
Fig. 6. Clusters analysis results and final cluster centers.
able 6
lasticity coefficient calculations results.

𝛽 𝑥 𝑦 E

Latin America (LA) 1.990 0.981 22.403 0.087
North America (NA) 1.835 0.711 22.403 0.058
Europe (EU) 2.500 0.688 22.403 0.077
Oceania (OC) 1.939 0.680 22.403 0.059
Asia (AS) 1.407 0.549 22.403 0.034

In order to establish the influence of different variables on a de-
endent variable, an elasticity coefficient is calculated for every pair
f dependent and independent variables according to the following
ormula:

= 𝛽 ⋅
𝑥
𝑦

(4)

ere: 𝛽 – the coefficient of the linear regression equation pertinent to
he pair of a dependent and an independent variable, where:
𝑥 – average independent variable value
𝑦 – average dependent variable value
E – elasticity coefficient indicating the percentage of change in the
independent variable upon a one percent increase in the independent
variable.

The results of the elasticity coefficient calculations appear in Ta-
ble 6.

The performed analysis permits drawing a conclusion that the vari-
able Musical Intensity Europe (EU) has the greatest influence on the
variable Temperature. Upon a one percent increase in the value of
this variable, the value of the variable Temperature increases by 0.077
percent. This way a conclusion can be drawn that the variable Musical
Intensity Europe is the most suitable variable for forecasting the value
of the variable Temperature.
14
6. Discussion and conclusions

The purpose of this study is to measure and analyze the human
diurnal and seasonal rhythm correlations and patterns by biometrical
techniques. The authors of this work made full use of their backgrounds
coupled with their intuitive abilities to raise three hypotheses involved
in this research. Our three hypotheses also rested on a solid foundation
of analyzed worldwide scientific literature pertinent to this field:

• H1: Diurnal happiness, sadness, valence and temperature among
passersby in Vilnius show statistical interrelationships.

• H2: Diurnal valence and sadness among passersby in Vilnius,
before and during the quarantine period, show statistical depen-
dencies.

• H3: The numbers of data on diurnal happiness, sadness, valence
and facial temperature correlate with their values.

The Diurnal and Seasonal Analysis Multimodal Biometric Method, de-
veloped by the authors of this research, confirmed the previously
described hypotheses.

This research involves comparing 29,129,036 entries of remote
biometric data on happiness and 29,169,150 entries of biometric data
on valence in Vilnius along with the positive affect data accumulated
by Golder and Macy (2011). The Twitter data access protocol was used
by Golder and Macy (2011) for gathering data from about 2.4 million
English-speaking persons worldwide. These data included 509 million
messages sent from February 2008 to January 2010. The changes in
positive affect recorded each hour, which Golder and Macy (2011) took
from the UK/Australia and US/Canada, were correlated with data on
happiness and valence taken in Vilnius. The result indicated a positive
relationship of average strength, which is statistically significant. Thus
the correlation is a positive, statistically significant relationship of
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average strength between the hourly, positive affect changes among
English-speakers worldwide, which Golder and Macy (2011) gathered,
and the diurnal happiness found in Vilnius (see Table 2).

Two peaks appear in the results of the positive affect that Golder and
Macy (2011) found among English-speaking persons worldwide and the
happiness found in Vilnius and along with the valence that this research
indicates. One peak appears relatively early in the morning and the
other, at nearly midnight.

The peak positive affect on Saturday and Sunday mornings lagged
the peak on weekdays by nearly two hours (Golder and Macy, 2011),
reflecting the hours in which people generally enjoy extra sleep, waking
as a result of their body clocks rather than an alarm clock. So usually
M = 9:48 a.m., although now, M = 7:55 a.m., P < 0.001. Our study
ave similar results for happiness: the morning peak in happiness at
eekends was also postponed by nearly two hours (M = 5–6 a.m. versus
= 3–4 a.m., p < 0.001) (Fig. 1a).
The greatest happiness score by hour on weekdays was found to

ccur at 3:00 a.m., with a value of 0.2927 ± 0.0963, while the lowest
ccurred at 9:00 a.m., with an average value of 0.0891 ± 0.00140. The
argest value of valence was 0.0361 ± 0.1141 at 4:00 a.m. on weekdays,
hile the lowest was −0.1768 ± 0.00162 at 10:00 a.m.

