
APPLICATION OF SOFT COMPUTING

Improved novel bat algorithm for test case prioritization
and minimization

Anu Bajaj1,2 • Om Prakash Sangwan2 • Ajith Abraham1

Accepted: 31 January 2022
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Regression testing is essential for continuous integration and continuous development. It is needed to ensure that the

modifications have not produced any errors or faults, thereby maintaining the quality and reliability of the software. The

testers usually avoid exhaustive retesting because it requires lots of effort and time. The test case prioritization and

minimization solve the issue by scheduling the critical test cases and removing redundant ones. Optimization techniques

help by improving the efficiency of these techniques while utilizing limited resources. This paper proposed an enhanced

discrete novel bat algorithm for the test case prioritization. The algorithm is modified in two ways. First, we have proposed

a fix-up mechanism for the discrete combinatorial problem, which conducts the perturbation in the population using the

asexual reproduction algorithm. Second, the novel bat algorithm is improved, where the bats hunt in different habitats with

quantum behavior using Gaussian distribution and search in the limited habitat with Doppler effect. In addition, we have

embedded the test case minimization procedure in the algorithm for redundancy reduction. The experimental results are

empirically analyzed using different testing criteria, i.e., fault and statement coverage on three subject programs from the

software infrastructure repository. Consequently, test selection percentage, coverage loss, fault detection loss, and cost

reduction percentages are deduced for the test case minimization at program and version levels. Empirical results and

statistical comparisons with the random search, bat algorithm, novel bat algorithm, birds swarm algorithm, whale opti-

mization algorithm, and genetic algorithm show the outperformance of the proposed algorithm.

Keywords Bat algorithm � Nature-inspired algorithms � Regression testing � Search-based software testing �
Test case prioritization � Test case minimization

1 Introduction

To survive in the competitive era is the most challenging

task of software companies as it is the need of the hour to

update the software according to the customers’ require-

ments. The main target is to update the software without

compromising the software quality. It requires retesting to

check that the modifications have not induced any side

effects. This retesting is known as regression testing (Yoo

and Harman 2012). As the software evolves rapidly, it

becomes a tedious job to perform testing of each modified

version.

On the other hand, the complexity of the software

increases with frequent updates and leads to an increase in

time, effort, and budget required for regression testing

(Öztürk 2018). Therefore, software testing at the evolution

and maintenance stage is more important to assure the

quality of the software. According to Rothermel et al.

(1999) exhaustive retesting took around seven days to

retest 20 K lines of code software completely. Moreover,

complete retesting accounts for approximately 80% of

maintenance costs (Bajaj and Sangwan 2021b). Regression

testing is divided into three techniques, i.e., test case pri-

oritization (TCP), test case selection (TCS), and test case

minimization (TCM), to overcome these challenging

issues.

& Anu Bajaj

anu.bajaj@mirlabs.org

1 Machine Intelligence Research Labs (MIR Labs), Auburn,

Washington, USA

2 Department of Computer Science and Engineering, Guru

Jambheshwar University of Science and Technology, Hisar,

Haryana, India

123

Soft Computing
https://doi.org/10.1007/s00500-022-07121-9(0123456789().,-volV)(0123456789().,- volV)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

TCP ranks the test cases using pre-defined goals, and

TCS targets the critical test cases affected by the modified

area. In comparison, TCM reduces the test suite by

removing redundant information (Yoo and Harman 2012).

TCP gained more attention as it does not eliminate test

cases from the test suite (Bajaj and Sangwan 2018).

Moreover, it helps to minimize the time needed for

retesting if the process is interrupted (Bajaj and Sangwan

2021a). It motivates us to include the TCM procedure at

the end of the TCP algorithm, which removes the redun-

dant test cases from the prioritized test suite in case of

limited time and budget constraints.

Furthermore, TCP uses different test adequacy criteria

to schedule the test cases, e.g., maximizing requirements

coverage (Bajaj and Sangwan 2019a). The testing criteria

play an important role in determining the effectiveness of

the technique. These metrics can be used in two ways 1) to

prioritize the test cases based on these criteria, e.g., code

coverage-based TCP, fault coverage-based TCP, and cost-

cognizant TCP, and 2) to evaluate the TCP efficacy

through cost and coverage optimization. These factors

bring several challenges to assess their relevance, interde-

pendence, and priority concerning one another. Another

problem is deciding which sort of these metrics to use, such

as code coverage, cost-aware, and fault detection based. In

this paper, we identified the effect of these metrics on

performance improvement in the TCP and their implica-

tions on TCM followed by TCP.

On the other hand, processing a vast test suite makes the

regression testing an NP-Hard problem (Yoo and Harman

2012), which can be efficiently solved with optimization

algorithms. In other words, the cost-effectiveness of

regression testing can be further improved with optimiza-

tion approaches (Bajaj and Sangwan 2018). Nature-in-

spired algorithms attracted researchers due to their simple

structure and ease of solving the problem (Bajaj and

Sangwan 2021d). The algorithms are mathematically for-

mulated by imitating natural phenomena. Various nature-

inspired algorithms are proposed in the literature. These are

broadly classified into three categories, i.e., biology-in-

spired, Physics/chemistry, and social phenomena-inspired

algorithms (Fister et al. 2013). Among these algorithms,

most commonly used are evolutionary algorithms and

swarm intelligence-based algorithms from the biology-in-

spired class. They mimic the living being’s evolution

mechanism and the flocking behavior of birds or insects.

The algorithms are becoming popular as they are

problem independent and follow a derivative-free mecha-

nism. It is evident from the broad application domain like

vehicle routing problem (Zhou et al. 2016), economic

dispatch problem (Mahdi et al. 2019), supply chain man-

agement (Chouhan et al. 2020), and other applications

(Osaba et al. 2019). These algorithms have also proved

their effectiveness for regression testing (Bajaj and Sang-

wan 2018). The genetic algorithms (Bajaj and Sangwan

2019b a), particle swarm optimization (Mann et al. 2018),

cuckoo search (Kaur and Agrawal 2017) are some of the

examples of these algorithms used in regression testing.

Few researchers have used relatively new algorithms like

the gravitational search algorithm (Bajaj and Sangwan

2021a), firefly algorithm (Khatibsyarbini et al. 2019), and

bat algorithm (Öztürk 2018). For example, bat algorithms

use the concept of frequency tuning, loudness, and

echolocation properties for searching the prey. It was used

to solve the TCP problem by mapping the test adequacy

criteria (fault coverage) with the loudness properties of the

bats (Bajaj and Sangwan 2021c).

On the other hand, the original bat algorithm suffered

from several problems like premature convergence and

stuck into local optima (Mahdi et al. 2019). These prob-

lems can be solved by improvement and hybridization with

other algorithms. One such improvement is the novel bat

algorithm, which uses the advanced properties of bats. i.e.,

adaptation in different habitat conditions (Meng et al.

2015). The algorithm shows promising results in various

applications like the economic dispatch problem (Gautham

and Rajamohan 2016). However, it has not been explored

in the TCP domain, and it may be because it was initially

designed for continuous problems. So, in this paper, we

have proposed an improved discrete novel bat algorithm by

using a fix-up mechanism based on an asexual genetic

algorithm to convert the infeasible solutions into feasible

ones (Bajaj and Sangwan 2021a). Moreover, to accelerate

the performance in the last iterations, the uniform distri-

bution of quantum-behaved bats is replaced with the

Gaussian distribution. Therefore, the main contributions of

this paper are:

• To propose a discrete novel bat algorithm (iBAT) for

solving the combinatorial TCP problem using an

asexual genetic reproduction algorithm. Furthermore,

to improve the algorithm by using random numbers

with Gaussian distribution for the quantum-behaved

bats.

• To embed the process of the TCM in the TCP for

redundancy reduction.

• To analyze the results on different testing criteria, i.e.,

fault coverage and code coverage, and evaluate the

impact of TCM on the cost and coverage reduction.

• To statistically compare the proposed algorithm with

the random search (RS), genetic algorithm (GA), bat

algorithm (BAT), novel bat algorithm (nBAT), and

relatively new algorithms: bird swarm algorithm (BSA)

and whale optimization algorithm (WA).

The subsequent section briefs the existing literature on

the bat algorithm and its applications in regression testing.

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Section 3 describes the working mechanism of the basic

bat and novel bat algorithms. The proposed work is pre-

sented in Sect. 4. Section 5 explains the experimental set-

tings followed by results and discussions in Sect. 6. The

conclusion and future work are presented in Sect. 7.

2 Related work

This Section summarizes the nature-inspired algorithms

used in regression testing with a focus on the bat algo-

rithms. It is followed by the ongoing research in the bat

algorithms for solving various real-world issues. This

retrieved literature information helped us in the proposal of

the improved discrete novel bat algorithm for solving the

TCP problem as follows:

2.1 Test case prioritization and minimization
using nature-inspired algorithms

Nature-inspired algorithms have been used widely by the

researchers to improve the cost-effectiveness of TCP and

TCM due to these algorithms’ effectiveness and efficiency.

In the literature, several nature-inspired algorithm-based

TCP and TCM strategies have been suggested (Bajaj and

Sangwan 2018, 2020). For example, Li et al. (2007)

compared the search-based algorithms’ performance with

the traditional algorithms for TCP. It was found that con-

ventional methods performed better than the search-based

algorithms. The other observation stated that the search

space could be better explored with the help of GA. It led

to further research to exploit the potential of nature-in-

spired algorithms. Furthermore, Bajaj and Sangwan

(2019a) discovered that parameter choices and operators

have a significant impact on the efficiency of algorithms.

Mohapatra and Prasad (2015) implemented ant colony

optimization (ACO) for reducing the test suite size and

complexity. The comparative results showed the outper-

formance of the proposed algorithms over the traditional

methods. Cuckoo search algorithm was proposed for con-

figuration-aware software testing to minimize the test suite

size (Ahmed 2016).

Table 1 briefs different type of nature-inspired algo-

rithms used in the TCP and TCM. It is observed that

biology-inspired algorithms are the most-targeted ones

among the nature-inspired algorithms. However, relatively

new algorithms are being used more often these days.

Sugave et al. (2018) used the bat algorithm for TCM by

proposing a new fitness function to improve the diversity in

the search process. They posed constraints on cost mini-

mization and complete coverage of the requirements. The

comparison with other existing algorithms on different

software infrastructure repository programs proved the

outperformance of their proposed algorithm. Öztürk

(2018), proposed the bat algorithm for TCP and used the

execution time and number of faults as the distance and

loudness of the bats. The proposed algorithm worked better

than the existing algorithms for APFD and resistance

against the code complexity. Another preliminary study

used the loudness of the bats for the fault coverage to

prioritize the test cases (Bajaj and Sangwan 2020).

Hashim and Dawood (2018) proposed firefly algorithm

for TCM using UML state charts to maximize the cover-

age. Furthermore, a hybrid PSO with firefly algorithm was

proposed to reduce the test suite size (Bharathi 2022). The

hybrid algorithm performed better than CSA and GA for

fault detection rate, test reduction rate and computational

costs. On the other hand, Hybrid of Dragonfly with PSO

produced promising results as compared to GA, DA, BA,

and PSO (Bajaj and Abraham 2021). Still, the area is open

for research like novel bat algorithm (Meng et al. 2015),

whale optimization algorithm (Mirjalili and Lewis 2016),

birds swarm optimization (Meng et al. 2016), emperor

penguin optimization (Dhiman and Kumar 2018), and

chicken swarm optimization (Meng et al. 2014) which are

some of the examples which are yet to be exploited for

TCP and TCM. A handful of researchers have used these

relatively new algorithms for TCP. It may be because of

the mapping of the problem because TCP is a combinato-

rial problem and needs permutation encoding. The above

algorithms mapped the TCP problem with the properties of

the bats. However, it may lead to erroneous results due to

improper mapping of the techniques.

2.2 Bat algorithm and its modifications

Bat algorithms belong to the swarm intelligence-based

category of the biology-inspired algorithms that mimic the

echolocation behavior of the bats for searching the food

(solution). It was developed by Xin-She Yang in (2010)

and proved its effectiveness in various engineering opti-

mization problems since its inception (Yang and He 2013).

Several researchers have improved and hybridized the bat

algorithm with other optimization algorithms to enhance

efficiency. For example, Gandomi and Yang (2014)

empirically evaluated the effect of different chaotic maps

at different stages of the bat algorithm. They noticed that

the sinusoidal map used for pulse emission worked better

than other variants. Nawi et al. (2016) also used the chaotic

map instead of the random number b for frequency update.

Besides, they updated the solution with Gaussian distri-

bution random walk to avoid the longer jumps and sub-

optimal solutions. The results proved that the proposed

algorithm worked better than the existing algorithms for

big dimensional problems.

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Meng et al. (2015) proposed the novel bat algorithm and

updated the position using both quantum and mechanical

behavior of the bats. In this, the bat can move anywhere for

a defined probability, and the frequency was updated with

the self-adaptive compensative Doppler effect. Gautham

and Rajamohan (2016) used this novel bat algorithm for

economic dispatch problem. Zhao and He (2016) also

considered the Doppler effect and applied the chaotic map

to the velocity update. They kept the elite solutions in the

elitist set and solved the analog circuit tolerance problem.

