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Abstract: One of the most common oncologies analyzed among people worldwide is lung malignancy.
Early detection of lung malignancy helps find a suitable treatment for saving human lives. Due to
its high resolution, greater transparency, and low noise and distortions, Computed Tomography
(CT) images are most commonly used for processing. In this context, this research work mainly
focused on the multifaceted nature of lung cancer diagnosis, a quintessential, fascinating, and risky
subject of oncology. The input used here has been nano-image, enhanced with a Gabor filter and
modified color-based histogram equalization. Then, the image of lung cancer was segmented by
using the Guaranteed Convergence Particle Swarm Optimization (GCPSO) algorithm. A graphical
user interface nano-measuring tool was designed to classify the tumor region. The Bag of Visual
Words (BoVW) and a Convolutional Recurrent Neural Network (CRNN) were employed for image
classification and feature extraction processes. In terms of findings, we achieved the average precision
of 96.5%, accuracy of 99.35%, sensitivity of 97%, specificity of 99% and F1 score of 95.5%. With the
proposed solution, the overall time required for the segmentation of images was much smaller than
the existing solutions. It is also remarkable that biocompatible-based nanotechnology was developed
to distinguish the malignancy region on a nanometer scale and has to be evaluated automatically.
That novel method succeeds in producing a proficient, robust, and precise segmentation of lesions in
nano-CT images.

Keywords: deep learning; lung tumor; nano technique; Gabor filter; BoVW; CRNN; GCPSO

1. Introduction

Lung cancer is the most lethal cancer in the world, with over 225,000 cases, 150,000 deaths,
and $12 billion in healthcare costs in the United States annually [1]. In addition, it is one of
the deadliest cancers; only 17% of people diagnosed with lung cancer in the United States
survive five years after diagnosis, and the survival rate is lower in developing countries.
The stage of cancer refers to the extent to which it has spread. Cancers in stages 1 and 2 are
limited to the lungs, while cancers in later stages have spread to other organs. Biopsies and
imaging, such as CT scans, are currently used in diagnosis. Early detection of lung cancer
(detection in the early stages) significantly improves survival chances. As a result, many
countries are developing early lung cancer detection strategies.

The National Lung Screening Trial (NLST) [2] demonstrated that three annual screen-
ing rounds of high-risk subjects using low-dose CT significantly reduce death rates [3].
Because of these measures, a radiologist must examine many CT scan images. Even for
experienced doctors, it is extremely hard to detect the nodules. The burden on radiologists
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grows exponentially as the number of CT scans to analyse grows. With the expected
increase in preventive/early-detection measures, scientists are developing automated so-
lutions to help doctors relieve their workload, improve diagnostic precision by reducing
subjectivity, speed up analysis, and lower medical costs.

Specific features must be recognised and measured to detect malignant nodules [4].
Cancer risk can be calculated based on the detected features and their combination. This
task, however, is extremely difficult, even for an experienced medical doctor, because
the presence of nodules and a positive cancer diagnosis are not easily linked. Common
Computer-Assisted Diagnosis (CAD) approaches rely on previously studied features linked
to cancer suspicion. The features and Machine Learning (ML) techniques are used to
determine whether the nodule is benign or malignant [5]. Although many works use
similar machine learning frameworks, the problem with these methods is that many
parameters must be hand-crafted for the system to work at its best performance, making it
difficult to reproduce state-of-the-art results.

Deep learning can perform end-to-end detection by learning the most salient features
during training. This makes the network resistant to variations because it captures nodule
features in different CT scans with varying parameters. With a training set rich in variability,
the system can learn invariant features from malignant nodules and perform better. Because
no features are engineered, the network can learn the relationship between features and
cancer using the provided ground truth. Once trained, the network is expected to generalise
its learning and detect malignant nodules (or patient-level cancer) in new cases that the
system has never seen before.

According to WHO (World Health Organization), 8.9 million deaths occur due to lung
cancer worldwide, and in 2030 the number is estimated to reach 17 million [6]. The only
option to reduce the fatality rate is early screening and diagnosis. The quintessential part
needed is lung tissue segmentation for quantitative analysis of CT images and computer-
aided diagnosis. As the development of new devices in this era is evolving, we need fast,
accurate, and mostly automatic lung cancer diagnosis, which is much more important than
impractical methods [7]. Computer-Assisted Diagnosis (CAD) is a computerised study of
medical images currently in use. It is commonly used to identify and treat medical imaging
anomalies. CAD has become significant in identifying pulmonary nodules using radiology
CT images. The CAD software helps radiologists to have a second opinion in affirming
their decision in distinguishing the abnormalities, the evaluation of disease improvement,
and the differential conclusion of the disease [8]. Figure 1 shows the block diagram of the
proposed cancer detection method.
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For detecting cancer, various techniques are being proposed and used. Ami George [9]
proposes a technique to denoise the medical image using transformed wavelets. Denoising
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is done by considering different wavelets of hard threshold, and one related to that named
PSNR image metric was tried but did not provide a satisfying result. Jin et al. [10] aim
at the CNN (Convolution Neural Network) system in their CAD framework, providing
an exactness of 84.6%, a sensitivity of 82.5%, and a specificity of 86.7%. The main plus
point of this framework is that during the extraction stage, it uses the filter in ROI (Region
of Interest), thereby diminishing the expense of the remaining steps. Other than that,
the other problem is diminishing execution cost, thereby producing uneven exactness.
Sarah et al. [11] aim to use a robust lung algorithm to segment lungs. A median filter and
fuzzy thresholding are utilised for pre-processing of images. This method does not create
over and under-segmentation problems because it is a robust segmentation method.

Lilik et al. [12] aim to improve intensity using image processing techniques such as
grayscale, binary, median filters, and histogram. Grayscale conversion occurs when an
RGB image is converted to a grayscale image, which is the same as converting an image
to binary form. The median filter is used to reduce noise, and the histogram is used to
improve image quality for better understanding. Malarvel et al. [13] aim for segmentation
as an automatic seed choice format in ROI (Region of Interest) that has uneven backgrounds
in radiographic images. Zhang et al. [14] propose a method which aims at segmentation by
extricating the feature of an image using a tensor that is a nonlinear structure, and then use
the Grabcut strategy, thereby producing exact impact.

Ajin et al. [15] aim at three things: the removing, choosing, and classifying features.
Other strategic methods include Linear Ternary Co-occurrence Pattern, histogram feature
determination, and Hybrid kernel SVM classifier, which are used for extracting features,
choosing the features, and also grouping these features. Another strategy proposed by
Selin et al. [16] aims to fragment, in image processing, the lung tumor in CT images, and
some other features are also used to reduce the noise in images, followed by separating
the tumor from a picture by portioning the image in a later stage. Threshold will select
automatically based on gray level intensities in each image. Another method proposed
by Wang et al. [17] provides less cycle process aims in improving sequential cuts in the
segmentation of lungs through nearby cuts in data. Shengchao et al. [18] aim to improve
GrabCut for lung parenchyma division. This method can choose a bounding box that can
relate CT images of the lung parenchyma, using the Grabcut strategy to precisely portion
those images. When choosing the bounding box, it conquers standard GrabCut calculation
and is also harsh regarding noise.