Both the Twitter and Vilnius data showed a stable repeating shape
ver all days, with a decrease in positive affect at midmorning on
eekdays and an increase in the evening. However, weekends and
eekdays showed similar shapes for the affective cycle. Thus, sleep
nd the biological clock seem to be the key determinants of affect,
egardless of differences in environmental stress (Golder and Macy,
011). The researchers in this study obtained similar results, as the
appiness of passersby decreased during weekday mornings, stabilized
o approximately the same level during working hours, and increased
n weekday evenings. Furthermore, happiness at weekends and on
eekdays showed similar shapes for the affective cycle (r = 0.9057,
< 0.001).

Reports of happiness were more frequent at weekends than on week-
ays. Reports of experiences on weekdays tended to include more stress
nd greater unhappiness, and emotions were less controllable than at
eekends (Kunz-Ebrecht et al., 2004). The happiest days of the week,
s shown by research conducted worldwide, are Friday to Sunday.
ur study employed remote biometric means, and the results were

imilar to those obtained in other biometric research using contact-
ased means (Kaklauskas et al., 2019, 2020) performed all over the
orld. The greatest average value of happiness is found on Friday (M
0.1789 ± 0.0948, p < 0.001), whereas the lowest value is found

n Monday (M = 0.1224 ± 0.0385, p < 0.001). More than 29 million
epersonalized measurements were used as the basis for drafting the
alence graph for all weekdays. The greatest average values of valence
n Vilnius were found on Friday (M = −0.1191, p < 0.001), Saturday
M = −0.1143, p < 0.001) and Sunday (M = −0.1060 ± 0.3028, p <
.001).

According to Kosonogov et al. (2017) and Cruz-Albarran et al.
2017), thermal responses of human skin correlate with subjective rat-
ngs. Thus, what is pleasant and what is unpleasant show no differences
etween them. Just like such responses act on human skin temperature,
hey also act on social activities (Bryant and Zillmann, 1984).

Research by Smolensky and Lamberg (2001) reported a daily cycle
f body temperature that is usually at its lowest at 4:30 a.m., and at
ts highest at 7:30 p.m.; these results were aligned with those of tests
onducted as part of the present research on the facial temperatures of
assersby. The testing of passersby in Vilnius shows that a maximal
acial temperature is seen in the evenings between 7:00–8:00 p.m.,
atching the findings of Smolensky and Lamberg (2001) and Harding

t al. (2019). In general, body temperatures are lower in the morning
nd higher in the afternoon and evening. The cycle of mean body
emperature displayed the same sort of daytime variance during the
ay. Research conducted by other scholars (Smolensky and Lamberg,
001; Harding et al., 2019) and the authors of the current article

upports these findings (Fig. 1c).

15
Other worldwide studies have also reported similar trends regarding
tatistical interrelationships (McIntosh et al., 1997; Robinson et al.,
012; Hahn et al., 2012) between happiness, valence and temperature.
ence, the first hypothesis that diurnal happiness, sadness, valence
nd temperature have statistical interrelationships among passersby in
ilnius appears to be valid (Table 1).

Furthermore, the dependency of the happiness and valence depen-
ent variables on the independent variables consisting of UK/Australia,
S/Canada and other English-speaking regions in the world (ES), was

ested by undertaking a regression analysis. The basis for a possible
orecast of diurnal happiness and valence levels in Vilnius City con-
isted of the amassed regression equations. It is thusly possible to amass
ike regression equations and to apply them in any country.

Our method was validated using data on sadness in Vilnius city and
cores reported in research by Lampos et al. (2013). GetData Graph
igitizer, a digitizing software packaged, was used to scan the data
n sadness from the original article by Lampos et al. (2013). Lampos
t al. (2013) accumulated around 120 million data points over two
2-week intervals at different times, of which 70 million entries were
ade during the summer of 2011, and 50 million during the winter of
011. These data were gathered from 54 of the most populated urban
enters in the UK. Hourly changes in sadness in the UK were shown by
ampos et al. (2013) to be correlated with hourly changes in sadness
n Vilnius, with r = 0.705, p < 0.001, a positive, statistically significant
esult indicating a relationship of average strength.

A second hypothesis was confirmed during this research. This one
oses that diurnal valence and sadness are and have been statistically
ependent, both before the quarantine period and during it, pertinent
o Vilnius passersby. There was a negative relationship discovered,
here the average strength was r = −0.508 and the statistical signifi-

cance, p < 0.05. This agrees with the results of Borgmann et al. (2014),
who reported a negative correlation pertinent to sadness.