Mahdi et al. (2019) proposed the bat algorithm with

quantum behavior to solve the many-objective problem. To

avoid premature convergence, Huang et al. (2019) replaced

the random number of quantum behaved bat position

update equation with the Gaussian distributions. Though

their algorithm outperformed most numerical optimization

problems, it still has the disadvantage of requiring plenty of

parameters to be tuned.

The bat algorithm was proposed for solving the con-

tinuous optimization problem. Several researchers have

developed the discrete version of the algorithm by altering

the solution representation schemes. For example, Zhou

et al. (2016) hybridized the bat algorithm with the path

relinking mechanism for the vehicle routing problem. They

divided the routes into sub-routes and then combined them

to form a valid route. Saji and Riffi (2016) randomly

selected pair of solutions and followed a 2-exchange

crossover heuristic that sets the velocities pair within which

the crossover takes place to solve the travelling salesman

problem. Riffi et al. (2017) solved the quadratic assign-

ment problem using the modified uniform crossover oper-

ator and updated the solution using the multiple pairwise

swapping of the numbers. Osaba et al. (2016) used the

2-opt and 3-opt operators to exploit and explore the trav-

elling salesman problem. Osaba et al. (2019) also used the

hamming distance between the solutions to update the

velocity and correspondingly update the positions using the

insertion and exchange function. They successfully tested

the approach on the medical goods distribution problem.

Tang et al. (2018) used the self- and collective learning

method to update the solutions to identify the k influential

nodes. Table 2 summarizes the modifications done in the

bat algorithms over time and the used application area to

solve a continuous or discrete problem.

The promising results of bat algorithms in various

applications as shown in Table 2 motivated us to propose

the discrete version of the novel bat algorithm for solving

the combinatorial TCP problem. Our work is different from

the above works in the following ways. The novel bat

algorithm has an advantage over other bat algorithms

because the bats hunt in different habitats with quantum

behavior and search in the limited habitat with Doppler

effect. However, it also has some disadvantages like pre-

mature convergence. So, we have improved the algorithm

by replacing the position update equation with the Gaus-

sian distribution function to avoid premature convergence,

influenced by Huang et al. (2019). Additionally, the novel

bat algorithm is initially intended for a continuous prob-

lem. TCP is a combinatorial problem, so we modified it

using the permutation encoding scheme and performed the

perturbation in the population through a new fix-up

mechanism.

We have also verified the algorithm’s robustness for

different testing criteria, fault coverage, code coverage, and

Table 1 Summary of nature-inspired algorithms used in TCP and TCM

Author (Year) Regression Testing

Technique

Nature-Inspired

Algorithms

Objective Functions

Li et al. (2007) TCP GA Maximize fault coverage

Bharathi (2022) TCM PSO-FFA Maximize fault detection and minimize test suite

Bajaj and Sangwan (2019b) TCP GA Maximize fault coverage

Mohapatra and Prasad

(2015)

TCM ACO Minimize test suite size

Ahmed (2016) TCM CSA Minimize test suite size

Bajaj and Sangwan (2021a) TCP and TCM GSA Maximize fault coverage

Hashim and Dawood (2018) TCM FFA Maximize code coverage

Bajaj and Abraham (2021) TCP and TCM DA Maximize fault coverage

Sugave et al. (2018) TCM BAT Maximize requirement coverage and minimize

cost

Öztürk (2018) TCP BAT Maximize fault coverage

Bajaj and Sangwan (2020) TCP BAT Maximize fault coverage

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

their combination with execution cost. Besides we have

extended the algorithm for minimizing the redundancy as

well. In other words, we have investigated the impact of

test case prioritization on reducing redundancy, i.e., whe-

ther the algorithms prioritize the test cases based on defined

testing criteria. The proposed improved novel bat algorithm

results have been compared with the baseline approach:

random search (RS), state-of-the-art algorithms: GA, BAT,

original novel bat algorithm (nBAT), and relatively new

algorithms: BSA and WA. The findings revealed that the

proposed algorithm performed better than the other nature-

inspired algorithms and RS for TCP with different testing

criteria. On the other side, in some cases, the difference

between the performance of the proposed iBAT algorithm

and WA was not statistically significant for TCM. How-

ever, the mean values of the proposed iBAT algorithm are

better comparatively.

3 Preliminaries

In this section, we summarized the working of the bat and

novel bat algorithms.

3.1 Bat Algorithm

The bat algorithm mimics the echolocation behavior, i.e.,

vary the pulse emission rate, frequency, and loudness for

searching the prey, thereby controlling the exploration and

exploitation. It sends a very high-frequency ultrasound

wave, and with the echoes, it can find:

(1) How distant is the prey from it

(2) Type and orientation of the prey with the loudness of

sound

(3) The moving speed of the prey

The bat algorithm is designed using three characteristics

of bats, i.e., echolocation, frequency tuning, loudness. In

other words, the bats move randomly in the search space at

position xi with velocity vi and varying frequency in the

range of minimum and maximum frequency ‘fmin’ and

‘fmax.’ Also, they increase their pulse emission rate (ri) and

decrease the loudness (Ai) when they are in the proximity

of food. At each generation, the position and velocities are

updated with different frequencies and formulated as

fi ¼ fmin þ fmax � fminð Þ � rand 0; 1ð Þ ð1Þ

vtþ1
i ¼ vi þ xt

i � xbest
� �

� fi ð2Þ

xtþ1
i ¼ xt

i þ vtþ1
i ð3Þ

where t = 1,2,3,…m (number of generations),

i = 1,2,3,…..n (number of bats), xbest = global best loca-

tion, rand(0,1) = generates random number between 0 & 1.

The local search is performed by improving the current

best position using random walk:

if rt
i [rand xtþ1

i ¼ xbest þ e �mean Að Þ ð4Þ

where e = [- 1, 1]. Further, exploration and exploitation

Table 2 Summary of Bat algorithm and its modifications

Author (Year) Modifications in Bat Algorithm Application

Type

Application area

Gandomi and Yang (2014) Different chaotic maps Continuous Global optimization

Nawi et al. (2016) Chaotic map for frequency update Continuous Big dimensional problem

Meng et al. (2015) Quantum behaved bats with Doppler effect Continuous Engineering designs

Zhao and He (2016) Doppler effect and chaotic map for velocity update Continuous Analog fault diagnosis

Gautham and Rajamohan

(2016)

Quantum behaved bats with Doppler effect Continuous Economic dispatch problem

Mahdi et al. (2019) Quantum behaved bats Continuous Many-objective problem

Huang et al. (2019) Quantum behaved bats position update with Gaussian

distribution

Continuous Numerical optimization

problems

Zhou et al. (2016) Hybridized with path relinking mechanism Discrete Vehicle routing problem

Saji and Riffi (2016) 2-exchange crossover heuristic Discrete Travelling salesman problem

Riffi et al. (2017) Modified uniform crossover operator Discrete Quadratic assignment problem

Osaba et al. (2016) 2-opt and 3-opt operators Discrete Travelling salesman problem

Osaba et al. (2019) Position update using the insertion and exchange function Discrete Medical goods distribution

problem

Tang et al. (2018) Self and collective learning method Discrete Influence maximization

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

are controlled by decreasing the loudness and increasing

the emission rate using the following equations:

Atþ1
i ¼ a � At

i ð5Þ

rtþ1
i ¼ r0 � 1� eð�ctÞ

h i
ð6Þ

where a [0, 1] and c[0 are constants. The pseudocode of

bat algorithm is shown in Algorithm 1.

3.2 Novel bat algorithm

Meng et al. (2015) developed the novel bat algorithm. The

algorithm adopted the advanced echolocation capability of

the bats because some bats use the constant-frequency

sound pulse or some use frequency-modulated signals for

echolocation. It depends on their hunting strategies like

finding food, avoiding hurdles, and tracing the cracks in

trees to settle down in the dark. This capability can also be

correlated with their self-adaptive compensation for Dop-

pler effect in echoes. Different species behave differently,

i.e., they may exhibit partial or full compensation. Also,

some species hunt in different habitats while others search

in a single habitat like water or forest habitats. They can

regulate their echolocation behavior if they forage under

different habitats. These characteristics of the bats can be

adapted using quantum mechanics in which a particle with

defined probability can move at any location of the search

region. Hence, the bats can explore an extensive range of

habitats. Two rules are included in the original Bat:

(1) The foraging of the bats in different habitats is

decided with the help of stochastic selection.

(2) Bats can adaptively regulate their compensation rate

for Doppler effect in echoes following the proximity

of their targets.

The quantum-behaved particle’s path can be obtained by

assuming that M particles having d potential and specified

energy are well-centered in each dimension of N-dimen-

sional Hilbert search space. Therefore, the jth component

of the particle’s location at tth iteration is obtained through

the Monte Carlo method as follows:

xtþ1
ij ¼ at

ij �
Lt

ij

2
ln

1

ut
ij

 !

ð7Þ

Lt
ij ¼ 2H meant

j � xt
ij

���
��� and meant

j ¼
1

N
�
XN

i

xt
ij ð8Þ

where ‘‘uij’’ is a uniformly distributed number in the

interval (0, 1), ‘‘a’’ is a local attractor/prey for each indi-

vidual, ‘‘Theta’’ is contraction–expansion coefficient. The

global best solution can act as an attractor, i.e., if a bat finds

the food location, others will also forage there as soon as

they reach the food site. So the above equations can be

replaced with the below equations

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

xtþ1
ij ¼

xbest þH � jmeant
j � xt

ijj � ln
1

ut
ij

 !

; randjð0; 1Þ\0:5;

xbest �H � jmeant
j � xt

ijj � ln
1

ut
ij

 !

; otherwise

8
>>>>><

>>>>>:

ð9Þ

Some random phenomena govern the selection of the

bats’ habitat. Mathematically it can use the probabilistic

decision p, i.e., if p e [0, 1][rand [0, 1] as the threshold of

selection for quantum behavior of bats to hunt in an

extensive choice of habitats.

Otherwise, they search in defined habitats with

mechanical behavior. The frequencies of the bats are not

only updated with the random assignment between fmin and

fmax but also with the help of the Doppler effect and their

compensation rates for the Doppler effect. In other words,

the bats may distinguish targets by the preys’ interference,

e.g., preys’ wing flutter rates change the Doppler effect.

The Doppler effect finds the variation in the frequency of

the periodic event by the relative motion of the source and

receiver. It is higher when they are approaching each other,

identical when passing by, and lower if they are farther

away from each other. This phenomenon can be mathe-

matically formulated as:

fr ¼
v � vr

v � vs
fs ð10Þ

where source and receiver are moving in the medium

(speed v), having the speeds of vr, and vs with frequencies

fr and fs, respectively. The – and ? signs denote source and

receiver are moving away or toward each other, i.e., it

depends on the direction of the velocity. Similarly, the bats

try to approach the target, while the targets attempt their

best to move farther from the bats. So, in the algorithm, the

bats try to approach the prey, i.e., global best solution, so,

‘‘ ? ’’ sign is used, and the frequency is updated as:

f tþ1
i ¼ c � vt

i

c þ vbest
f t
ij ð11Þ

Furthermore, the frequencies considerably affect the

bats catching up with the prey because it depends on the

velocity increment, which is the product of kifi. So, the bats

themselves regulate the compensation rates for the Doppler

effect in echoes. The bats try to fly forwards to catch up

with the prey if they lag behind the prey. In other words,

the bats compensate positively for the Doppler effect in

echoes, i.e., xij
t approaches xbest, if it is smaller than xbest.

On the other side, they slow down their search and nega-

tively compensate for the Doppler effect in echoes if the

value of xij
t is higher than xbest. Each bat has its own

compensation rate Ci, which lies between 0 and 1, i.e., no

and full compensation, therefore, the frequency equation is

updated as:

f tþ1
ij ¼

c � vt
ij

c þ vbest
f t
ij 1þ Ci

xbest � xt
ij

xbest � xt
ij þ �

 !

ð12Þ

where c is the speed of sound velocity in the air (340 m/s),

e is a small random number to avoid dividing by zero error,

and vbest is the speed of the global best position xbest. The

velocities of bats are updated with the inertia weight w that

regulates the rate of inheritance from the previous velocity

of the bat.

vtþ1
ij ¼ w � vt

ij þ xbest � xt
ij

� �
� f t

ij ð13Þ

xtþ1
ij ¼ xt

ij þ vtþ1
ij ð14Þ

The local search is performed using the following

equations

xtþ1
ij ¼ xbest � 1þ frandn 0; r2

� �
g

� �
ð15Þ

r2 ¼ At
i� mean Atð Þ

�� ��þ � ð16Þ

where randn (0, r2) is the Gaussian distribution having a

mean and standard deviation of 0 and r2, e is added for

positive standard deviation. It updates the loudness and

pulse rate similar to the original bat algorithm. However, to

escape the local optima, i.e., if the bats are unable to find a

better solution for the previous d attempts then it reini-

tializes the loudness and sets a high pulse emission rate so

that bats can explore in another region.

4 Proposed Work

This section deals with the detailed description of the

proposed improved novel bat algorithm (iBAT) for TCP

and TCM. The improvements done in the novel bat

algorithm:

1. The test case prioritization problem is mapped to the

bat algorithm using asexual reproduction fix up

mechanism.

2. Gaussian probability is used to avoid premature

convergence.