Ganesh et al. [19] aim for a clear segmentation to improve the CAD framework and
examine those images. However, it provides a confused state regarding juxtapleural
nodules and pulmonary vessels. The mentioned method contains three stages of lung field
segmenting, detecting dominant points from concave and convex points using curvature
information. Finally, a boundary correction is required to repair the boundary.

Piotr et al. [20] describe the automated investigation of medical images, where calcula-
tion fully depends on a level set which unites a Chan–Vese segmentation with active dense
estimation. This brings out two key points: first, it allows surface-based division methods,
and second, it consolidates earlier learning into a scientifically proven way. Narain et al. [21]
bring out another method to use image processing in the Lung Cancer discovery model. It
contains three phases: pre-processing, feature extraction, and classification. Along with
that, by using an SVM classifier, it can predict if the lung is normal or abnormal. LOOP
(Local Optimal Oriented Pattern) separates texture features, and K-fold comes in handy
for characterising. Later, different binary designs such as LBP (Local Binary Pattern), LBC
(Local Binary Count), and LDP (Local Directional Pattern) are employed, which contrasts
the results with the outcome.

Ezhil et al. [22] provide an active contour model using the level set capacity for the
segmentation of lungs. CT (Computed Tomography) offers so much ease in investigat-
ing images. Here, it mainly offers us two great strategies, Selective Binary and Gaussian
filtering new Signed Pressure Force (SBGF-new SPF) for CT lung image segmentation,
which describes the difference in the external boundary of the lung and the stops hap-
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pening at blurry boundaries. The calculation time and the segmented lung show the
upside version of the proposed system. Gupta et al. [23] put forward another strategy to
investigate medical images, thereby helping medical specialists diagnose the illness and
provide worthy medications and counteracts. The task is to recognise and classify them as
solid and maladies such as Chronic Obstructive Pulmonary Disease (COPD) and Fibrosis.
During the initial period for determination of features from a pool of portioned lungs, the
work concentrates on using Gray Level Co-occurrence Matrix (GLCM), Zernike’s minutes,
Gabor features, and Tamura texture features. For feature selection as the second aim,
three algorithms proposed involving the Improvised Crow Search Algorithm (ICSA), Im-
provised Grey Wolf Algorithm (IGWA), and Improvised Cuttlefish Algorithm (ICFA) are
employed, thereby selecting features from a large set of pools that are extracted from the
image to improve accuracy and reduce cost. As the final step, it uses four classifiers from
ML, such as k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest
Classifier, and Decision Tree Classifier applied to each feature subset.

An earlier generation of medical imaging is hard to analyse manually, so the conse-
quences that can occur while segmenting fully rely on exactitude and convergence time [24].
As a result, there is a necessity to develop new and more accurate methods for image
segmentation [25]. CT is mainly used to diagnose lung cancer because it is still the most
cost-effective type of medical imaging. Recent work in algorithms such as k-means cluster-
ing, k-median clustering, particle swarm optimisation, inertia-weighted particle swarm
optimisation, and Guaranteed Convergence Particle Swarm Optimization (GCPSO) have
been used to extract tumors from lung images and analyse them. Medical images frequently
require pre-processing before being subjected to statistical analysis [26–28]. Thereby, latest
technologies such as ML take AI in hand to produce advanced models for even more
accurate results as these models are used to learn from previous data.

2. Materials and Methods

In the proposed solution in this research, the first step was running image pre-
processing for identifying particles. That was briefly done via intensity measurement.
Afterwards, the pre-processed image was segmented using a standard segmentation tech-
nique followed by extraction and selection of features. Some texture features were extracted
during feature extraction using the Approximate Bayesian Computation (ABC) parameter,
the GLCM method, and the Factor of Safety (FOS) parameter. It was then followed by
the classification process, which includes benign and malignant tumors, considering the
CT scanned images. A few extracted features were used to train the classifier. The corre-
sponding trained classification model was created with the model evaluation and obtained
improved detection and classification accuracy, specificity, and sensitivity. Figure 2 shows
the basic framework for the proposed system.
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2.1. Image Acquisition

All the images used in this research are also accessible in the database, with the pivotal
point of view. Here, the framework size is (256 × 256) or (512 × 512) and 16 bits for every
pixel. Lung Image Database Consortium (LIDC) is where the JPEG format of lung images
is available. For research purposes of radiologists, they can easily access that database
through Cancer Imaging Archive (CIA) [29]. Some samples from the databases are shown
in Figure 3. The proposed system data set consists of images of 290 patients, of which
250 patient datasets are used for training the classifier, and the remaining 40 patient datasets
are used for validation. The data set obtained is of DICOM format and is converted to
512 × 512 by pre-processing method without data loss for further partitioning and refinement
purposes. Table 1 summarizes the dataset used, and Table 2 shows the scanner difference.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 2. Framework for the detection of Lung cancer for a CAD System [28]. 

2.1. Image Acquisition 

All the images used in this research are also accessible in the database, with the piv-

otal point of view. Here, the framework size is (256 × 256) or (512 × 512) and 16 bits for 

every pixel. Lung Image Database Consortium (LIDC) is where the JPEG format of lung  

images is available. For research purposes of radiologists, they can easily access that da-

tabase through Cancer Imaging Archive (CIA) [29]. Some samples from the databases are 

shown in Figure 3. The proposed system data set consists of images of 290 patients, of 

which 250 patient datasets are used for training the classifier, and the remaining 40 patient 

datasets are used for validation. The data set obtained is of DICOM format and is con-

verted to 512 × 512 by pre-processing method without data loss for further partitioning 

and refinement purposes. Table 1 summarizes the dataset used, and Table 2 shows the 

scanner difference. 

 

Figure 3. CT image of lungs from the dataset: LIDC in the different sagittal planes. 

Table 1. Overview of the Dataset used. 

Dataset Number of Patients Tumor Slices Non-Tumor Slices 

Training set 250 4378 27987 

Test Set 40 898 3678 

Table 2. Dataset statistics in terms of different scanner. 

Dataset Number of Patients CMS Imaging Siemens 

Training set 250 50 200 

Test Set 40 33 7 

Figure 3. CT image of lungs from the dataset: LIDC in the different sagittal planes.

Table 1. Overview of the Dataset used.