The results of the present study support those of other researchers
(Bedrosian and Nelson, 2017; Garbazza and Benedetti, 2018), who
have reported that changes in day length cause positive mood swings.
The length of daylight, including both direct and indirect sunlight,
conditionally affects happiness, a dependence shown in Fig. 3a. The
findings of this research support the conclusions of the Twitter study
of Golder and Macy (2011) regarding characteristic seasonal changes
related to happiness, even though valence does not change due to sea-
sonality. Diurnal function and mood have an important dependence on
appropriately timed light exposure, due to the known fact that seasonal
changes in the length of a day modify moods. As shown by Bedrosian
and Nelson (2017), both a lack and an excess of light have significant
effects on health and mood. The results of the present research support
this, as they clearly show the greatest happiness among Vilnius city
residents during March and September, when the day length is neither
the longest nor the shortest. Social activities during the Christmas and
New Year holidays also increased the sense of happiness (Fig. 3a).
It is also notable that these biometric data supplement global studies
on seasonality by their great capacity. Analogical studies (Kaklauskas
et al., 2019) had previously been conducted with merely several dozen
or possibly, several hundred persons.

Global research has shown that human activities such as pedestrian
and vehicular traffic flows and the associated pollution are also cyclical
over the course of a day. The third hypothesis of this research entailed
collecting data that indicated a cyclical nature of number of data of
diurnal happiness, sadness, valence and facial temperature (see Fig. 4).
Furthermore, these number of data and values correlate, and all their
relationships are statistically significant (p < 0.001).

Upon analyzing how the temperatures of Vilnius passersby interface
with arousal among people residing in different continents (North
America, Latin America, Europe, Oceania, and Asia), it became possible
to conclude that the strengths of these sorts of interfaces were similar,
ranging between 0.850 and 0.890. Europeans alone show exceptional
strength in the interface between arousal and the temperatures, rel-

evant to Vilnius passersby, at rs = 0.950. It thus may be presumed
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that Vilnius, as the capital city of Lithuania, determines such an ex-
ceptionality by its dependence on the continent of Europe. However,
on the other hand, this sort of presumption denies the strength of
the arousal interface between Oceania and North America, at rs =
0.983. These two regions are quite culturally apart. Thereby another
presumption is possible that the number of economically developed
countries in the region or the overall level of economic development
determines the strength of the interface. It would be necessary to verify
this presumption by analyzing the interactions of arousal interfaces
between strongly and weakly developed countries or their groups in
future research studies.

Although remote biometric technologies offer new opportunities
for observing changes in emotions, they also have certain significant
shortcomings. Tests run in laboratories generally include demographic
data such as gender, citizenship, ethnic background, level of educa-
tion completed, age, religion, income, occupation and possibly some
analysis of socioeconomic status. However, the research presented here
includes no demographic data regarding the passersby under study, ex-
cept for data on age, gender, ethnicity and mood, which were gathered
remotely for further analysis. Both the present study and prior research
indicate that the surrounding environment, cultural norms, traditions,
levels of pollution, weather cycles and social activities all influence
human diurnal mood rhythms and seasonal patterns. Despite this, the
results of the biometric research conducted here confirmed that mood
(happiness, sadness and valence) and facial temperature fluctuated
cyclically over the course of a day. It was also determined that although
valence and sadness worsened during the coronavirus lockdown period,
their cyclical nature over the course of a day persisted. The data
are also correlated with results from prior to the coronavirus crisis.
We have recently carried out calculations based on diurnal (happi-
ness, valence, facial temperature) and other data derived from this
research. These calculations are on different values, including hedonic,
perceived, integrated hedonic-market, and hedonic-investment values.
These calculations are currently being verified and validated.

There are only three, possibly correctable, limitations to the Diurnal,
Seasonal and COVID-19 Analysis Multimodal Biometric Method under
recommendation. These are:

– One limitation regards ready access to this method, since stake-
holders do not always reach reliable, personalized, real-time,
biometric data.

– Another limit is the costliness, in terms of time and money, of ac-
cumulating data on physiological, affective and emotional states,
arousal and valence and other pertinent aspects. This requires
utilizing state-of-the-art technology.