3. The test suite minimization procedure is embedded into

the prioritization algorithm to reduce the test suite size

as described below:

4.1 Population Update

The bat and novel bat algorithms were initially projected

for continuous problems that update the real-valued solu-

tions. We cannot use the original algorithm directly for a

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

discrete combinatorial problem, and it needs to be modi-

fied. In the bat algorithm, we used the loudness, i.e., the

target’s proximity, as the amount of fault covered by test

cases, and the pulse emission rates are updated through the

frequency tuning. The position of the bats is then sorted

according to the loudness and the pulse emission rate.

Though the results are promising on the small experimental

study, more case studies still need to be validated. The

algorithm’s simulation results on the considered real sub-

ject programs contrasted with the preliminary study (see

Sect. 5). In other words, the algorithm performs worse than

the genetic algorithm and is even close to the random

search, so the area is open to discover other options.

Therefore, here we have used the permutation encoding for

solution representation because the proper mapping of the

problem increases the algorithm’s efficiency and effec-

tiveness (Bajaj and Sangwan 2021a). As the original

algorithm works on continuous values, we have updated

the continuous values to permutation sequences. So, we

built a new adaptation strategy for converting the infeasible

solutions to the feasible ones with the asexual reproduction

algorithm (Farasat et al. 2010 and Mansouri et al. 2011). It

builds a relationship between real numbers and test case

series by inheriting the parent solution’s characteristics

shown in Fig. 1 (Mansouri et al. 2011). While generating

the offspring (bud) from the parent, it keeps the offspring’s

feasible values (larva). In other words, the algorithm

updates the solutions and rounds them off to natural

numbers. The out of bound and the duplicate values are

replaced with don’t care conditions (*). These infeasible

values are replaced by the values from the previous solu-

tion to obtain a correct solution. For example, x = [4, 5, 1,

6, 2, 3] is updated to y = [5.1, 6.7, 7.2, 5.5, 3.2, 1], y is

corrected to [5, 6, 1, 5, 3, 1] resulting into [5, 6, 1, *, 3, *].

So, with the help of the previous solution, the remaining

values are acquired to generate a correct solution as [5, 6,

1, 4, 3, 2].

4.2 Gaussian Probability

To avoid premature convergence, the uniform random

number u of the Eq. (9) is replaced by G, the absolute value

of Gaussian distribution abs (randn) or N (0, 1) with mean

zero and standard deviation one. Its one-dimensional

probability density function is given by Huang et al.

(2019):

G xð Þ ¼ 2
ffiffiffiffiffiffi
2p

p e�
x2

2 ; x� 0 ð17Þ

So the equation is updated as

Fig. 1 Asexual Reproduction

Mechanism

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

xtþ1
ij ¼

xbest þH � jmeant
j � xt

ijj � lnð
1

Gt
ij

Þ; randjð0; 1Þ\0:5;

xbest �H � jmeant
j � xt

ijj � lnð
1

Gt
ij

Þ; otherwise

8
>>><

>>>:

ð18Þ

4.3 Test case minimization

The current best solution of each iteration is passed through

the redundancy check, and the first k test cases that covered

the faults/statements early are selected, thereby minimizing

suite size and cost. In other words, the algorithm prioritized

the test cases followed by the redundancy reduction at

every iteration. The advantage of this process is that it tells

us how precisely the test cases are prioritized. The better

the prioritization, the lesser number of test cases that fulfil

the criteria of full coverage. The algorithm for fault cov-

erage is presented in Algorithm 2, and the pseudo-code of

the improved discrete novel bat algorithm is described in

Algorithm 3.

5 Experimental settings

This section explains an empirical study, including

research questions, subject programs, and performance

metrics. Table 3 presents the research questions and their

motives. The proposed algorithm is compared with the

baseline approach: random search (RS), state-of-the-art

algorithm: GA (Bajaj and Sangwan 2018), bat algorithms:

BAT (Bajaj and Sangwan 2020), and novel bat algorithm

(nBAT). Apart from these algorithms, the results are also

compared with the relatively new nature-inspired algo-

rithms, i.e., birds swarm optimization (BSA) and whale

optimization algorithm (WA). These algorithms are

implemented in MATLAB R2017 installed on an HP lap-

top with Windows 10, Intel i5 processor, and 4 GB RAM.

Each algorithm is executed 30 times due to the stochastic

behavior of the nature-inspired approaches.

Further, the algorithms are validated on the three dif-

ferent open-source Java programs (jtopas, ant, and jmeter)

obtained from the popular software infrastructure reposi-

tory (SIR) (Do et al. 2010). Jtopas is a Java library to parse

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

the text data. Ant is a Java-based build tool while jmeter is

a desktop java application for loading test functional

behavior and performance measurement. We have extrac-

ted several versions of these objects. The details are

described in Table 4.

Each program is hand seeded with a limited number of

faults. However, to perform an adequate statistical com-

parison amongst the algorithms, the number of faults

should be large enough (Eghbali and Tahvildari 2016). We

increased the number of faults using mutation faults gen-

erated with lJava following the procedure described by

(Mei et al. 2012) and Eghbali and Tahvildari (2016). The

execution time and the coverage information of these

programs are obtained from JUnit and Emma, an open-

source code coverage tool. The experiments are conducted

on every version of each program, and the average results

of all the versions are used for comparing the overall

algorithmic performance of each program.

5.1 Parameter settings

We selected the parameters with the extensive analysis

from related literature and also through the trial and error

method for relevant values. Furthermore, these values are

analyzed systematically with the help of the Taguchi

method (Chouhan et al. 2020), and the extracted values are

presented in Table 5. Observations from the Taguchi

Method also suggest that common parameters are the same

for all the algorithms, which is also required for a fair

comparison.

5.2 Performance measurements

The performance of the algorithms must be evaluated to

confirm their effectiveness and efficiency. We have used

several performance measures to evaluate the algorithms

for test case prioritization and minimization as described

below:

5.2.1 Test case prioritization

Mostly, the test cases are prioritized with two different

testing criteria, i.e., fault and statement coverage. The code

coverage information is generally available for all the

software, so various researchers widely use it (Li et al.

2007). At the same time, others consider fault coverage as

Table 3 Research questions and their motives

RQ Research Questions Motivation

RQ 1 What is the performance of the proposed algorithm for test case prioritization?

RQ 1.1 Does the proposed algorithm robust against

all the testing criteria compared to random

search and existing algorithms?

The motive is to check whether the proposed algorithms

performed better than random search (sanity check).

Additionally, it finds out which algorithm achieves better

performance (effectiveness check) and the influence of

different testing criteria on the performance of the

algorithms

RQ 1.2 What is the impact of different testing criteria

on test case prioritization?

RQ 2 What is the performance of the proposed algorithm for test case minimization?

RQ 2.1 Does the proposed algorithm perform better

than existing algorithms?

The goal is to investigate about the performance of the

proposed algorithm with respect to the random search

(sanity check) and also against BAT, BSA, GA, nBAT

and WA algorithms. Furthermore, to identify which

testing criteria maximize the test case minimization, i.e.,

achieved lower test selection percentage. Additionally, to

see its impact on the coverage loss and fault detection

capability loss of the reduced test suite. Furthermore, it

also classifies the algorithm based on the reduction in

testing cost percentage

RQ 2.2 How the algorithms react to different testing

criteria for test case minimization?

RQ 2.3 What is the effect of the coverage loss and

fault detection capability loss of the

selected test suite using different testing

criteria?

RQ 2.4 Which algorithm achieved better cost

reduction percentage?

Table 4 Subject Programs
Programsa Versions KLOC #Classes #Methods #Test Cases Type

Jtopas 4 5.4 50 748 209 JUnit

Ant 7 80.4 650 7524 878 JUnit

jmeter 5 43.4 389 3613 97 JUnit

aSource: http://www.sir.csc.ncsu.edu

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

an essential criterion for ordering the test cases if the prior

knowledge of the faults is present (Marchetto et al. 2015).

Here, we have used both the testing criteria to check the

robustness of the proposed algorithm. Therefore, the well-

known metrics used as the fitness metrics and the effec-

tiveness measures are defined below:

Average Percentage of Fault Detection (APFD): It

measures the weighted average of the covered faults

according to their position in the test suite (Elbaum et al.

2002). It is calculated as:

APFD ¼ 1�
Pm

i¼1 TF ið Þ
n � m

þ 1

2 � n
ð19Þ

TF(i) denotes the position of the test case, which first

detects the ith fault; m denotes the number of faults covered

by the test suite of size n. It lies in (0, 100), and higher is

better.

Average Percentage of Fault Detection with Cost

(APFDc): APFD assumes uniform test cases cost and fault

severities, which are usually non-uniform. Therefore, a cost

cognizant metric APFDc has been proposed (Malishevsky

et al. 2006) which includes different costs and faults

severities in APFD which is formulated as:

APFDc ¼ 1�
Pm

i¼1 fs ið Þ �
Pn

j¼TF ið Þ cos t jð Þ � 1
2
cos t TF ið Þð Þ

� �

Pn
i¼1 cos t ið Þ �

Pm
i fs ið Þ

ð20Þ

Here, fs(i) is the fault severity of the ith fault, cost (i) is

the test execution cost of an ith test case, and cost (TF(i)) is

the execution cost of the test case which detects the ith

fault first.

Formulation of the Average Percentage of Statement

Coverage (APSC) and APSC with cost (APSCc) is similar

to the APFD and APFDc. However, the only difference is

that they calculate the statement coverage instead of fault

coverage. These metrics are also used as the fitness func-

tion to guide the search-based algorithms in the search

space.

5.2.2 Test case minimization

The commonly used effectiveness measures are test suite

reduction percentage/test selection percentage and cost

reduction percentage. Followed by the test case prioriti-

zation, the test case minimization reduces the size of the

test suite using 100% fault coverage or 100% statement

coverage. It is evident if we minimize the test suite on one

coverage basis, then it affects the other coverage criteria.

For example, fault coverage-based reduction leads to some

statement coverage loss and vice versa. Therefore, we have

used coverage loss percentage, fault detection capability

loss percentage as the performance measure for 100% fault

coverage and 100% statement coverage, respectively, as

described below:

Table 5 Parameter Settings
Algorithms Parameters values

GA Tournament selection

Ordered crossover

Swap mutation

Crossover probability = 0.8

Mutation probability = 0.1

BAT r0 = 0.001, r0min = 0, r0max = 1, fmin = 0, fmax = 1.5,

a = 0.9, c = 0.99

BSA c1 = 1.5, c2 = 2, a1 = 1, a2 = 1.5

nBAT r0 = 0.002, r0min = 0, r0max = 1, Amin = 1, Amax = 2,

fmin = 0, fmax = 1.5, a = 0.8, c = 0.9, Probmax = 0.8,

Probmin = 0.5, wmin = 0.5, wmax = 0.9, Hmax = 1.0,

Hmin = 0.5, Cmax = 0.8, Cmin = 0.2, d = 10

WA amax = 2, amin = 0, b = 1

iBAT r0 = 0.001, r0min = 0, r0max = 1, Amin = 1, Amax = 2,

fmin = 0, fmax = 1.5, a = 0.9, c = 0.99, Probmax = 0.8,

Probmin = 0.6, wmin = 0.5, wmax = 0.9, Hmax = 1.0,

Hmin = 0.5, Cmax = 0.9, Cmin = 0.2, d = 10

Common Parameters Population size = 100

Generation Size = 1000

Number of executions = 30

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Test Selection Percentage (TSP): It is the ratio of the

size of the reduced test suite to the size of the original test

suite.

TSP ¼ r

n
� 100 ð21Þ

where r denotes the reduced test cases in the test suite of

n test cases.

Coverage Loss Percentage (CLP): It is the ratio of the

number of the statements left uncovered by the minimized

test suite to the total number of statements covered by the

original test suite.

CLP ¼ nsl

ts
� 100 ð22Þ

where nsl number of statements left uncovered ts is the

total number of statements.

Fault Detection Capability Loss Percentage (FLP): It is

the ratio of the number of the faults uncovered by the

minimized test suite to the total number of faults covered

by the original test suite.

FLP ¼ nfl

tf
� 100 ð23Þ

Here nfl is number of faults left uncovered tf is the total

number of faults.

Cost Reduction Percentage (CRP): It is the reduction in

the cost of the test suite compared to the cost of the original

suite.

CRP ¼ cr

tr
� 100 ð24Þ

cr is the cost of reduced test suite and tr is the cost of

original test suite.

6 Results and discussions

This section evaluates the algorithm for TCP and TCM

considering different fitness functions. One-way ANOVA

test with a p-value of 0.05 is used to compare the perfor-

mance of the algorithms statistically. To further investigate

the performance of the algorithms in comparison to each

other, ANOVA is followed by the Tukey simultaneous test

to rank them. Furthermore, the graphical statistics are

validated with the boxplots and 95% confidence limit

interval plots for fitness metrics and their corresponding

test selection percentages.

On the other hand, it finds out the algorithm’s strength

for multiple testing criteria, viz., fault coverage, statement

coverage, and combination of both coverage with the cost.

Also, to check whether the algorithm is robust against

different fitness functions or not. Furthermore, the effect of

test case minimization on the fault coverage loss, statement

coverage loss, and cost reduction is also analyzed. The

experimental results of a program are calculated as the

cumulative average on all of its versions. The values of

performance measures of each version are the mean of 30

independent runs.