Dataset Number of Patients Tumor Slices Non-Tumor Slices

Training set 250 4378 27987
Test Set 40 898 3678

Table 2. Dataset statistics in terms of different scanner.

Dataset Number of Patients CMS Imaging Siemens

Training set 250 50 200
Test Set 40 33 7

2.2. Pre-Processing

In the research process, the CT images were pre-handled at the lowest level of abstraction
to improve each image’s quality. The operation to detect tumors was image enhancements
after that analysed and preceded the noise reduction, image enhancement (via Gabor filter),
and contrast adjustment (with the modified color-based histogram equalisation).

2.2.1. Gabor Filter

After Dennis Gabor, the name of Gabor filter came into existence; the filter can be used
for texture analysis purposes. When the Gaussian and harmonic function is multiplied, we
gain an impulsive response of that filter. It mainly analyses if there is any specific frequency
in the specific direction of an image [30]. That filter is the most suitable solution for texture
representation and discrimination of images in the spatial domain. The Figure 4a,b shows the
CT lung images and the Gabor filter pre-processed images in this research work, respectively.
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Figure 4. Output of the pre-processed images: (a) the lung CT images (b) Gabor filter enhancement.

2.2.2. Modified Color-Based Histogram Equalisation

The contrast adjustment of the image was made by histogram equalisation. As a result
of such adjustment, a high level of contrast may occur in a particular region. In order to
overcome that, the Modified Color Histogram Equalisation was employed in this research.
That includes limiting the amplitude of pixel intensities [31]. The transformation function
slope and the Cumulative Distribution Function (CDF) are proportionate in this proposed
system. The histogram was clipped, and the amplification was limited before computing
the CDF. As a result, the CDF and transformation function slopes were reduced. The clip
limit [32] is the value at which the histogram is clipped and consequently depends on the
size of the neighboring region. Figure 5 shows the applied color-based histogram on the
input image (pre-processed).
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A Cumulative Distribution Function (CDF) is provided as follows:

Fk(ik) = ∑kj = 0 ( fi). (1)

The output intensity of histogram equalisation is provided as

Iout = [Imax − Imin]Fk(Iin) + Imin, (2)

where Imax and Imin indicate the maximum permissible intensity, respectively, Iin is the
input intensity, and Iout is the output intensity. Fk (Iin) indicates the input intensity of
CDF. Tumor pixel usually becomes white during the foreground region and color for the
background region. The image contrast is gained via the following equation [33,34]:

c =
fm − bm

fm + bm
, (3)

where fm is the foreground region’s mean color level, and bm is the background region’s
mean color level.

The CII method was used in research to measure the image enhancement algorithm
efficiency. By dividing the ratio of the contrast of the (enhanced) output image with respect
to the contrast of the input image, we gain CII,

CII =
Cp

Cin
, (4)

where Cp corresponds to the processed image contrast, and Cin defines the input
image contrast.

2.3. Segmentation: GCPSO Method

The Guaranteed Convergence Particle Swarm Optimization (GCPSO) algorithm is
based on a new Particle Swarm Optimization (PSO) algorithm-based optimisation solution,
which considers that each particle is evaluated according to the suitable location in the
current region [16,35]. GCPSO was applied for segmentation purposes. At this point, the
parameters for the “NC” and “MC” thresholds were defined empirically. During some
iterations, gaining a better value in high-dimension search space is difficult. So, the values
that are being suggested are “NC” = 15 and “MC” = 5, respectively. For the GCPSO,
different phases are included to improve the solution process. In some comparative studies,
the GCPSO has demonstrated remarkable progress in searching within a minimum space
with only a small number of particles [36]. In this sense, GCPSO was used to enhance the
research segmentation results. Figure 6 represents the algorithm steps and the obtained
images after implementation using the GCPSO, given in Algorithm 1.

2.4. Feature Extraction

Feature Extraction is a technique for minimising the dimensions in raw data so that
it can be processed more easily and organised into manageable classes. Massive volumes
of data are characterised by many variables that require computer resources to process
and provide results. Feature Extraction strategies simplify data while guaranteeing that
no information is lost. These methods are responsible for selecting and merging features
to reduce the amount of data. Table 3 lists numerous feature extraction approaches and
the features that should be considered for each technique. The extraction process for the
feature was done by automatically identifying the lung lesions. Three main characteristics
of feature extraction processes have been, respectively, ABC parameter [37], FOS parameter,
and GLCM features [38]:



Electronics 2023, 12, 14 8 of 21

Algorithm 1. GCPSO

Initialisation

(1) Iterations and the cluster number is initialised.
(2) The value of NC and MC are initialised, success_num = 0, and failure_num = 0.
(3) Fitness evaluation function is introduced.

Clustering

(4) Fitness best value for each particle is calculated.
(5) The obtained best solution is updated.
(6) A predefined number of iterations, Steps 4 and 5, are repeated.
(7) Position and velocity function is updated for each particle.

Selection step

(8) The selection operator step is updated.
(9) The clustering algorithm is performed to obtain the best position yi,

else, halt.
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Figure 6. Segmentation results after applying the GCPSO algorithm.

Table 3. Extracted feature parameters for ABC, GLCM and FOS features.

Extracted Features of Input Image

ABC Features GLCM Features FOS Features

Image Irregularity Diameter Asymmetry Energy Correlation Contrast Homogeneity Mean Kurtosis Standard
Deviation Skewness Entropy

1 4.156 4 0.105 0.625 0.94785 0.00852 0.99647 0.007 6.7489 0.009 2.2356 2.789
2 3.245 4 0.547 0.873 0.95287 0.00813 0.99246 0.015 7.5632 0.0108 1.5874 2.645
3 5.475 4 0.162 0.728 0.95874 0.00792 0.99325 0.019 5.589 0.0125 1.15569 2.312
4 3.354 4 0.176 0.725 0.96586 0.00897 0.99478 0.009 4.0145 0.0133 1.5656 2.132
5 3.247 4 0.173 0.685 0.97485 0.00587 0.99325 0.008 6.5632 0.0192 2.5568 2.487
6 6.965 4 0.205 0.525 0.99984 0.00659 0.99214 0.056 3.3256 0.0120 1.8965 2.646
7 3.785 4 0.135 0.647 0.92588 0.00765 0.99148 0.003 7.5265 0.0166 1.7854 2.448
8 4.458 5 0.421 0.729 0.96587 0.00832 0.99248 0.028 2.2359 0.0129 0.85659 2.878
9 4.785 4 0.225 0.828 0.97537 0.00885 0.99148 0.078 3.5632 0.0089 0.94587 2.548
10 5.458 4 0.248 0.536 0.96965 0.00777 0.99489 0.009 6.5986 0.0145 0.74588 2.789

2.4.1. ABC Parameter

ABC parameter is used to describe border structure, lesion diameter, and asymmetry
as follows:

(i) Asymmetry Index:

AI =
A1 + A2

2Ar
. (5)
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(ii) Border Structure irregularity: calculated by density index, fractal dimension index,
edge deflection, and gray transition.

a. Density Index:

CI = (P2L) = 4AL. (6)

b. Fractal dimension Index:
2lnln

(
0.25 pij

)
lnln aij

, (7)

where pij = peremeter (m) o f ij and aij = area (m2 ) o f patchij

c. Edge deflection:

EI =
(Max .Min)%6 + 2

100
(8)

d. Gray transition: calculates gradient magnitude and direction of an image.