– The third limitation is probably the most essential one, which
is pertinent to human privacy and data issues. A single set of
data protection rules must constitute the guidelines for all to
follow equally, since May 2018. These are set forth as the General
Data Protection Regulation, and any businesses operating within
any part of the EU must adhere to these rules. Data is thus
better protected by these added regulations by permitting private
individuals greater control over their personal data. Meanwhile
businesses thereby also enjoy the benefits of greater equality in
their field of operations (GDPR, 2018). What prevents a massive
adaptation of wearable sensors and digital health technologies
overall in the United States, as Seshadri et al. (2020) presume,
are the issues of data privacy, data sharing and underreporting
involved in remote patient monitoring. Companies must assure
users that their wearable technologies will only share data from
those who so desire. This has already been done by WHOOP,
which assures the anonymity of the data it gathers along with
its use as being aimed for COVID-19 research alone (Seshadri
et al., 2020). Population health data is handled with sensitivity
regarding privacy in Germany. Germany has become a prime
example for its stance on digital data gathering on a highly
limited basis (Hodge, 2020).
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The human emotional, affective and physiological states, arousal
and valence (MAPS) data added to the ‘‘big picture’’ analysis on diurnal
emotions and the coronavirus lockdown in public spaces contribute
to worldwide research. These added MAPS data are the emotional
states of happy, sad, angry, surprised, scared, disgusted and neutral;
affective states of boredom, interest and confusion; physiological states
measured by average facial temperature in a crowd as well as heart and
breathing rates; arousal and valence.

A key contribution constitutes the correlations found by the research
presented here. These correlations aided in obtaining appropriate es-
timates of emotional similarities, biometrical states and diurnal and
seasonal mood cycles due to the use of big data for their assess-
ments. The methodology employed by these authors in conducting the
study presented herein were taken from computer science and artificial
intelligence. These then constitute the means for quantifying and rec-
ognizing emotions automatically along with assessing the dependence
of these emotions on diurnal and seasonal mood cycles.

This research involves innovative studies employing biometric data
for the first time. The biometric data was first accumulated remotely
on a large scale to test collective MAPS data.

The potential, practical applications of these findings are the follow-
ing:

– This Diurnal, Seasonal and COVID-19 Analysis Multimodal Bio-
metric (CABER) method can promise in-depth understanding of
realistic affective and emotional preferences held by actual crowd
and their prerequisites. The opportunity to analyze and thereby
achieve quick and beneficial responses to crowd needs outcrops
by the use of this method together with multiple criteria crowd
analytics techniques.

– Various business sectors can pinpoint this method with multi-
ple criteria crowd mining methods for their big data analysis
and decision-making. The sectors that can beneficially use this
method include industry, commerce, trade and services, educa-
tion, financing, municipal development, media, climate policy,
awareness and energy.

– The developed technique could additionally humanize and opti-
mize advertising, mass marketing, and client relationships with
momently feedback to a purchaser for a personalized product,
multiple criteria analysis of possible purchasers, and a big picture
of buyer needs.

– An important, emotional state for various activities during
COVID-19, so far as certain stakeholders might consider, happens
to be compassion. The MAPS data that are capable of implement-
ing people-centric, urban design processes effectively, e.g., that
include therapeutic approaches like therapeutic planning, ther-
apeutic outdoor spaces, therapeutic landscape design and the
therapeutic value of green spaces.

– Quantitative and qualitative understandings relevant to feelings
are of utmost importance for an analysis of human emotional,
affective and physiological states, arousal and valence (MAPS)
of passersby before and during COVID-19. These can, therefore,
serve as the goal for applying the Diurnal, Seasonal and CABER
method. It is possible to measure the feelings of passersby and
categorize them by gender, age and the biological circadian clock
in static and dynamic surroundings. Static areas include green
spaces and cultural markers, whereas dynamic areas involve
transportation flows, air and noise pollution and the seasons.

– Applications of neuro decision-making tables and MCDM tech-
niques permit stakeholders to take calculations before and dur-
ing COVID-19 on hedonic, customer-perceived, integrated, and
hedonic-market values along with market and hedonic-
investment values in real estate (Kaklauskas, 1999, 2016).

Future research is expected to be performed in two directions.
A dependency was discovered in the pre-COVID-19 and post-COVID-
19 periods in an entire array of studies, including the research by
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Speth et al. (2020), Karadaş et al. (2020), Nalleballe et al. (2020),
Altable and de la Serna (2020), Groarke et al. (2020) and Mishra and
Banerjea (2020). These two periods linked with neurological and neu-
ropsychiatric manifestations like apathy, confusion, anxiety and mood
disorders; neurological problems and symptoms that include stress and
mood as well as anxiety levels indicating depression. Therefore, the
studies presented here, conducted by these same authors, on potential
COVID-19 illnesses include supplemental analyses on emotional and
affective states.