6.1 Performance analysis of test case
prioritization (RQ 1)

The mean fitness values of different performance metrics

and their Tukey group rankings are shown in Table 6 for all

the subject programs.

6.1.1 RQ 1.1 Effectiveness check among Nature-Inspired
algorithms

Table 6 shows that all the nature-inspired algorithms are

better than RS. The mean fitness value of the bat algorithm

is closer to a random search. Moreover, it suggests an

insignificant difference between means of BAT and RS in

APFDc and APSCc for the jmeter program. Overall, the

algorithm works better than RS. On the other hand, all the

nature-inspired algorithms are statistically better than the

BAT algorithm, except that the pair (BSA, BAT) has

equivalent performance for the fault coverage criteria. The

reason may be the improper mapping of the problem with

the algorithm. As in the BAT algorithm, we correlated the

bat’s properties with the TCP, i.e., loudness represents the

test cases’ fault status. It is the point that motivated us to

find a variant of the bat algorithm.

Therefore, in the nBAT algorithm, we used the usual

algorithm procedure without altering its working. Instead,

we used the permutation encoding and fixed the illegal

values with the legal ones, and the results are significantly

different from BAT. The nBAT algorithm performed better

than BSA and GA for APFD, but they all tend to converge

alike as we consider the fault coverage with cost and

statement coverage criteria. In other words, when we have

more data variations, these algorithms have similar per-

formance. Whereas nBAT and WA are statistically indif-

ferent to fault coverage criteria, conversely, WA performed

better in statement coverage criteria. Hence, the proposal of

an improved novel bat algorithm to enhance the perfor-

mance of nBAT. The proposed algorithm iBAT is statis-

tically different from all the compared algorithms for all

the testing criteria except the pair (WA, iBAT) while

ranking the algorithms according to Tukey Tests. In other

words, the iBAT performed statistically equivalent to WA

for the statement coverage criteria and one out of three

programs for APFDc. Still, the proposed algorithm has

higher mean values in both cases, which makes the pro-

posed algorithm superior to all algorithms, as shown in the

bar charts of Fig. 2. It can be concluded that the iBAT

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

algorithm is robust against all the testing criteria compared

to the other algorithms.

6.1.2 RQ 1.3 Impact of different testing criteria

The distribution of fitness values is also pictorially repre-

sented in the boxplots, as shown in Fig. 3. The boxplots

reveal that the variance in the algorithmic performance is

higher for fault coverage than the statement coverage. It is

because the faults are widely spread in the whole program.

On the other side, most test cases cover almost the same

statements, so due to redundant coverage, the boxplots of

the statement coverage criteria are more squeezed than the

fault coverage criteria.

Another point is that the variance in fault coverage with

the cost is highest among all the testing criteria. Addi-

tionally, the widespread fault distribution and different

execution costs of the algorithms lead to a separate ranking

of the test cases and, hence, the variations. Therefore, the

execution cost of the test cases also plays a vital role in

TCP. If two test cases cover a similar number of faults and

Table 6 Comparison of the algorithms for different fitness functions

Program Versions Algorithms Fitness functions wise Performance (%) and Tukey Group Ranking (TR)

APFD TR APFDc TR APSC TR APSCc TR

Jtopas iBAT 95.621 A 95.272 A 98.298 A 97.480 A

WA 93.930 B 94.120 B 98.161 AB 97.292 A

nBAT 93.118 B 93.503 B 97.706 BC 96.711 B

GA 91.918 C 92.801 BC 97.463 C 96.179 C

BSA 91.180 D 91.705 CD 97.820 BC 96.732 B

BAT 89.951 E 90.695 D 96.863 D 95.600 D

RS 88.062 F 87.467 E 95.553 E 94.928 E

Ant iBAT 93.937 A 93.651 A 97.482 A 96.640 A

WA 93.292 B 93.209 A 97.239 AB 96.366 A

nBAT 92.149 BC 91.837 B 96.586 C 95.642 B

GA 91.304 CD 91.603 B 96.657 BC 95.704 B

BSA 90.577 DE 90.912 B 96.719 BC 95.746 B

BAT 90.094 E 89.491 C 95.924 D 94.952 C

RS 87.372 F 87.037 D 95.164 E 94.275 D

Jmeter iBAT 93.696 A 95.051 A 98.987 A 98.728 A

WA 92.137 B 93.626 B 98.916 AB 98.543 AB

nBAT 91.943 B 93.242 B 98.625 BC 98.126 BC

GA 90.672 C 91.059 C 98.331 C 97.865 CD

BSA 89.396 D 91.834 C 98.655 BC 98.346 B

BAT 89.145 D 89.217 D 97.748 D 97.518 DE

RS 87.759 E 87.994 D 97.153 E 97.200 E

Fig. 2 Bar charts of the programs showing the performance of the algorithms for different testing criteria

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

their cost varies, then the algorithm will select the least-

cost test case first compared to the other one.

6.2 Performance analysis of test case
minimization (RQ 2)

The average values of a test selection percentages of all the

algorithms and their Tukey group rankings are shown in

Table 7 for all the subject programs.

6.2.1 RQ 2.1 Effectiveness check among Nature-Inspired
algorithms

Observations from Table 7 suggest that there is not a

massive difference in the algorithms’ performance for

redundancy reduction in the case of BAT and RS for

APSCc. It is also verified from the ANOVA test that the

pairs (nBAT, BSA) (nBAT, WA) are statistically equiva-

lent in most of the cases. Overall, the numerical results of

WA are better than the nBAT, followed by BSA. Also, all

other nature-inspired algorithms and RS mean values are

different in all the testing criteria. It also shows that the

suite size obtained from the BAT and nBAT algorithms is

less significant than the iBAT algorithm, showing the

algorithms’ inefficiency compared to the iBAT.

Furthermore, the Tukey group ranking suggests a sta-

tistically insignificant difference between the pair of GA

and BSA. On the other side, there is an apparent significant

difference between the performance of the pairs of WA and

iBAT for the fault coverage criteria. Although they are

close competitors, the proposed algorithm’s numerical

mean value is the lowest, as evident from the bar charts in

Fig. 4.

6.2.2 RQ 2.2 Impact of different testing criteria

The pictorial representation of the distribution of test

selection percentages is shown in Fig. 5 in the form of

interval plots. The interval plots show the superiority of the

proposed algorithm to all the other nature-inspired algo-

rithms for all the testing criteria. The algorithms seem to be

significantly different from each other. One interesting fact

is that the test suite reduction is higher in the case of

statement coverage criteria than the fault coverage, as

shown in Table 7 and Fig. 4. It is because redundancy in

statement coverage is high while the faults are distributed

in the whole program. Another observation reveals that the

variance in the algorithmic performance depends on the

program’s characteristics. For example, jtopas has a high

variance in statement coverage while at the same time

Fig. 3 Boxplots of RS, BAT, BSA, GA, nBAT, WA and iBAT for test case prioritization using APFD, APFDc, APSC and APSCc

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

jmeter response opposite to that. The variation in ant is

almost identical. The reason behind this is that we have

merged the results of different versions of the program into

one and found the cumulative test suite reduction. This test

suite reduction also tells the underlying difference between

the performances of the algorithms for test case prioriti-

zation, i.e., whether the proposed algorithm rightly priori-

tizes the test cases or not. If an algorithm is performing

well, but it does not better reduce the test suite according to

the 100% testing criteria, it may be by chance effect or due

to program characteristics.

6.2.3 RQ 2.3 Impact on code and fault coverage percentage

Here, we have analyzed the losses incurred due to the

reduction in test suite size by different testing criteria. As

evident from Table 8 that there is statement coverage loss

and fault detection capability loss when we perform min-

imization with fault coverage criteria and statement cov-

erage criteria, respectively.

Observations from Table 8 suggest that the proposed

algorithm has the least statement coverage loss for APFD

and APFDc but high fault coverage loss compared to other

algorithms for APSC and APSCc. In other words, the

algorithms RS, BAT, and GA have less fault coverage loss

than different algorithms for APSC and APSCc. Figure 6

Table 7 Comparisons of the

algorithms for test case

minimization over different

fitness functions

Program Versions Algorithms Fitness functions wise TSP and Tukey Group Ranking (%)

TSP APFD TR TSP APFDc TR TSP APSC TR TSP APSCc TR

jtopas iBAT 12.467 A 12.208 A 11.000 A 10.950 A

WA 12.833 B 12.900 B 11.042 B 12.142 B

nBAT 13.533 C 13.692 B 13.108 C 13.775 C

GA 14.367 D 14.150 C 14.200 D 15.175 D

BSA 13.683 D 14.700 C 12.425 C 13.058 C

BAT 15.992 E 15.567 D 15.117 D 16.258 E

RS 17.083 F 17.133 E 17.850 E 16.983 E

ant iBAT 18.300 A 18.676 A 17.133 A 17.552 A

WA 18.795 AB 18.957 A 17.557 AB 17.733 A

nBAT 19.981 B 20.871 B 18.905 B 19.981 B

GA 20.933 C 21.143 BC 19.005 BC 20.057 B

BSA 22.081 D 21.729 C 18.933 B 19.876 B

BAT 22.295 D 23.148 D 20.957 C 22.000 C

RS 24.800 E 25.210 E 23.295 D 22.910 C

jmeter iBAT 16.507 A 16.167 A 7.047 A 7.457 A

WA 18.083 B 17.270 B 7.420 AB 8.033 B

nBAT 17.907 B 17.620 B 8.267 BC 8.940 C

GA 19.180 C 18.797 C 9.053 C 9.400 C

BSA 20.070 D 18.477 BC 7.917 B 8.260 BC

BAT 20.033 D 19.733 D 10.077 D 10.293 D

RS 21.117 D 20.900 D 10.750 D 11.067 D

Fig. 4 Test selection percentage of the algorithms for different testing criteria

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

shows that the fault loss in APSC and APSCc is higher

compared to the statement loss in APFD and APFDc.

Again, the reason behind this is that the redundancy in the

test suite due to statement coverage is high, and if we

reduce the test suite according to fault coverage, then there

is less reduction in coverage. It can be inferred that the

decrease in test suite size and loss in coverage are inversely

proportional to each other.

Another point to consider is that if we reduce the size of

the test suite according to one criterion, it may lose some

percentage of other measures. It may happen due to the

high reduction in test suite size. If we perform moderate

selection, then this problem may be solved. Alternatively,

we need to make a trade-off between the two criteria to

produce optimal results by addressing it as a multi-objec-

tive problem.

6.2.4 RQ 2.4 Impact on cost reduction percentage

The cost reduction is directly proportional to the test case

minimization, i.e., the higher the decline in test suite size,

the lower the execution cost of the test suite. Figure 7 and

Table 8 show that the cost reduction percentage of the

proposed algorithm is higher than the other algorithms,

comparatively. However, GA performed better for APSCc

in two out of three programs. Observations also suggest

that the second-highest cost reduction is by GA, BSA after

WA for fault and statement coverage. Therefore, the iBAT,

GA, WA, nBAT, BSA, BAT, and RS follow it in the

succeeding manner for fault coverage. On the other side,

they are ranked as iBAT, WA, BSA, GA, nBAT, BAT, and

RS for statement coverage.

6.3 Major findings and further discussions

The main findings of this research are as follows:

• All the nature-inspired algorithms are statistically better

than the random search for prioritizing the test cases on

all the testing criteria.

• There is a statistically significant difference between

the performances of the pairs of algorithms except

(BAT, BSA), (nBAT, GA), (nBAT, BSA), (nBAT,

WA), and (GA, BSA) for all the testing criteria of test

case prioritization. Though iBAT and WA are

Fig. 5 Interval plots of RS, BAT, BSA, GA, nBAT, WA and iBAT for test selection percentage using APFD, APFDc, APSC and APSCc

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

statistically insignificant for statement coverage, the

numerical mean values of iBAT are higher than WA.

• It is observed that the iBAT and WA have statistically

better results than other algorithms for test case

minimization though they are apparently different in

most of the cases. However, the iBAT outperformed the

WA algorithm in terms of the numerical mean.

• The test case minimization has not witnessed the

statistically significant difference between the pairs of

(nBAT, BSA), (nBAT, WA), and (GA, BSA) in half of

the cases during the programwise analysis.