(iii) Diameter: used to calculate less gradient length in terms of nanometer scale.

2.4.2. GLCM Features

This method calculates the frequency at which pixel pairs arrive with the specified
value and the amount of time to characterise an image’s texture. It often follows a gray co-
matrix model, and statistical features are extracted based on the number of occurrences [38].
The equation for texture features used in this GLCM method is provided below:

Energy = ∑l−1
m=0 ∑l−1

j=0[p(m, j)]2, (9)

Homogenity = −∑l−1
m=0 p(m) log2[p(m)] , (10)

Correlation = ∑l−1
m=0∑

l−1
m=0

mj p(m , j)− µxµy

σxσy
, (11)

Contrast = ∑l−1
m=0 ∑l−1

j=0(m − j)p(m, j). (12)

2.4.3. Statistical Features

Through the statistical analysis, statistical features are identified [39]. The analysis
refers to the most frequently occurring number from the number set, and these features can
be easily identified when compared with other structural feature extraction methods [40].
Statistical features used in our proposed system are provided below:

Mean µ = ∑l−1
m=0 m p(m), (13)

Variance σ2 = ∑l−1
m=0(m − β)2p(m), (14)

Skewness µ3 = σ−3 ∑l−1
m=0(m − β)3p(m), (15)

Kurtosis µ4 = σ−4 ∑l−1
m=0(m − β)4p(m), (16)

Entropy H = −∑l−1
m=0 ∑l−1

j=0 p(m, j) log2[p(m)]. (17)

Figure 6 illustrates features selected for the CRNN classifier in this study. Here,
13 elements were selected and introduced as the inputs to the CRNN model. The proposed
CRNN architecture included four hidden layers and one output layer with 13 selected
features as the input data. To decrease the number of features that have been selected and
have less training time, the feature selection process, as referred to in [41], was performed
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accordingly. At this point, we mapped five characteristics from the CRNN classifier:
efficiency, train state, histogram error, confusion, and operating characteristics of the
receiver. Table 3 shows the extracted parameter values after applying the ABC, GLCM,
and FOS feature extraction methods. This extracted feature from the original feature set
helped to minimise the time for training for the classifier and increasing classifier efficiency
in finding out the malignant and benign tumors.

2.5. Classification
2.5.1. BoVW Classifier

Bag of visual words (BoVW) is an extension of the NLP algorithm which follows the
supervised learning model. The classifier aims to reduce time consumption by automati-
cally selecting the features accompanying the classification process. It is a commonly used
solution, apart from the widely-known CNN [42]. BoVW has been developed to obtain
a comprehensive language which can better explain the image in terms of extrapolated
features. BoVW employs the Computer Vision Toolbox TM functions to define image cate-
gories by constructing a bag of visual words. The proposed approach generates a histogram
of the image by considering the frequency of visual words. After that, the histogram is
utilised for training a classifier for image categories. The procedures below show the to set
up process of the target images, generating a bag of visual words, and then training and
application of an image classification classifier [43]. The BoVW is broken down into four
simple steps: (1) analysis of the image qualities of a given label; (2) clustering used to create
visual vocabulary, which is preceded by frequency analysis, (3) vocabulary classification of
the produced samples, (4) determination of the most appropriate class for the image query.
The algorithm for the bag of visual words classifiers is as follows:

Step 1: Image Sets created based on Category.
Step 2: BoVW Features is set up.
Step 3: CRNN Classifier is trained with BoVW features.
Considering the BoVW, the images are split into training and test subjects. Before that,

a bag of features is created by extracting character descriptors from representative images
for each category. The image is generally encoded from the training collection in the visual
words system bag so that the properties from the image are taken [44].

2.5.2. CRNN Classifier

In this research, a Convolutional Recurrent Neural Network (CRNN) was also used
for classification purposes. The CRNN briefly uses the pipeline architecture of neural
networks, where CNN plays the first part, and an RNN is employed in the next part.
Figure 7 illustrates the basic architecture of a typical CRNN model. In the context of the
research done here, the input for the CRNN network is a nano lung image. Additionally,
among the four layers in the CRNN architecture, two Convolutional layers were used
to learn the input image. For training data without overfitting, matched filters and the
dropout layer [16,45] are good options for use. In addition, the fourth convolution layer, is
considered, inorder to downsample the output of the previous layer max-pooling.
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It is possible to explain the exact mechanism inside the modeled CRNN as follows:
The CRNN Convolutional layers form a neuron grid in rectangular mode. The neuron
receives its previous input layer rectangular grid; for each neuron, the weight for this
Convolutional layer will be the same. The size of the Convolutional layer here is calculated
based on the 2D convolution filter size and the number [46]. Output from the Convolutional
layer is transferred to the dropout layer and is concatenated by monitoring the number
of neurons from the previous layer. The Max-pooling layer, the fourth layer that accepts
small rectangular blocks from the previous Convolutional layer, extracts maximum output
by reducing the error [47,48]. The RNN part consists of LSTM and Softmax. For temporal
modeling, subsequent layers of learned filters are fed by LSTM. The layer composed of
LSTM cells is called as the layer LSTM. As per the name, it memorises every step of the
previous action and adds along with its current state [49]. The weight parameters in the
LSTM layer are shared over time steps. Finally, Softmax activation is the last layer to derive
model output values.

2.5.3. Convolution Neural Network (CNN)

A Convolution Neural Network (CNN) is a type of multilayer neural network that, like
a standard multilayer neural network, comprises one or more convolution layers followed
by one or more fully connected layers. CNN was founded in 1960 and included concepts
such as local perception, sharing weights, and spatial and temporal sampling. Local
perception can detect certain local properties of the data for basic features of visual animals,
such as an angle and an arc in a picture [14]. It is a new efficient identification method that
is gaining much attention. CNNs are easier to train and have smaller parameters than fully
connected networks with the same number of hidden units.