First, the application of the developed ROCK Video Neuroanalytics
and the CABER method are expected in housing, which will involve
developing the Housing COVID-19 Video Neuroanalytics throughout
implementing the MICROBE Project. The Housing COVID-19 Video
Neuroanalytics framework consists of the ROCK Video Neuroanalytics
and e-Questionnaire COVID-19 Symptom Surveys, Correlation Subsys-
tem, COVID-19 Subsystem, and User Interface. The CABER method and
the Housing COVID-19 Video Neuroanalytics developed by these scien-
tists will additionally analyze in the future the same parameters as the
analogues in existence on the market today or their related substitutes
are measuring. Such additional parameters include the variability of
heart rhythm, fatigue, bodily pain, taste and smell, cough, fever, rate
pf activity and the like. However, the following future new features are
notable:

1. The Housing COVID-19 Video Neuroanalytics will review the
life cycle process of sustainable housing thoroughly regarding the
traits involved in the micro-, mezo- and macro-environments relative
to COVID-19. Improving housing micro, mezo, and macro environ-
ment using the Housing COVID-19 Video Neuroanalytics can play an
essential role in diminishing COVID-19 distribution.

2. The current application of the ROCK Video Neuroanalytics is
pertinent to a potential analysis of COVID-19 while developing the
Housing COVID-19 Video Neuroanalytics. An e-Questionnaire that re-
ports daily symptoms and a COVID-19 Subsystem will be integrated
into the developed Housing COVID-19 Video Neuroanalytics along with
the measurements taken from certain wearable devices. These will
then be entered into the existing ROCK Video Neuroanalytics. The
integrated measurements of parameters will be taken both remotely
and by the wearable. The existing wearable analogues, such as bracelets
and wearable sensors, are available in the market. The potential like-
lihood of COVID-19 along with its concentration in housing will be
established by remote means in real time. This will be performed
based on the data on heart and breathing rates, temperature, rate of
activity and the like. Maps relevant to potential COVID-19 infection
are drafted by physiological (heart and breathing rates, temperature,
heart rhythm in a peaceful state and the variability of heart rhythm,
fatigue, bodily pain, taste and smell, cough, fever, rate pf activity) and
emotional, measurements as well as by pollution levels, which will then
be applicable to specific housing units.

3. The use of physiological and emotional maps along with maps
on pollution levels as well as maps where potential COVID-19 exists
make the system informative. It has applications of big data analytics.
Databases capable of storing huge capacities are under development.
Furthermore, the system generates a huge amount of multifaceted in-
formation along with interdisciplinary recommendations for improving
the quality of a housing unit.

4. Compilations of neuro and neuro correlation matrices will allow a
thorough analysis of a housing unit viewed with regard to quantitative,
qualitative, neuro and COVID-19 perspectives relative to thousands of
alternative recommendations. Furthermore, such an analysis allows a
user to choose the most rational alternative relative to individual needs.
The housing unit can then be priced in terms of its market, investment,
hedonic, emotional values. Thereby the quality of a housing unit can
be analyzed in its entirety, something that no other neuro or neuro
correlation matrix is capable of accomplishing anywhere worldwide.
This system even permits submitting appropriate recommendations.

5. Additionally, the analysis conducted by the system is multi-

layered since it encompasses different aspects relevant to residential
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housing units. Such aspects include health, emotional and physiologi-
cal measurements and pertinent economic, social, demographic, legal,
technological, technical, environmental, managerial and other data.

6. The Housing COVID-19 Video Neuroanalytics will include pos-
sible monitoring COVID-19 infected by analyzing them in practical
scenarios such as universities, housing, and a neighborhood under the
threat of an oncoming outbreak of illness that vitally needs immediate
intervention.

Today’s market carries various vaccines, medical preparations and
other treatment means, medicaments, necessities for hospitals and med-
ical offices, disinfection means, and safety apparel and means. Some
are unreliable or act ineffectively. The proposed CABER method will
evaluate their effectiveness by trials and demonstrate their actions in
the office building’s realistic environment at Narbuto St. 5, Vilnius.
The measurements of different parameters for this purpose will include
temperature, breathing and heart rates, the variability of heart rhythm,
fatigue, bodily pain, taste and smell, cough, fever, rate of activity and
the like, as well as emotions. The existing analogues do not measure
emotions.
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