Table 8 Coverage loss, fault detection loss and the cost reduction percentage of the algorithms

Program Versions Algorithms Fitness functions wise Coverage Loss, Fault Loss and Cost Reduction Percentages

Coverage Loss (%) Fault Loss (%) Cost Reduction (%)

CLPAPFD CLPAPFDc FLPAPSC FLPAPSCc CRPAPFD CRPAPFDc CRPAPSC CRPAPSCc

jtopas iBAT 9.647 9.437 30.904 29.729 86.225 86.953 89.728 89.203

WA 11.338 11.561 31.531 31.258 85.695 86.098 89.010 87.986

nBAT 13.628 14.585 26.802 26.757 85.119 85.439 87.371 85.226

GA 10.962 11.173 26.442 24.407 85.711 86.474 85.911 88.355

BSA 12.608 13.330 29.424 28.002 84.721 84.967 88.014 87.166

BAT 12.062 10.914 24.745 24.238 83.888 84.005 85.110 84.440

RS 13.393 15.393 24.414 21.893 82.646 82.697 83.078 83.215

ant iBAT 6.167 6.695 21.502 20.666 79.912 80.712 82.828 81.841

WA 7.441 7.191 20.849 20.331 78.517 78.854 82.146 80.929

nBAT 8.047 8.006 20.190 18.499 78.012 78.478 80.859 79.356

GA 7.388 7.489 19.768 17.432 78.621 78.732 80.849 82.022

BSA 8.071 8.203 19.278 18.649 76.938 77.920 81.037 79.962

BAT 6.855 6.889 17.682 16.304 76.648 76.193 78.882 78.046

RS 7.693 7.729 17.228 17.710 74.477 74.131 76.864 76.775

jmeter iBAT 5.386 5.002 30.476 30.977 82.083 82.296 92.938 91.312

WA 4.894 5.293 31.756 31.656 81.808 82.436 92.447 91.858

nBAT 5.012 5.587 29.220 28.425 81.168 80.811 91.545 90.047

GA 5.225 5.190 27.429 25.375 81.827 81.862 90.602 92.328

BSA 5.109 5.310 31.633 31.011 80.670 81.484 91.801 91.538

BAT 4.829 4.878 28.167 26.422 79.777 79.832 89.599 89.327

RS 5.230 5.298 28.070 27.897 79.413 78.823 89.225 88.240

Fig. 6 Coverage loss percentage of the algorithms for different testing criteria

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

• The fault detection capability loss in code coverage-

based testing criteria is higher than the statement

coverage loss in the fault coverage-based approaches.

Generally, we perform the test suite reduction based on

statement coverage. Still, this study reveals that if we

minimize the test suite based on statement redundancy,

it may leave some of the faults undetected, which is an

unfavourable condition. BAT and RS showed a minor

loss in coverage compared to other algorithms for

statement coverage, while iBAT is better for fault

coverage criteria. The test selection percentage and

coverage loss are inversely proportional to each other.

• The cost reduction percentage is directly proportional to

the test suite reduction percentage. The iBAT outper-

formed other algorithms.

To further investigate the performance of the algorithms

compared to each other, we extend the analysis of the

algorithms on different versions of the program as shown

in Tables 9 and 10. Version-based validation of the algo-

rithms’ performance suggests a significant difference in the

mean values of the performance metrics for the test case

prioritization and minimization. Version analysis also

shows that nBAT, BSA, and GA have almost similar per-

formance; however, BSA performed better than nBAT and

GA in most cases for statement coverage criteria. WA is

always superior to these, so it follows the order iBAT, WA,

nBAT, GA, BSA, BAT, and RS for fault coverage and

iBAT, WA, BSA, nBAT, GA, BAT, and RS in case of

statement coverage criteria. Therefore, both the program

and version analysis suggests that the proposed algorithm

outperformed the other algorithms for APFD, APFDc and

equivalent with WA for APSC and APSCc.

Program analysis shows that iBAT and WA have

equivalent performance in several cases of test case mini-

mization. In contrast, the statistical analysis on versions

reveals a significant difference in the means of test selec-

tion percentages for both the testing criteria except a few

versions for APSC. Similarly, the (nBAT, BSA), (GA,

BSA) pairs are statistically insignificant for the code cov-

erage criteria and APFDc but different for APFD. The CLP

is least for iBAT, while BAT and RS have the least FLP for

most versions. However, iBAT wins the race for the cost

reduction percentage. Therefore, the observations suggest

that the TCM procedure tells about the precision of the

prioritization. Even a minor difference in the value of the

performance metric affects the ranking of the test cases. It

is also observed that the algorithms performed differently

with different testing criteria. Overall, iBAT algorithm is

superior to all algorithms for the test case prioritization and

minimization.

7 Conclusions and future work

We have proposed an improved novel bat algorithm for

TCP and TCM and compared it with the random search and

other nature-inspired algorithms like BSA, BAT, GA,

nBAT, and WA. The results prove that the iBAT algorithm

performed better than these algorithms for all the perfor-

mance metrics. The statistical test confirmed the superior-

ity of the proposed algorithm for test case prioritization.

Moreover, boxplots and interval plots demonstrated the

effectiveness of the iBAT algorithm. Also, the proposed

algorithm and the whale optimization algorithm showed

similar performance for statement coverage in test case

prioritization. On the other side, the iBAT algorithm

worked better than the WA for reducing the test suite in

terms of statement coverage and cost reduction percentage.

Our future work includes the development of a test case

selection technique that selects an affordable number of

test cases without compromising the quality of the soft-

ware. We will also explore other versions of bat algorithms

or hybridized bat algorithms with different nature-inspired

Fig. 7 Cost reduction percentage of the algorithms for different testing criteria

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Ta
bl
e
9

C
o
m
p
ar
is
o
n
o
f
th
e
al
g
o
ri
th
m
s
fo
r
d
if
fe
re
n
t
fi
tn
es
s
fu
n
ct
io
n
s

P
ro
g
ra
m

V
er
si
o
n
s

A
lg
o
ri
th
m
s

F
it
n
es
s
fu
n
ct
io
n
s
w
is
e
P
er
fo
rm

an
ce

an
d
T
u
k
ey

G
ro
u
p
R
an
k
in
g
(%

)
F
it
n
es
s
fu
n
ct
io
n
s
w
is
e
T
S
P
an
d
T
u
k
ey

G
ro
u
p
R
an
k
in
g
(%

)

A
P
F
D

T
R

A
P
F
D
c

T
R

A
P
S
C

T
R

A
P
S
C
c

T
R

T
S
P

A
P
F
D

T
R

T
S
P

A
P
F
D
c

T
R

T
S
P

A
P
S
C

T
R

T
S
P

A
P
S
C
c

T
R

Jt
o
p
as

v
1

iB
A
T

9
7
.7
3
6

A
9
8
.0
4
7

A
9
9
.1
0
5

A
9
8
.7
8
7

A
7
.0
0
0

A
7
.0
0
0

A
5
.1
6
7

A
5
.4
6
7

A

W
A

9
6
.8
4
6

B
9
7
.6
7
5

B
9
8
.9
9
7

A
9
8
.6
7
6

A
7
.6
6
7

B
7
.6
6
7

B
5
.4
6
7

A
B

6
.4
6
7

B

n
B
A
T

9
6
.1
4
4

B
9
7
.6
0
0

B
9
8
.9
5
5

B
9
8
.2
9
2

B
7
.8
3
3

B
8
.2
0
0

B
5
.5
0
0

B
7
.0
3
3

B

G
A

9
4
.8
3
2

C
9
7
.5
1
8

B
9
8
.6
9
7

B
9
7
.9
3
0

C
8
.2
0
0

B
7
.1
6
7

B
6
.5
6
7

C
8
.3
3
3

C

B
S
A

9
5
.9
0
3

D
9
7
.5
2
8

B
9
8
.9
7
6

A
9
8
.3
4
5

B
8
.0
0
0

B
8
.0
0
0

B
6
.3
6
7

C
7
.2
0
0

B

B
A
T

9
3
.9
1
2

E
9
6
.5
9
2

C
9
8
.3
8
8

C
9
7
.6
2
3

C
9
.0
0
0

C
9
.0
6
7

C
6
.8
3
3

C
9
.5
3
3

D

R
S

9
2
.8
7
6

F
9
5
.4
4
1

D
9
7
.2
9
3

D
9
6
.7
8
3

D
9
.4
6
7

C
9
.8
6
7

D
9
.5
3
3

D
1
0
.7
0
0

E

Jt
o
p
as

v
2

iB
A
T

9
4
.9
5
4

A
9
5
.8
1
5

A
9
7
.0
4
7

A
9
6
.1
8
3

A
1
3
.0
0
0

A
1
2
.9
0
0

A
2
1
.9
3
3

A
2
1
.5
6
7

A

W
A

9
3
.1
6
4

B
9
4
.4
4
9

B
9
6
.8
5
0

A
9
5
.8
9
3

A
1
3
.7
0
0

B
1
3
.4
0
0

B
2
2
.1
3
3

B
2
2
.4
0
0

B

n
B
A
T

9
2
.1
5
4

C
9
4
.0
1
2

B
C

9
6
.2
2
6

B
9
5
.4
9
6

B
1
3
.7
6
7

B
1
4
.5
0
0

C
2
3
.4
6
7

C
2
3
.5
6
7

C

G
A

9
1
.3
9
0

D
9
3
.3
7
4

C
D

9
6
.2
2
0

B
9
5
.0
7
1

C
1
4
.9
0
0

C
1
4
.0
6
7

C
2
3
.8
6
7

C
2
3
.8
6
7

C

B
S
A

9
0
.5
7
0

E
9
3
.1
4
5

D
9
6
.5
1
4

B
9
5
.4
8
5

B
1
5
.5
0
0

C
D

1
4
.9
3
3

C
2
3
.5
6
7

C
2
3
.6
3
3

C

B
A
T

8
9
.4
6
7

F
9
2
.3
9
4

E
9
5
.8
0
5

C
9
4
.7
1
3

D
1
5
.8
6
7

D
1
5
.4
0
0

D
2
5
.6
3
3

D
2
5
.6
6
7

D

R
S

8
8
.0
1
8

G
8
7
.9
2
2

F
9
5
.1
1
9

D
9
4
.3
1
5

E
1
7
.0
0
0

E
1
7
.1
6
7

E
2
7
.4
6
7

E
2
5
.8
0
0

D

Jt
o
p
as

v
3

iB
A
T

9
5
.2
3
1

A
9
4
.1
9
9

A
9
7
.9
1
8

A
9
7
.2
6
1

A
1
3
.9
0
0

A
1
3
.5
0
0

A
1
0
.6
6
7

A
1
0
.3
0
0

A

W
A

9
4
.0
3
2

B
9
3
.2
6
0

B
9
7
.7
4
8

A
9
6
.9
9
5

A
1
4
.0
0
0

A
1
4
.2
6
7

B
1
1
.6
6
7

B
1
2
.8
0
0

B

n
B
A
T

9
3
.0
4
5

C
9
2
.3
7
7

C
9
6
.6
1
6

B
9
6
.0
0
7

B
1
5
.7
0
0

B
1
5
.0
3
3

C
1
6
.7
3
3

D
1
6
.6
6
7

C

G
A

9
1
.8
6
8

D
9
1
.5
8
8

D
9
6
.1
8
3

B
9
5
.1
4
7

B
1
5
.8
0
0

B
1
5
.3
6
7

C
1
9
.1
0
0

E
1
8
.4
3
3

D

B
S
A

9
0
.1
6
7

E
9
1
.2
5
9

D
9
6
.7
1
7

B
9
6
.0
1
1

B
1
6
.3
0
0

B
1
5
.9
6
7

C
1
3
.0
3
3

C
1
3
.2
0
0

B

B
A
T

8
9
.4
9
8

F
8
9
.5
3
8

E
9
4
.7
1
5

C
9
4
.0
1
8

C
1
7
.7
0
0

C
1
7
.2
6
7

D
1
9
.6
3
3

E
1
9
.4
0
0

E

R
S

8
7
.6
8
9

G
8
6
.1
2
2

F
9
2
.8
3
0

D
9
3
.0
6
4

D
1
8
.7
0
0

D
1
8
.0
0
0

D
2
2
.8
6
7

F
1
9
.8
3
3

E

Jt
o
p
as

v
4

iB
A
T

9
4
.5
6
3

A
9
3
.0
2
6

A
9
9
.1
2
3

A
9
7
.6
8
8

A
1
5
.2
0
0

A
1
5
.3
0
0

A
5
.2
3
3

A
6
.4
6
7

A

W
A

9
1
.6
8
0

B
9
1
.0
9
4

B
9
9
.0
5
0

A
9
7
.6
0
5

A
1
5
.9
6
7

B
1
6
.2
6
7

B
5
.9
0
0

A
B

6
.9
0
0

A
B

n
B
A
T

9
1
.1
3
0

B
9
0
.0
2
1

B
9
9
.0
2
6

A
9
7
.0
4
9

B
1
7
.6
0
0

C
1
7
.5
0
0

C
6
.7
3
3

B
C

7
.8
3
3

B

G
A

8
9
.5
8
1

C
8
8
.7
2
5

C
9
8
.7
5
3

B
9
6
.5
6
8

C
1
8
.5
6
7

D
1
8
.5
3
3

C
7
.2
6
7

C
1
0
.0
6
7

D

B
S
A

8
8
.0
7
9

D
8
4
.8
8
7

D
9
9
.0
7
0

A
9
7
.0
8
7

B
1
9
.8
6
7

E
1
9
.9
0
0

D
6
.7
3
3

B
C

8
.2
0
0

C

B
A
T

8
6
.9
2
8

E
8
4
.2
5
6

D
9
8
.5
4
4

C
9
6
.0
4
5

D
2
1
.4
0
0

F
2
0
.5
3
3

D
8
.3
6
7

D
1
0
.4
3
3

D

R
S

8
3
.6
6
4

F
8
0
.3
8
4

E
9
6
.9
7
1

D
9
5
.5
5
0

E
2
3
.1
6
7

G
2
3
.5
0
0

E
1
1
.5
3
3

E
1
1
.6
0
0

E

A
n
t
v
1

iB
A
T

9
1
.0
9
6

A
9
0
.8
9
0

A
9
9
.1
5
8

A
9
8
.1
2
7

A
2
1
.4
3
3

A
2
1
.6
0
0

A
4
.2
6
7

A
5
.9
0
0

A

W
A

8
9
.1
6
7

B
9
0
.0
0
2

B
9
9
.0
0
4

B
9
8
.1
0
0

A
2
2
.8
6
7

B
2
2
.4
0
0

B
5
.1
0
0

A
B

6
.2
6
7

B

n
B
A
T

8
8
.3
3
0

B
8
8
.4
0
0

C
9
9
.0
0
7

B
9
7
.7
8
6

B
2
3
.8
6
7

C
2
3
.9
3
3

C
5
.4
3
3

B
8
.5
6
7

C

G
A

8
7
.2
7
8

C
8
6
.3
9
1

D
9
8
.6
6
8

D
9
7
.5
9
8

C
2
4
.7
3
3

D
2
4
.0
3
3

C
6
.7
0
0

C
1
0
.9
0
0

D

B
S
A

8
6
.1
4
7

D
8
4
.9
0
8

E
9
8
.8
6
7

C
9
7
.9
0
2

B
2
5
.6
3
3

E
2
4
.8
0
0

C
6
.6
3
3

C
8
.2
0
0

C

B
A
T

8
5
.9
7
3

D
8
4
.3
6
5

E
9
8
.3
1
2

E
9
7
.0
1
5

D
2
5
.8
0
0

F
2
5
.4
6
7

D
8
.3
3
3

D
1
1
.7
0
0

D
E

R
S

8
3
.8
9
6

E
8
1
.1
8
6

F
9
7
.4
9
1

F
9
6
.6
6
6

E
2
7
.1
3
3

G
2
6
.6
3
3

E
1
0
.7
6
7

E
1
1
.8
3
3

E

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Ta
bl
e
9
(c
o
n
ti
n
u
ed
)