The Convolution Neural Network architecture [50,51] commonly uses convolution
and pool layers. The pooling layer’s favorite activity perplexes a specific location’s pecu-
liarities. Because some location features are not required, the other features and relative
positions are all required. The pooling layer has two operations: maximum pooling and
mean pooling. Mean pooling is used to obtain the average neighborhood inside the feature
points, whereas max pooling calculates the largest neighborhood. The two main sources of
feature extraction error are the neighborhood size limitation induced by the estimated vari-
ance and the convolution layer parameter estimated error caused by the mean deviation.
The first error can be minimised using mean pooling, which retains more image back-
ground information. Max pooling can help to reduce the second error by retaining more
texture information.

The architecture of the CNN employed in this study is depicted in Figure 1. Each
layer contains several maps; each map contains numerous neural units, all of which
share the same convolution kernel (i.e., weight), and each convolution kernel represents
a feature, such as access to the edge of visual features. The detailed architecture of CNN
is depicted in further depth in Figure 8, and the parameters used in CNN architecture
are in Table 4. The distortion tolerance of the input data (image data) is very high. The
multiscale convolution image feature is created by adjusting the convolution kernel size
and parameter; information from various angles is generated in the feature space.
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Table 4. Parameters used in CNN architecture.

Layers Type Input Kernel Output

Layer 1 Convolution 28 × 28 × 1 5 × 5 24 × 24 × 32
Layer 2 Max Pooling 24 × 24 × 32 2 × 2 12 × 12 × 64
Layer 3 Convolution 12 × 12 × 64 5 × 5 8 × 8 × 64
Layer 4 Max Pooling 8 × 8 × 64 2 × 2 4 × 4 × 64
Layer 5 Fully Connected 4 × 4 × 64 4 × 4 512 × 1
Layer 6 Fully Connected 512 × 1 1 × 1 2 × 1
Layer 7 SoftMax 2 × 1 N/A Result

3. Results

There was a great requirement for sophisticated hardware and software setup to
perform the desired lung tumor diagnosis approach in this research. As it is known, the
performance parameters such as computation time depend on the employed hardware and
software infrastructure. Therefore, a wise selection of available hardware and software was
made in this research. At this point, a Graphical User Interface (GUI) was thought to ensure
better interactivity with visual indicators and icons (rather than dealing with just the code).
Running and debugging the code is a tedious process [51]. GUI here provided some buttons
to navigate and execute every function in the MATLAB environment. The designed GUI in
this research supported displaying input images, segmented images, extracted features,
and classification outputs. Remarkably, the GUI can easily obtain classifiers’ testing and
training performance. The GUI was developed using an inbuilt MATLAB tool called GUI
Development Environment (GUIDE) [50].

3.1. Software and Hardware Set-Up

The sample images were taken from the LIDC database, and the dataset was available
via NCI. This dataset comprises 86 benign and 86 malignant images in DICOM (Digital
Imaging and Communications in Medicine) format. Dimensions of the entire CT image
dataset are 512 × 512 pixels, with a 12-bit bit depth. MATLAB (2016) and the Microsoft
Windows 8.1 operating system were chosen in this research to ensure a stable computing
experience. On the other hand, Intel core i3 (model number 4030U) was used as the Central
Processing Unit (CPU) with a clock speed of 1.9 GH. The CPU has a 64-bit computational
capacity and Intel data protection technology. The memory used in the system had a size
of 4 gigabytes, and the cache memory was 3 megabytes [52]. That processor provides
increased computing speed and is optimum for running MATLAB software.

3.2. Performance Measures

Performance parameter numeric description is vital in analysing the information
based on the individual group. It provides a clear idea regarding the outcomes and results.
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Equations of the performance measure used in this research for evaluating the proposed
system are provided below:

Sensitivity =
TP

TP + FN
× 100%, (18)

Specificity =
TN

TN + FP
× 100%, (19)

Accuracy =
TP + TN

TP + FP + FN + TN
× 100%, (20)

Border error =
FP + FN
TP + FN

× 100%, (21)

Border error =
FP + FN
TP + FN

× 100%, (22)

Precision =
TP

TP + FP
× 100%, (23)

PSNR = 10 log 10

(
I2max
MES

)
, (24)

MSE =
1

mn ∑m−1
x=0 ∑n−1

y=0

[
K (x, y)− I(x, y)2

]
. (25)

The step-by-step segmented output and classification procedure for the proposed
method is shown in Figures 9 and 10 (for the benign and malignant dataset). It is an
image-calculated tumor area based on the nano technique, and the status of the tumor area
of the malignant sample is shown in Table 5.
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Equalised Image Plot, (d) Histogram Equalised Image, (e,f) Segmentation image, (g) Classification result.
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Figure 10. Detection of malignant Sample. (a) Input CT Image, (b) Pre-processed Output image,
(c) Histogram Equalised Image Plot, (d) Histogram Equalised Image, (e,f) Segmentation image,
(g) Classification result.

Table 5. Parameter calculation of nodules.

Region Area
(mm2)

Perimeter
(mm)

Centroid
(mm)

Diameter
(mm)

1 1680.0 148.7 125.5 46.2
2 60.0 25.7 206.6 8.7
3 20 12.1 199.3 5.9

Ultimately, the Bag of Visual Word classifier’s classification results showed whether
the picture was benign or malignant. Figure 11a,b shows the Bag of Visual Word results
plot. This classifier shows the outcome of detection of benign classification in Figure 9 and
malignancy classification in Figure 10.

The RNN classifier model in the basic NN tool of the MATLAB environment is shown
in Figure 12. The overall performance of the recurrent neural system and the performance
evaluation of the RNN in terms of receiver operating characteristics, error histogram, and
train state are plotted in Figure 13. The performance of each of the instructions given,
evaluation part, and test sets are also shown in Figure 14. The mean squared error and the
log scale for output calculation are associated with the results. It shrinks due to network
training. The matrix of ambiguity provides the correct and incorrect classification. In
addition, 0 to 1 is a range of outputs representing benign or malignant images/patients.
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In the CNN, a ResNet-50 model consisted of five stages, each with a block of identity
and a convolution layer employed accordingly. Every block of the convolution had three
layers of convolution, and each block of identity had three layers. The ResNet-50 had
trainable parameters of over 23 million.

The obtained accuracy after optimisation was 98.5%. Table 6 analyses performance
parameters for the BoVW and CRNN classifiers. The parameters considered here are
accuracy, sensitivity, specificity, precision, PSNR and MSE values. For the BoVW classifier,
accuracy was 96.5%, sensitivity was 93%, specificity was 100%, precision was 93.5%, PSNR
value was 42.278, and the MSE was 3.474. For the CRNN classifier, accuracy was 98.5%,
sensitivity was 95%, specificity was 100%, precision was 95.5%, PSNR was 69.154, and the
MSE was 2.193. From Table 6, it is clear that CRNN provided the best output performance
in terms of accuracy and precision. Table 7 shows the error and accuracy comparison
regarding different classifiers. Figure 15 shows (a) the Performance Measure of the classifier
and (b) the Performance Graph of the classifier.
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Table 6. Analysis of performance parameters.