P
ro
g
ra
m

V
er
si
o
n
s

A
lg
o
ri
th
m
s

F
it
n
es
s
fu
n
ct
io
n
s
w
is
e
P
er
fo
rm

an
ce

an
d
T
u
k
ey

G
ro
u
p
R
an
k
in
g
(%

)
F
it
n
es
s
fu
n
ct
io
n
s
w
is
e
T
S
P
an
d
T
u
k
ey

G
ro
u
p
R
an
k
in
g
(%

)

A
P
F
D

T
R

A
P
F
D
c

T
R

A
P
S
C

T
R

A
P
S
C
c

T
R

T
S
P

A
P
F
D

T
R

T
S
P

A
P
F
D
c

T
R

T
S
P

A
P
S
C

T
R

T
S
P

A
P
S
C
c

T
R

A
n
t
v
2

iB
A
T

9
2
.3
6
6

A
9
3
.2
8
6

A
9
9
.0
1
7

A
9
8
.1
9
6

A
2
0
.7
6
7

A
2
0
.0
3
8

A
5
.4
3
3

A
6
.5
0
0

A

W
A

9
2
.0
8
5

A
9
2
.6
3
1

B
9
8
.9
2
9

A
9
7
.8
7
8

B
2
0
.8
6
7

A
2
0
.7
3
3

B
5
.9
0
0

B
7
.3
6
7

B

n
B
A
T

9
0
.5
4
5

B
9
1
.6
4
9

C
9
8
.9
6
4

A
9
7
.4
8
3

C
2
1
.7
3
3

B
2
3
.4
6
7

C
6
.0
3
3

B
8
.7
6
7

C

G
A

8
9
.0
7
3

C
9
1
.5
4
8

C
9
8
.7
7
5

B
9
7
.1
7
0

D
2
3
.3
3
3

C
2
3
.6
0
0

C
6
.9
3
3

C
1
0
.3
3
3

D

B
S
A

8
8
.0
9
4

D
9
1
.4
0
5

C
9
8
.9
1
6

A
9
7
.7
0
0

B
2
4
.4
6
7

D
2
3
.8
0
0

C
6
.4
0
0

B
7
.9
0
0

B

B
A
T

8
8
.1
3
8

D
8
8
.4
3
8

D
9
8
.6
3
6

C
9
6
.5
3
9

E
2
6
.4
6
7

E
2
6
.8
3
3

D
9
.0
6
7

D
1
1
.7
6
7

E

R
S

8
5
.3
7
4

E
8
6
.2
0
3

E
9
7
.6
9
8

D
9
6
.2
8
1

F
2
9
.4
0
0

F
2
9
.2
6
7

E
1
2
.4
3
3

E
1
1
.9
3
3

E

A
n
t
v
3

iB
A
T

9
5
.2
2
3

A
9
4
.2
2
3

A
9
8
.9
7
1

A
9
7
.8
4
4

A
1
6
.6
3
3

A
1
7
.0
0
0

A
5
.5
6
7

A
7
.4
0
0

A

W
A

9
4
.2
8
0

B
9
3
.2
6
0

B
9
8
.9
2
3

A
9
7
.6
8
9

A
B

1
7
.4
0
0

B
1
7
.5
6
7

B
6
.0
6
7

A
B

8
.7
3
3

B

n
B
A
T

9
2
.5
5
6

C
9
1
.5
7
2

C
9
8
.7
3
1

B
9
7
.5
5
9

B
1
8
.1
3
3

C
1
9
.3
0
0

C
7
.3
0
0

B
C

1
0
.4
6
7

C

G
A

9
1
.3
3
8

D
9
2
.1
1
8

C
9
8
.6
8
7

B
9
7
.3
8
2

C
1
9
.4
6
7

D
1
9
.3
6
7

C
8
.0
3
3

C
1
2
.7
3
3

D

B
S
A

9
0
.2
1
4

E
9
0
.2
0
5

D
9
8
.7
3
6

B
9
7
.6
6
7

B
2
0
.6
6
7

E
2
0
.6
3
3

C
8
.2
0
0

D
1
0
.4
3
3

C

B
A
T

8
9
.0
3
4

F
8
8
.3
1
1

E
9
8
.4
6
6

C
9
7
.2
7
8

C
2
1
.5
3
3

F
2
1
.3
6
7

D
9
.9
6
7

E
1
2
.9
0
0

D

R
S

8
3
.2
2
8

G
8
2
.8
3
5

F
9
7
.9
4
0

D
9
7
.1
0
4

D
2
4
.4
0
0

G
2
5
.2
0
0

E
1
3
.7
3
3

F
1
3
.8
6
7

E

A
n
t
v
4

iB
A
T

9
8
.8
4
8

A
9
8
.2
1
1

A
9
5
.7
0
7

A
9
5
.0
5
5

A
3
.3
0
0

A
3
.0
0
0

A
2
2
.4
0
0

A
2
2
.6
6
7

A

W
A

9
8
.6
6
0

A
9
8
.1
8
1

A
9
5
.1
4
0

A
9
4
.4
2
1

B
3
.6
0
0

B
3
.5
3
3

B
2
3
.3
6
7

B
2
2
.8
6
7

A

n
B
A
T

9
8
.1
1
0

B
9
8
.0
6
6

A
9
4
.0
4
3

B
9
3
.1
5
0

C
3
.7
0
0

B
3
.8
6
7

B
2
4
.2
3
3

C
2
3
.6
3
3

B

G
A

9
7
.9
7
4

B
9
8
.0
5
6

A
9
3
.3
0
6

C
9
3
.6
8
2

C
3
.8
3
3

B
3
.7
3
3

B
2
5
.4
6
7

D
2
3
.4
3
3

B

B
S
A

9
7
.7
8
6

B
9
8
.1
0
0

A
9
4
.3
1
2

B
9
2
.9
9
6

D
3
.9
3
3

B
3
.8
0
0

B
2
3
.3
6
7

B
2
5
.2
6
7

C

B
A
T

9
7
.2
7
9

C
9
8
.0
4
1

A
9
2
.5
5
5

D
9
1
.9
6
7

E
3
.8
6
7

B
3
.9
0
0

B
2
5
.9
3
3

D
2
5
.5
6
7

C

R
S

9
6
.7
5
0

D
9
6
.2
4
2

B
9
1
.7
8
0

E
9
1
.2
0
3

E
4
.8
0
0

C
5
.1
6
7

C
2
8
.3
0
0

E
2
5
.7
3
3

C

A
n
t
v
5

iB
A
T

9
8
.5
1
8

A
9
7
.6
4
2

A
9
5
.9
0
5

A
9
5
.4
1
8

A
3
.3
3
3

A
3
.7
0
0

A
2
2
.7
3
3

A
2
2
.1
3
3

A

W
A

9
8
.5
5
3

A
9
7
.2
3
8

A
9
5
.1
9
6

B
9
4
.8
8
7

A
3
.4
3
3

B
4
.4
0
0

B
2
3
.7
6
7

B
2
3
.1
0
0

B

n
B
A
T

9
7
.6
4
6

B
9
6
.6
1
1

B
9
3
.5
3
8

D
9
3
.8
7
2

B
3
.6
3
3

B
4
.6
3
3

B
2
5
.0
0
0

C
2
4
.4
6
7

C

G
A

9
7
.3
4
1

B
9
6
.5
7
9

B
9
4
.5
4
1

C
9
3
.9
3
9

B
3
.9
3
3

B
C

4
.4
0
0

B
2
3
.8
6
7

B
2
3
.4
3
3

B

B
S
A

9
6
.3
2
6

C
9
6
.2
7
6

B
C

9
4
.1
8
9

C
9
3
.9
8
1

B
4
.3
3
3

C
D

5
.3
3
3

C
2
4
.5
6
7

C
2
5
.4
0
0

C

B
A
T

9
6
.2
3
2

C
9
5
.6
9
1

C
9
2
.8
7
7

E
9
3
.7
3
7

B
4
.6
0
0

D
5
.5
3
3

C
2
5
.8
6
7

C
2
6
.0
3
3

D

R
S

9
1
.5
7
2

D
9
5
.0
7
8

D
9
1
.9
8
5

F
9
1
.5
4
1

C
5
.8
6
7

E
5
.7
6
7

C
2
6
.6
3
3

D
2
6
.4
0
0

D

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Ta
bl
e
9
(c
o
n
ti
n
u
ed
)

P
ro
g
ra
m

V
er
si
o
n
s

A
lg
o
ri
th
m
s

F
it
n
es
s
fu
n
ct
io
n
s
w
is
e
P
er
fo
rm

an
ce

an
d
T
u
k
ey

G
ro
u
p
R
an
k
in
g
(%

)
F
it
n
es
s
fu
n
ct
io
n
s
w
is
e
T
S
P
an
d
T
u
k
ey

G
ro
u
p
R
an
k
in
g
(%

)

A
P
F
D

T
R

A
P
F
D
c

T
R

A
P
S
C

T
R

A
P
S
C
c

T
R

T
S
P

A
P
F
D

T
R

T
S
P

A
P
F
D
c

T
R

T
S
P

A
P
S
C

T
R

T
S
P

A
P
S
C
c

T
R

A
n
t
v
6

iB
A
T

9
0
.7
5
9

A
8
9
.5
4
7

A
9
6
.3
8
3

A
9
5
.6
6
7

A
3
3
.4
3
3

A
3
2
.2
0
0

A
2
7
.7
3
3

A
2
7
.0
0
0

A

W
A

8
9
.8
5
2

B
8
8
.5
8
8

B
9
6
.1
9
9

A
9
5
.1
3
4

B
3
3
.5
0
0

A
3
3
.6
6
7

B
2
8
.7
0
0

B
2
8
.5
3
3

B

n
B
A
T

8
8
.0
6
0

C
8
6
.8
1
0

C
9
5
.2
0
9

C
9
3
.9
6
3

D
3
7
.3
3
3

B
3
7
.9
8
0

C
3
0
.6
0
0

C
3
0
.7
3
3

C

G
A

8
7
.4
4
8

D
8
6
.6
5
8

C
9
5
.7
3
6

B
9
4
.5
7
7

C
3
8
.2
3
3

C
3
8
.2
3
3

C
D

3
0
.4
6
7

C
2
8
.7
6
7

B

B
S
A

8
6
.9
6
1

E
8
5
.8
4
3

D
9
5
.1
2
0

C
9
4
.0
3
9

D
3
9
.5
3
3

D
3
9
.0
3
3

D
3
1
.6
3
3

D
3
1
.2
3
3

D

B
A
T

8
5
.5
5
8

F
8
4
.0
5
2

E
9
4
.4
2
8

D
9
3
.0
2
5

E
4
0
.8
0
0

E
4
1
.2
0
0

E
3
1
.8
6
7

D
3
1
.6
3
3

D

R
S

8
4
.2
5
8

G
8
2
.8
1
1

F
9
3
.8
8
5

E
9
2
.2
0
2

F
4
3
.3
0
0

F
4
3
.2
0
0

F
3
3
.9
3
3

E
3
4
.4
6
7

E

A
n
t
v
7

iB
A
T

9
1
.4
0
5

A
9
1
.7
5
6

A
9
7
.2
3
2

A
9
6
.3
2
5

A
2
9
.2
0
0

A
3
0
.4
0
0

A
2
9
.6
6
7

A
2
8
.6
0
0

A

W
A

9
0
.4
5
0

B
9
2
.5
6
1

B
9
7
.2
7
9

A
9
6
.2
9
8

A
2
9
.9
0
0

B
3
1
.2
0
0

B
3
0
.8
0
0

B
2
9
.9
3
3

B

n
B
A
T

8
9
.9
3
0

B
8
9
.7
4
9

C
9
6
.6
0
6

C
9
5
.6
8
2

B
C

3
1
.4
6
7

C
3
4
.2
3
3

C
3
4
.0
6
7

C
3
3
.2
3
3

C

G
A

8
8
.8
6
4

C
8
9
.8
6
8

C
9
6
.8
8
8

B
9
5
.5
7
8

C
3
3
.0
0
0

D
3
4
.8
3
3

C
3
1
.5
6
7

B
3
0
.8
0
0

B

B
S
A

8
8
.1
9
1

C
8
9
.6
4
5

C
9
6
.8
9
4

B
9
5
.9
3
6

B
3
6
.0
0
0

E
3
4
.7
0
0

C
3
1
.7
3
3

B
3
0
.7
0
0

B

B
A
T

8
8
.4
4
6

C
8
7
.5
3
9

D
9
6
.1
9
4

D
9
5
.1
0
2

D
3
3
.0
0
0

D
3
7
.7
3
3

D
3
5
.6
6
7

D
3
4
.4
0
0

D

R
S

8
6
.5
2
6

D
8
4
.9
0
1

E
9
5
.3
6
8

E
9
4
.9
2
7

D
3
8
.7
0
0

E
4
1
.2
3
3

E
3
7
.2
6
7

E
3
6
.1
3
3

E

Jm
et
er

v
1

iB
A
T

9
3
.3
9
5

A
9
6
.9
6
8

A
9
9
.5
4
2

A
9
9
.4
0
1

A
1
4
.0
8
4

A
1
4
.3
4
0

A
2
.6
3
3

A
3
.0
0
0

A

W
A

9
0
.6
2
3

B
9
4
.6
7
5

B
9
9
.5
2
7

A
9
9
.3
7
2

A
1
5
.6
3
4

B
1
5
.4
0
0

B
2
.8
8
4

A
B

3
.5
5
0

A
B

n
B
A
T

9
0
.8
3
5

B
9
5
.2
5
5

B
9
9
.4
9
8

A
9
8
.9
3
6

C
1
5
.1
3
4

B
1
5
.8
6
7

B
2
.9
5
0

B
4
.2
3
4

C

G
A

8
9
.5
0
2

C
9
0
.7
9
7

C
9
8
.9
7
0

B
9
8
.6
7
7

D
1
6
.7
1
7

C
1
7
.0
6
7

C
3
.9
3
4

C
5
.3
6
7

D

B
S
A

8
7
.6
9
9

D
9
0
.6
5
7

C
9
9
.5
1
2

A
9
9
.1
7
2

B
1
7
.3
5
0

D
1
7
.0
1
7

C
2
.9
6
7

B
3
.6
5
0

B

B
A
T

8
7
.6
5
9

D
8
9
.8
7
2

D
9
8
.8
3
8

C
9
8
.3
4
0

E
1
7
.0
5
0

D
1
7
.5
0
0

C
6
.2
5
0

D
6
.4
3
4

E

R
S

8
6
.5
2
4

E
8
9
.1
5
6

D
9
7
.3
9
5

D
9
8
.1
6
8

F
1
8
.3
1
7

E
1
8
.4
0
0

D
6
.7
0
0

E
7
.5
3
4

F

Jm
et
er

v
2

iB
A
T

9
3
.6
2
7

A
9
5
.9
9
7

A
9
9
.3
5
1
2

A
9
9
.6
0
0

A
1
7
.7
0
0

A
1
7
.8
0
0

A
2
.7
0
0

A
3
.3
5
0

A

W
A

9
2
.5
0
9

B
9
4
.2
0
3

B
9
9
.2
0
3
3

B
9
9
.5
9
8

A
2
0
.1
6
7

B
1
9
.8
3
4

B
3
.1
0
0

B
4
.4
1
7

C

n
B
A
T

9
2
.7
1
2

B
9
4
.4
0
5

B
9
9
.0
1
9
6

C
9
9
.4
8
5

B
1
9
.9
5
0

B
1
9
.7
6
7

B
4
.2
5
0

C
5
.6
6
7

D

G
A

9
0
.8
4
1

C
9
2
.1
3
2

C
9
8
.8
6
7
3

D
9
9
.5
1
4

B
2
1
.2
1
7

C
2
0
.4
3
4

B
5
.4
6
7

D
5
.1
8
4

D

B
S
A

8
9
.3
7
1

D
9
4
.2
9
1

B
9
9
.0
4
9
4

C
9
9
.5
1
6

B
2
2
.4
3
4

D
2
1
.6
6
7

C
3
.3
6
7

B
3
.9
1
7

B

B
A
T

8
9
.3
4
2

D
8
9
.9
8
8

D
9
8
.6
2
6
1

E
9
9
.3
2
5

C
2
2
.2
0
0

D
2
2
.9
0
0

D
3
.9
3
4

B
6
.5
3
4

E

R
S

8
7
.9
8
7

E
8
9
.2
1
1

E
9
8
.4
9
9
7

F
9
9
.2
7
0

C
2
3
.5
8
4

E
2
3
.4
1
7

D
7
.2
3
4

E
7
.2
8
4

E

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Ta
bl
e
9
(c
o
n
ti
n
u
ed
)

P
ro
g
ra
m

V
er
si
o
n
s

A
lg
o
ri
th
m
s

F
it
n
es
s
fu
n
ct
io
n
s
w
is
e
P
er
fo
rm

an
ce

an
d
T
u
k
ey

G
ro
u
p
R
an
k
in
g
(%

)
F
it
n
es
s
fu
n
ct
io
n
s
w
is
e
T
S
P
an
d
T
u
k
ey

G
ro
u
p
R
an
k
in
g
(%

)

A
P
F
D

T
R

A
P
F
D
c

T
R

A
P
S
C

T
R

A
P
S
C
c

T
R

T
S
P

A
P
F
D

T
R

T
S
P

A
P
F
D
c

T
R

T
S
P

A
P
S
C

T
R

T
S
P

A
P
S
C
c

T
R

Jm
et
er

v
3

iB
A
T

8
9
.9
5
2

A
9
1
.2
4
8

A
9
9
.3
6
1
6

A
9
8
.9
3
9

A
2
4
.6
6
7

A
2
4
.5
4
3

A
4
.5
8
4

A
5
.5
8
4

A

W
A

8
8
.0
1
3

B
8
7
.6
4
4

B
9
9
.2
8
2
9

B
9
8
.8
8
6

A
2
7
.6
6
7

B
2
6
.6
8
4

B
5
.9
8
4

B
5
.9
8
4

A

n
B
A
T

8
7
.7
9
7

B
8
8
.0
7
3

B
9
9
.1
9
2
6

B
C

9
8
.6
0
5

C
2
7
.1
8
4

B
2
6
.8
1
7

B
6
.0
6
7

C
7
.5
0
0

C

G
A

8
6
.5
2
8

C
8
4
.0
5
4

D
9
9
.1
3
3
4

C
9
8
.4
4
4

D
2
9
.0
5
0

C
2
8
.7
3
4

C
7
.5
8
4

D
7
.6
3
4

C

B
S
A

8
5
.5
9
0

C
D

8
6
.6
4
1

C
9
9
.2
4
9

B
9
8
.7
4
8

B
2
9
.8
0
0

C
2
8
.2
1
7

C
6
.8
6
7

C
6
.3
1
7

B

B
A
T

8
4
.6
9
7

D
8
1
.7
8
8

E
9
8
.9
1
8
5

D
9
8
.2
0
4

E
2
9
.9
8
4

C
3
0
.0
8
4

D
8
.5
1
2

E
8
.4
1
7

D

R
S

8
2
.9
1
0

E
8
0
.2
9
8

F
9
8
.8
6
5
1

D
9
7
.7
8
7

F
3
1
.0
8
4

D
3
1
.2
0
0

E
8
.6
8
4

E
9
.1
1
7

E

Jm
et
er

v
4

iB
A
T

9
7
.7
2
1

A
9
8
.8
3
3

A
9
8
.7
2
4

A
9
7
.9
6
8

A
3
.8
5
0

A
3
.8
1
7

A
9
.4
1
7

A
1
1
.2
0
0

A

W
A

9
6
.8
8
8

B
9
7
.6
1
5

B
9
8
.6
2
9

A
9
7
.5
3
6

B
4
.1
8
4

B
4
.3
6
7

B
9
.6
0
0

A
1
1
.4
1
7

A
B

n
B
A
T

9
6
.4
0
0

B
9
8
.1
0
2

C
9
8
.1

B
9
6
.6
1
1

D
4
.1
5
0

B
4
.4
1
7

B
1
0
.7
1
7

B
1
1
.6
0
0

B

G
A

9
5
.5
3
8

C
9
7
.2
7
7

C
9
7
.4
0
3

C
9
6
.1
6
0

E
4
.7
8
4

C
4
.8
8
4

B
1
2
.3
0
0

C
1
2
.4
8
4

C

B
S
A

9
4
.8
0
0

C
D

9
7
.5
7
0

C
9
8
.1
1
7

B
9
7
.1
5
8

C
5
.4
3
4

D
4
.5
8
4

C
1
0
.6
3
4

B
1
1
.5
8
4

B

B
A
T

9
4
.7
4
3

D
9
6
.4
4
4

D
9
5
.8
5
6

D
9
5
.6
9
2

F
5
.5
6
7

D
4
.9
5
0

C
1
2
.6
5
0

C
1
2
.5
6
7

C

R
S

9
3
.1
6
7

E
9
5
.5
6
4

E
9
5
.0
4
3

E
9
5
.2
1
1

G
6
.2
6
7

E
6
.1
1
7

D
1
3
.4
8
4

D
1
3
.5
1
7

D

Jm
et
er

v
5

iB
A
T

9
3
.7
8
6

A
9
2
.2
0
8

A
9
7
.9
5
4

A
9
7
.7
8
4

A
2
2
.2
3
4

A
1
9
.4
8
4

A
1
4
.4
1
7

A
1
3
.7
5
0

A

W
A

9
2
.6
5
3

B
9
3
.9
9
2

B
9
7
.9
3
6

A
9
7
.3
5
2

B
2
2
.7
6
7

B
2
0
.7
9
0

B
1
4
.8
6
7

A
1
5
.2
0
0

B

n
B
A
T

9
1
.9
6
9

B
9
0
.3
7
2

D
9
7
.3
1
5

B
9
6
.9
9
4

C
2
3
.1
1
7

B
2
1
.3
8
4

C
1
5
.7
1
7

B
1
5
.7
0
0

B

G
A

9
0
.9
5
2

C
9
1
.0
3
3

C
9
7
.2
8
3

B
9
6
.5
3
3

D
2
4
.1
3
4

C
2
1
.1
1
7

C
1
5
.9
8
4

B
1
6
.3
3
4

C

B
S
A

8
9
.5
1
7

D
9
0
.0
1
1

D
9
7
.3
5

B
9
7
.0
5
0

B
C

2
5
.3
3
4

D
2
2
.0
8
4

C
1
5
.6
6
7

B
1
5
.8
3
4

B

B
A
T

8
9
.2
8
3

D
8
7
.9
9
3

E
9
6
.5
0
3

C
9
6
.0
3
1

E
2
5
.3
6
7

D
2
3
.2
3
4

D
1
6
.0
3
4

C
1
7
.5
1
7

D

R
S

8
8
.2
0
6

E
8
5
.7
3
9

F
9
5
.9
6
2

D
9
5
.5
6
3

F
2
6
.3
3
4

E
2
5
.3
6
7

E
1
7
.6
5
0

D
1
7
.8
8
4

D

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 10 Coverage loss, fault detection loss and the cost reduction percentage of the algorithms

Program Versions Algorithms Fitness functions wise Coverage Loss, Fault Loss and Cost Reduction Percentages

Coverage Loss (%) Fault Loss (%) Cost Reduction (%)