Classifier Accuracy Sensitivity Specificity Precision PSNR MSE F1 Score Image

BoVW 96.5% 93% 100% 93.5% 42.278 3.474 93.5%

Image 1CRNN 97.5% 95% 100% 95.5% 69.154 2.193 89.5%
CNN 95.65% 94% 93% 92.5% 66.154 2.993 91.5%

BoVW-CRNN 98.9% 97% 99% 96.5% 72.675 3.675 95.5%

BoVW 96.5% 92.1% 97% 93.5% 43.278 3.474 93.5%

Image 2CRNN 91.5% 93.1% 98% 95.5% 63.154 2.183 89.5%
CNN 94.65% 96.25% 96% 92.5% 69.154 2.693 91.5%

BoVW-CRNN 97.9% 96.76% 100% 96.5% 75.675 3.575 95.5%
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Table 6. Cont.

Classifier Accuracy Sensitivity Specificity Precision PSNR MSE F1 Score Image

BoVW 96.5% 93% 100% 93.5% 42.278 3.474 93.5%

Image 3CRNN 91.5% 93.1% 98% 95.5% 63.154 2.183 89.5%
CNN 93.65% 95.25% 99% 96.53% 69.154 2.913 93.5%

BoVW-CRNN 98.9% 97% 99% 96.5% 72.675 3.675 95.5%

BoVW 96.45% 93.17% 97% 93.5% 43.235 3.456 92.55%

Image 4CRNN 93.85% 96.81% 98% 95.5% 63.873 2.985 89.59%
CNN 97.85% 90.25% 96% 92.5% 68.923 2.278 90.85%

BoVW-CRNN 97.99% 97.76% 100% 96.5% 75.675 3.923 97.65%

BoVW 97.5% 93.1% 99% 94.45% 43.278 3.874 94.5%

Image 5CRNN 95.5% 94.21% 97% 95.65% 63.154 2.543 91.5%
CNN 93.65% 95.25% 99% 96.53% 69.154 2.913 93.5%

BoVW-CRNN 99.9% 97.76% 100% 97.25% 75.675 3.675 97.5%
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Table 7. Accuracy and Error Comparison of Classifiers.

Classifier BoVW CRNN CNN

Accuracy 96.5% 98.5% 97.8%
Error 3.5% 1.5% 2.3%
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Compared to other methods, the proposed nano-based CRNN classifier provides
98.5% accuracy, which is greater than other techniques (Table 8). The proposed technique
effectively smooths the image and accurately determines the minute nodules. Finally, the
technique accurately classifies the image, whether benign or malignant.

Table 8. Comparison with existing lung tumor detection methods.

Author Existing Techniques Accuracy

Lin et al. Fuzzy model Concept 89.38%
Diciotti et al. Log Characteristic Scale method 85%

Serena Ricciardi et al. Principal Component Analysis and SVM 71.63%
Suarez et al. Deep Belief Network and Multiple Classifier 80%

Rani et. al. Nanotechnology Based Detection
Scheme & SVM With BOV Classifier 95%

Proposed Nanotechnology Based Detection Scheme
With BoVW Classifier 96.5%

Proposed Nanotechnology Based Detection Scheme
With CRNN Classifier 98.5%

4. Conclusions

This paper presents us with a great advanced visual of diagnosing lung cancer in the
early stages. In detail, the solution has been designed based on a computer-aided diag-
nostic (CAD) approach using computed tomography (CT) images. We briefly presented a
framework for creating an early model of cancer diagnosis using CAD CT image processing.
The attributes of the research included: (1) increased cancer nodule detection accuracy,
(2) classifying suspected lung cancer as malignant or benign, and (3) removing noise-
causing false detection rate using a nanotechnology-based detection method. Analysis of
the different existing classifiers was done to properly diagnose lung cancer. CT Images of
lung malignancy were taken, and pre-processing methods were used to remove noise and
enhance the image. To separate the cancerous area of the healthy lung, the GCPSO-based
segmentation technique was used along with a nano-measuring instrument, which is useful
for detecting the tumor’s location at a nano-scale. Depending on the characteristic, features
of segmented regions are extracted, and by using the classifier Bag of Visual Words and the
CRNN, the classification/diagnosis was made accordingly.

In the future, we may extend our current model to determine whether or not the patient
has cancer and the precise location of the cancerous nodules. Watershed segmentation
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can be used for the initial lung segmentation in future. Other areas for improvement
include expanding the network and performing more extensive hyperparameter tuning.
In addition, we saved our model parameters at the highest accuracy, but we could have
saved them at a lower metric, such as F1. Our models can also be extended to 3D images
for other cancers.

Author Contributions: Conceptualisation, A.S.U.; Data curation, A.S.U. and A.A.; Formal analysis,
A.S.U., A.A. and F.R.P.P.; Funding acquisition, F.R.P.P.; Investigation, A.S.U., A.A. and F.R.P.P.;
Methodology, A.S.U.; Project administration, A.S.U.; Resources, A.S.U., A.A., F.R.P.P. and D.S.;
Software, A.S.U.; Supervision, A.S.U.; Validation, A.S.U., A.A., F.R.P.P. and D.S.; Visualization, A.S.U.,
A.A., F.R.P.P. and D.S.; Writing—original draft, A.S.U., A.A., F.R.P.P. and D.S.; Writing—review and
editing, A.S.U., A.A., F.R.P.P. and D.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research has been funded by The Deanship of Scientific Research, King Faisal Univer-
sity, Saudi Arabia, with grant Number (GRANT2221).

Data Availability Statement: The study did not report any data.

Acknowledgments: We deeply acknowledge The Deanship of Scientific Research, King Faisal Uni-
versity, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Choi, W.J.; Choi, T.S. Automated Pulmonary Nodule Detection System in Computed Tomography Images: A Hierarchical Block

Classification Approach. Entropy 2013, 15, 507–523. [CrossRef]
2. Trial Summary—Learn—NLST—The Cancer Data Access System. Available online: https://biometry.nci.nih.gov/cdas/learn/

nlst/trial-summary/ (accessed on 7 January 2022).
3. National Lung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic

Screening. N. Engl. J. Med. 2011, 365, 395–409. [CrossRef] [PubMed]
4. Wang, Z.; Xin, J.; Sun, P.; Lin, Z.; Yao, Z.; Gao, X. Improved lung nodule diagnosis accuracy using lung CT images with uncertain

class. Comput. Methods Programs Biomed. 2018, 162, 197–209. [CrossRef] [PubMed]
5. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef]
6. Torre, L.A.; Siegel, R.L.; Jemal, A. Lung Cancer Statistics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–19.
7. Avinash, S.; Manjunath, K.; Senthil Kumar, S. An improved image processing analysis for the detection of lung cancer using

Gabor filters and watershed segmentation technique. In Proceedings of the International Conference on Inventive Computation
Technologies (ICICT), Coimbatore, India, 26–27 August 2016; Volume 3, pp. 1–6.

8. Krishnamurthy, S.; Narasimhan, G.; Rengasamy, U. Lung nodule growth measurement and prediction using auto cluster seed
K-means morphological segmentation and shape variance analysis. Int. J. Biomed. Eng. Technol. 2017, 24, 53. [CrossRef]

9. George, A.; Logesh Kumar, S.; Manikandan, K.; Vijayalakshmi, C.; Renuga, R. Medical image using Denoising wavelet transform.
Int. J. Circuit Theory Appl. 2016, 9, 3945–3949.

10. Jin, X.; Zhang, Y.; Jin, Q. Pulmonary Nodule Detection Based on CT Images Using Convolution Neural Network. In Proceedings
of the International Symposium on Computational Intelligence And Design (ISCID), Hangzhou, China, 10–11 December 2016.

11. Soltaninejad, S.; Tajeripour, F. Robust Lung segmentation combining Adaptive concave hull with active contours. In Proceedings
of the 11th Intelligent Systems Conference (ICIS), Budapest, Hungary, 9–12 October 2016; p. 69.

12. Anifah, L.; Haryanto; Harimurti, R.; Permatasari, Z.; Rusimamto, P.W.; Muhamad, A.R. Cancer Lungs Detection on CT Scan
Image Using Artificial Neural Network Backpropagation Based Gray Level Co-occurrence Matrices Feature. In Proceedings
of the 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Jakarta, Indonesia,
28–29 October 2017; Volume 47.

13. Malarvel, M.; Sethumadhavan, G.; Bhagi, P.C.R.; Thangavel, S.; Krishnan, A. Region growing based segmentation with automatic
seed selection using threshold techniques on X-radiography images. In Proceedings of the 2016 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC), Chennai, India, 15–17 December 2016; pp. 1–4.

14. Yong, Z.; Jiazheng, Y.; Hongzhe, L.; Qing, L. GrabCut image segmentation algorithm based on structure tensor. J. China Univ.
Posts Telecommun. 2017, 24, 38–47. [CrossRef]

15. Ajin, M.; Mredhula, L.B. Diagnosis Of Interstitial Lung Disease By Pattern Classification. In Proceedings of the International
Conference on Advances in Computing & Communications, Kochi, India, 22–24 August 2017; pp. 22–24.

16. Uzelaltinbulat, S.; Ugur, B. Lung tumor segmentation algorithm. Procedia Comput. Sci. 2017, 120, 140–147. [CrossRef]

http://doi.org/10.3390/e15020507
https://biometry.nci.nih.gov/cdas/learn/nlst/trial-summary/
https://biometry.nci.nih.gov/cdas/learn/nlst/trial-summary/
http://doi.org/10.1056/NEJMoa1102873
http://www.ncbi.nlm.nih.gov/pubmed/21714641
http://doi.org/10.1016/j.cmpb.2018.05.028
http://www.ncbi.nlm.nih.gov/pubmed/29903487
http://doi.org/10.3322/caac.21492
http://doi.org/10.1504/IJBET.2017.083818
http://doi.org/10.1016/S1005-8885(17)60197-3
http://doi.org/10.1016/j.procs.2017.11.221


Electronics 2023, 12, 14 20 of 21

17. Wang, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A.C.A. Automatic Approach for Lung Segmentation with
Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction. Comput. Math. Methods Med. 2016, 65, 87–108.
[CrossRef]

18. Zhang, S.; Zhao, Y.; Bai, P. Object Localization improved Grabcut for Lung Parenchyma Segmentation. In Proceedings of the
8th International Congress of Information and Communication Technology, Xiamen, China, 27–28 January 2018; Volume 131,
pp. 1311–1317.

19. Singadkar, G.; Mahajan, A.; Thakur, M.; Talbar, S. An Automatic lung segmentation for the inclusion of juxtapleural nodules and
pulmonary vessels using curvature based border correction. J. King Saud Univ.—Comput. Inf. Sci. 2018, 77, 975–987. [CrossRef]

20. Swierczynskia, P.; Papiez, B.W.; Schnabelb, J.A.; Macdonald, C. A level-set approach to joint image segmentation and registration
with application to CT lung imaging. Comput. Med. Imaging Graph. 2018, 65, 58–68. [CrossRef] [PubMed]

21. Narain Ponraj, D.; Christy, E.; Aneesha, G.; Susmitha, G.; Sharu, M. Analysis of LBP and LOOP Based Textural Feature Extraction
for the Classification of CT Lung Images. In Proceedings of the Fourth International Conference on Devices, Circuits and Systems,
Coimbatore, India, 16–17 March 2018; IEEE: Piscataway, NJ, USA, 2018.

22. Nithila, E.E.; Kumar, S.S. Segmentation of lung from CT using various active contour models. Biomed. Signal Process. Control 2019,
47, 57–62. [CrossRef]

23. Gupta, N.; Gupta, D.; Khanna, A.; Rebouças Filho, P.P. Evolutionary Algorithms for Automatic Lung Disease Detection. J. Meas.
2019, 140, 42–117. [CrossRef]

24. Abdel-Massieh, N.H.; Hadhoud, M.M.; Moustafa, K.A. A fully automatic and efficient technique for liver segmentation from
abdominal CT images. In Proceedings of the International Conference on Informatics and Systems, Cairo, Egypt, 28–30 March
2010; pp. 1–8.

25. Armato, S.; Hadjiiski, L.; Tourassi, G.; Drukker, K.; Giger, M.; Li, F.; Redmond, G.; Farahani, K.; Kirby, J.; Clarke, L. Spie-aapm-nci
lung nodule classification challenge dataset. Cancer Imaging Arch. 2015, 2, 020103. [CrossRef]

26. Mathews, A.B.; Jeyakumar, M.K. Quantitative Evaluation of Lung Tumor Detection Applied to Axial MR Images. Int. J. Electr.
Electron. Comput. Sci. Eng. 2019, 6, 17–19.

27. Thiyagarajan, A.; Pandurangan, U. Comparative analysis of classifier Performance on MR brain images. Int. Arab. J. Inf. Technol.
2015, 12, 772–779.

28. Tisdall, D.; Atkins, M.S. MRI Denoising via Phase Error Estimation; International Society for Optics and Photonics: Washington, DC,
USA, 2005; pp. 646–655.

29. Saba, T. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and
challenges. J. Infect. Public Health 2020, 13, 1274–1289. [CrossRef]

30. Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.;
Hoffman, E.A.; et al. Data From LIDC-IDRI [Data set]. Cancer Imaging Arch. 2015. [CrossRef]

31. Vovk, U.; Pernus, F.; Likar, B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging
2007, 26, 405–421. [CrossRef]

32. Hitosugi, T.; Shimizu, A.; Tamura, M.; Kobatake, H. Development of a liver extraction method using a level set method and its
performance evaluation. J. Comput. Aided Diagn. Med. Images 2003, 7, 1–9.

33. Tajima, T.; Zhang, X.; Kitagawa, T.; Kanematsu, M.; Zhou, X.; Hara, T.; Fujita, H.; Yokoyama, R.; Kondo, H.; Hoshi, H. Computer-aided
detection (CAD) of hepatocellular carcinoma on multiphase CT images. In Medical Imaging; SPIE: Washington, DC, USA, 2007.

34. Asada, N.; Doi, K.; MacMahon, H.; Montner, S.M.; Giger, M.L.; Abe, C.; Wu, Y. Potential usefulness of an artificial neural network
for differential diagnosis of interstitial lung disease: Pilot study. Radiology 1990, 177, 857–860. [CrossRef]

35. Fujita, H.; Katafuchi, T.; Uehara, T.; Nishimura, T. Application of artificial neural network to computer-aided diagnosis of
coronary artery disease in myocardial SPECT bull’s-eye images. J. Nucl. Med. 1992, 33, 272–276.

36. Zhang, W.; Doi, K.; Giger, M.L.; Nishikawa, R.M.; Schmidt, R.A. An improved shiftinvariant artificial neural network for
computerised detection of clustered microcalcifications in digital mammograms. Med. Phys. 1996, 23, 595–601. [CrossRef]
[PubMed]

37. Zhang, J.-P.; Li, Z.-W.; Yang, J. A parallel SVM training algorithm on the large-scale classification problems. In Proceedings of the
International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005.

38. Mathews, A.B.; Jeyakumar, M.K. Segmentation of Lung Images for Tumor Detection using Color Based k-means Clustering
Algorithm. J. Int. Pharm. Res. 2019, 46, 191–197.

39. Vijay, M. Detection of Lung Cancer Stages on CT scan Images by Using Various Image Processing Techniques. IOSR J. Comput.
Eng. 2014, 16, 28–35.

40. Goncalves, L.; Novo, J.; Campilho, A. Feature definition, analysis and selection for lung nodule classification in chest computerised
tomography images. In Proceedings of the 2016 European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, Bruges, Belgium, 27–29 April 2016.

41. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. 1973, 3, 610–621.
[CrossRef]

42. Dhawale, A.P.; Hirekhan, S.R. Real time image processing for biological applications through morphological operations using
LabVIEW. Int. J. Eng. Res. Technol. IJERT 2014, 3, 1262–1265.

http://doi.org/10.1155/2016/2962047
http://doi.org/10.1016/j.jksuci.2018.07.005
http://doi.org/10.1016/j.compmedimag.2017.06.003
http://www.ncbi.nlm.nih.gov/pubmed/28705410
http://doi.org/10.1016/j.bspc.2018.08.008
http://doi.org/10.1016/j.measurement.2019.02.042
http://doi.org/10.1117/1.JMI.2.2.020103
http://doi.org/10.1016/j.jiph.2020.06.033
http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
http://doi.org/10.1109/TMI.2006.891486
http://doi.org/10.1148/radiology.177.3.2244001
http://doi.org/10.1118/1.597891
http://www.ncbi.nlm.nih.gov/pubmed/8860907
http://doi.org/10.1109/TSMC.1973.4309314


Electronics 2023, 12, 14 21 of 21

43. Han, H.; Li, L.; Han, F.; Song, B.; Moore, W.; Liang, Z. Fast and adaptive detection of pulmonary nodules in thoracic CT images
using a hierarchical vector quantisation scheme. IEEE J. Biomed. Health Inform. 2015, 19, 648–659. [CrossRef]

44. Kuruvilla, J.; Gunavathi, K. Lung cancer classification using neural networks for CT images. Comput. Methods Programs Biomed.
2014, 113, 202–209. [CrossRef]

45. Tiwari, A.K. Prediction of lung cancer using image processing techniques: Review. Adv. Comput. Intell. Int. J. ACII 2016, 3, 1–9.
[CrossRef]

46. Subhasri, P. Image Encryption using Advanced Multilevel Encryption. Glob. J. Eng. Sci. Res. 2019, 6, 519–524.
47. Suzuk, K.; Armato, S.G., III; Li, F.; Sone, S.; Doi, K. Massive training artificial neural network (MTANN) for reduction of

false positives in computerised detection of lung nodules in low-dose computed tomography. Med. Phys. 2003, 30, 1602–1617.
[CrossRef] [PubMed]

48. Javaid, M.; Javid, M.; Rehman, M.Z.U.; Shah, S.I.A. A novel approach to CAD system for the detection of lung nodules in CT
images. Comput. Methods Programs Biomed. 2016, 135, 125–139. [CrossRef] [PubMed]

49. Jiangdian, S.; Caiyun, Y.; Li, F. Lung lesion extraction using a toboggan based growing automatic segmentation approach. IEEE
Trans. Med. Imaging 2015, 10, 1–16. [CrossRef] [PubMed]

50. Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Gatesmark Publishing: Knoxville, TN, USA, 2004.
51. Aswathy, S.U.; Abraham, A. A Review on State-of-the-Art Techniques for Image Segmentation and Classification for Brain MR

Images. Curr. Med. Imaging 2022, 19, 243–270.
52. Mathews, A.B.; Jeyakumar, M.K. Automatic Detection of Segmentation and Advanced Classification Algorithm. In Proceedings

of the International Conference on Computing Methodologies and Communication, Erode, India, 11–13 March 2020; pp. 358–362.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/JBHI.2014.2328870
http://doi.org/10.1016/j.cmpb.2013.10.011
http://doi.org/10.5121/acii.2016.3101
http://doi.org/10.1118/1.1580485
http://www.ncbi.nlm.nih.gov/pubmed/12906178
http://doi.org/10.1016/j.cmpb.2016.07.031
http://www.ncbi.nlm.nih.gov/pubmed/27586486
http://doi.org/10.1109/TMI.2015.2474119
http://www.ncbi.nlm.nih.gov/pubmed/26336121

	Introduction 
	Materials and Methods 
	Image Acquisition 
	Pre-Processing 
	Gabor Filter 
	Modified Color-Based Histogram Equalisation 

	Segmentation: GCPSO Method 
	Feature Extraction 
	ABC Parameter 
	GLCM Features 
	Statistical Features 

	Classification 
	BoVW Classifier 
	CRNN Classifier 
	Convolution Neural Network (CNN) 


	Results 
	Software and Hardware Set-Up 
	Performance Measures 

	Conclusions 
	References