CLPAPFD CLPAPFDc FLPAPSC FLPAPSCc CRPAPFD CRPAPFDc CRPAPSC CRPAPSCc

Jtopas v1 iBAT 4.290 3.432 27.917 27.500 88.981 89.549 93.320 92.575

WA 4.754 5.331 27.361 25.833 88.914 89.439 93.056 92.324

nBAT 5.401 4.698 25.278 23.610 88.787 88.502 92.836 90.504

GA 5.176 5.373 25.972 22.360 89.270 89.893 91.674 91.905

BSA 5.049 5.443 28.056 24.440 88.878 89.189 91.668 90.502

BAT 4.459 5.176 24.306 19.861 88.626 88.198 91.181 89.098

RS 5.148 4.318 20.560 17.500 88.280 87.503 89.006 87.192

Jtopas v2 iBAT 16.034 17.856 33.222 33.560 88.396 88.806 82.718 81.540

WA 19.610 19.850 34.220 34.000 88.000 87.569 82.328 79.611

nBAT 26.540 30.720 30.560 31.000 87.621 87.733 80.904 79.368

GA 17.870 17.814 31.440 30.440 88.530 88.439 78.977 82.001

BSA 23.800 26.890 33.110 34.000 87.309 86.815 80.491 80.284

BAT 23.450 19.020 31.330 28.780 86.235 86.265 77.540 78.906

RS 27.910 37.360 27.330 26.890 84.739 85.126 76.998 77.558

Jtopas v3 iBAT 16.112 14.280 27.093 25.780 83.624 85.700 89.473 89.715

WA 16.995 17.742 30.543 32.326 83.070 84.614 88.198 88.775

nBAT 17.830 18.040 21.400 22.290 82.962 84.305 83.561 82.256

GA 16.920 17.076 19.920 19.110 83.002 84.963 81.282 87.381

BSA 18.320 18.117 23.915 23.876 82.494 83.793 87.200 87.142

BAT 17.049 16.606 17.600 20.850 81.933 82.181 80.984 81.370

RS 17.221 16.278 19.380 18.488 80.947 81.418 79.059 80.622

Jtopas v4 iBAT 2.152 2.180 35.385 32.077 83.900 83.755 93.402 92.980

WA 3.994 3.319 34.000 32.872 82.795 82.770 92.459 91.235

nBAT 4.740 4.880 29.970 30.128 81.107 81.216 92.181 88.774

GA 3.882 4.430 28.436 25.718 82.042 82.601 91.711 92.131

BSA 3.263 2.869 32.615 29.692 80.202 80.069 92.696 90.735

BAT 3.291 2.855 25.744 27.462 78.756 79.375 90.735 88.385

RS 3.291 3.615 30.385 24.692 76.619 76.742 87.247 87.489

Ant v1 iBAT 0.155 0.197 30.567 29.113 77.550 78.862 95.786 93.108

WA 0.338 0.239 29.858 29.255 76.603 77.794 94.208 91.269

nBAT 0.577 0.492 30.887 27.695 76.512 77.109 94.555 88.777

GA 0.295 0.309 29.113 24.787 76.862 77.356 92.671 92.192

BSA 0.535 0.422 28.156 27.624 74.868 75.126 92.792 91.310

BAT 0.169 0.324 27.837 24.362 74.546 74.269 91.490 88.109

RS 0.338 0.394 25.993 24.787 73.408 73.363 88.555 87.547

Ant v2 iBAT 1.406 1.758 33.627 32.000 80.993 81.219 94.080 92.512

WA 2.574 2.447 32.431 29.882 78.549 79.281 93.950 90.809

nBAT 4.051 3.812 32.765 27.725 78.344 77.626 93.634 90.143

GA 1.575 1.786 31.255 25.667 79.123 77.909 93.348 93.311

BSA 3.615 4.712 32.314 29.490 75.297 78.358 93.987 92.165

BAT 2.166 1.828 29.765 23.784 78.260 74.804 90.969 88.535

RS 3.629 3.826 24.882 28.431 71.730 72.550 87.487 88.238

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 10 (continued)

Program Versions Algorithms Fitness functions wise Coverage Loss, Fault Loss and Cost Reduction Percentages

Coverage Loss (%) Fault Loss (%) Cost Reduction (%)

CLPAPFD CLPAPFDc FLPAPSC FLPAPSCc CRPAPFD CRPAPFDc CRPAPSC CRPAPSCc

Ant v3 iBAT 0.633 1.308 42.222 36.470 80.467 80.708 93.194 89.245

WA 1.238 1.308 40.350 37.890 79.878 78.482 92.833 91.540

nBAT 1.660 1.702 38.530 35.093 78.768 79.193 91.896 86.754

GA 1.322 1.617 34.490 26.450 80.513 80.202 91.746 92.473

BSA 1.224 1.238 35.880 34.167 77.628 77.801 91.655 88.672

BAT 1.027 0.872 30.080 29.690 76.856 77.166 89.330 86.637

RS 1.252 1.055 31.330 30.910 73.926 72.841 85.953 85.940

Ant v4 iBAT 15.280 16.199 0.000 0.000 95.713 95.839 77.559 77.008

WA 17.397 16.985 0.000 0.000 95.569 95.581 76.811 76.266

nBAT 17.844 17.424 0.000 0.000 95.454 95.326 75.782 76.051

GA 18.997 18.351 0.000 0.000 95.536 95.756 74.537 77.451

BSA 18.965 18.825 0.000 0.000 95.392 95.634 76.361 74.776

BAT 16.514 16.322 0.000 0.000 94.679 95.166 73.874 74.416

RS 18.558 17.914 0.000 0.000 93.449 93.997 73.358 73.308

Ant v5 iBAT 10.850 13.111 0.000 0.000 97.778 95.933 77.545 77.786

WA 12.351 12.425 0.000 0.000 96.364 95.586 76.537 75.031

nBAT 14.035 13.317 0.000 0.000 96.175 95.220 74.681 76.663

GA 12.488 12.546 0.000 0.000 96.265 95.544 75.672 76.729

BSA 13.918 13.845 0.000 0.000 95.700 94.679 75.372 74.429

BAT 12.440 13.328 0.000 0.000 95.318 94.514 73.835 73.844

RS 14.206 14.440 0.000 0.000 94.244 94.098 73.266 72.479

Ant v6 iBAT 11.186 10.976 25.476 28.386 64.633 63.994 71.735 72.511

WA 13.378 12.533 23.730 25.053 60.500 60.872 71.717 71.783

nBAT 13.744 13.967 23.122 22.434 59.660 59.575 70.148 71.210

GA 12.652 12.978 23.492 25.952 60.363 59.444 69.990 72.125

BSA 13.134 13.422 20.714 20.926 59.358 59.423 69.126 69.006

BAT 11.391 11.141 20.899 20.767 56.315 55.944 68.849 68.962

RS 11.555 11.680 22.460 23.413 55.385 53.805 66.806 66.290

Ant v7 iBAT 3.662 3.315 18.619 18.690 62.250 68.426 69.894 70.717

WA 4.808 4.400 19.571 20.238 62.156 64.380 68.965 69.805

nBAT 4.421 5.327 16.024 16.548 61.174 65.298 65.314 65.891

GA 4.388 4.835 20.024 19.167 61.683 64.913 67.978 69.871

BSA 5.104 4.960 17.881 18.333 60.326 64.418 67.969 69.376

BAT 4.275 4.408 15.190 15.524 60.563 61.487 63.826 65.816

RS 4.316 4.796 15.929 16.429 59.196 58.264 62.620 63.620

Jmeter v1 iBAT 0.197 0.197 32.292 31.875 83.249 82.941 96.986 96.309

WA 0.155 0.141 32.381 31.339 82.559 82.294 96.834 96.110

nBAT 0.324 0.127 32.381 30.089 81.884 80.430 96.149 93.523

GA 0.267 0.253 27.649 26.786 82.623 82.091 95.023 96.360

BSA 0.183 0.141 33.333 32.202 81.437 81.198 96.569 95.684

BAT 0.169 0.211 31.488 28.065 81.196 79.887 93.146 93.287

RS 0.338 0.099 27.768 29.732 80.823 79.847 91.970 91.335

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

algorithms and test the same on more real-world case

studies for better validation.

Funding The University Grants Commission, India supports this

work under the JRF-NET scheme with reference number 3469/(NET-

DEC. 2014).

Data availability Enquiries about data availability should be directed

to the authors.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

References

Ahmed BS (2016) Test case minimization approach using fault

detection and combinatorial optimization techniques for config-

uration-aware structural testing. Eng Sci Technol Int J

19(2):737–753

Bajaj A, Abraham A (2021) Prioritizing and minimizing test cases

using dragonfly algorithms. Int J Comput Inf Syst Ind Manage

Appl 13:062–071

Bajaj A, Sangwan OP (2018) A Survey on Regression Testing using

Nature-Inspired Approaches. In: Proceedings of 4th International

Conference on Computing, Communication and Automation

(ICCCA), IEEE, pp 1–5

Bajaj A, Sangwan OP (2019a) A systematic literature review of test

case prioritization using genetic algorithms. IEEE Access

7:126355–126375

Bajaj A, Sangwan OP (2019b) Study the impact of parameter settings

and operators role for genetic algorithm based test case

prioritization. In: Proceedings of International Conference on

Sustainable Computing in Science, Technology and

Table 10 (continued)

Program Versions Algorithms Fitness functions wise Coverage Loss, Fault Loss and Cost Reduction Percentages

Coverage Loss (%) Fault Loss (%) Cost Reduction (%)

CLPAPFD CLPAPFDc FLPAPSC FLPAPSCc CRPAPFD CRPAPFDc CRPAPSC CRPAPSCc

Jmeter v2 iBAT 1.316 1.369 37.390 38.388 80.841 80.333 96.524 95.250

WA 1.210 1.168 37.430 36.765 80.163 80.127 96.024 94.798

nBAT 0.902 0.945 35.090 33.344 78.949 77.585 94.987 94.121

GA 1.200 1.136 35.420 30.088 80.130 79.323 94.199 96.830

BSA 1.263 1.157 35.161 36.140 78.855 79.741 95.183 95.997

BAT 1.115 1.083 33.660 31.480 76.803 76.635 92.348 92.660

RS 1.285 1.115 33.040 35.669 76.777 75.135 92.339 92.280

Jmeter v3 iBAT 0.183 0.230 35.240 33.310 72.810 73.216 95.256 92.457

WA 0.210 0.216 34.310 34.707 72.552 72.991 94.280 95.271

nBAT 0.223 0.196 33.951 31.836 72.392 71.345 93.047 91.570

GA 0.216 0.210 30.350 31.227 72.513 72.025 92.495 95.303

BSA 0.216 0.216 35.390 35.833 70.998 72.362 93.985 93.728

BAT 0.210 0.230 29.655 29.367 69.904 70.320 91.482 91.156

RS 0.210 0.169 33.565 31.890 69.341 69.925 91.380 90.062

Jmeter v4 iBAT 19.973 18.185 16.220 15.110 95.767 95.831 90.314 87.968

WA 17.487 19.077 21.480 23.260 95.814 95.460 89.911 88.167

nBAT 18.929 20.646 14.590 18.070 95.512 95.080 89.045 87.243

GA 19.518 19.106 14.960 12.440 95.928 95.892 87.404 88.135

BSA 18.734 18.480 24.963 21.850 95.209 95.172 89.000 88.101

BAT 18.607 18.090 16.740 15.780 94.214 95.017 87.138 87.072

RS 19.534 19.524 16.220 13.630 94.045 93.747 86.713 86.393

Jmeter v5 iBAT 5.262 5.030 31.240 36.200 77.746 79.157 85.611 84.577

WA 5.407 5.865 33.180 32.210 77.950 81.307 85.187 84.945

nBAT 4.683 6.023 30.090 28.786 77.103 79.614 84.497 83.776

GA 4.921 5.243 28.764 26.336 77.943 79.981 83.891 85.011

BSA 5.149 6.556 29.316 29.030 76.853 78.947 84.267 84.180

BAT 4.544 4.775 29.290 27.420 76.766 77.303 83.882 82.460

RS 4.782 5.582 29.757 28.565 76.080 75.463 83.724 81.131

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Management, Available at SSRN: https://ssrn.com/abstract=

3356318 or https://doi.org/10.2139/ssrn.3356318, Elsevier,

pp 1564–1569

Bajaj A, Sangwan OP (2020) Nature-inspired approaches to test suite

minimization for regression testing. In: Computational Intelli-

gence Techniques and Their Applications to Software Engineer-

ing Problems CRC Press, pp 99–110

Bajaj A, Sangwan OP (2021a) Discrete and combinatorial gravita-

tional search algorithms for test case prioritization and mini-

mization. Int J Inf Technol 13:817–823

Bajaj A, Sangwan OP (2021b) Discrete Cuckoo search algorithms for

test case prioritization. Appl Soft Comput. https://doi.org/10.

1016/j.asoc.2021.107584

Bajaj A, Sangwan OP (2021c) Test case prioritization using bat

algorithm. Recent Adv Comput Sci Commun. https://doi.org/10.

2174/2213275912666190226154344

Bajaj A, Sangwan OP (2021d) Tri-level regression testing using

nature-inspired algorithms. Innovations Syst Softw Eng

17(1):1–16

Bharathi M (2022) Hybrid particle swarm and ranked firefly

metaheuristic optimization-based software test case minimiza-

tion. Int J Appl Metaheuristic Comput (IJAMC) 13(1):1–20

Chouhan VK, Khan SH, Hajiaghaei-Keshteli M, Subramanian S

(2020) Multi-facility-based improved closed-loop supply chain

network for handling uncertain demands. Soft Comput

24:7125–7147. https://doi.org/10.1007/s00500-020-04868-x

Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-

inspired algorithm for engineering problems. Knowl-Based Syst

159:20–50

Do H, Mirarab S, Tahvildari L, Rothermel G (2010) The effects of

time constraints on test case prioritization: a series of controlled

experiments. IEEE Trans Software Eng 36(5):593–617

Eghbali S, Tahvildari L (2016) Test case prioritization using

lexicographical ordering. IEEE Trans Softw Eng

42(12):1178–1195

Elbaum S, Malishevsky AG, Rothermel G (2002) Test case priori-

tization: a family of empirical studies. IEEE Trans Softw Eng

28(2):159–182

Farasat A, Menhaj MB, Mansouri T, Moghadam MRS (2010) ARO:

A new model-free optimization algorithm inspired from asexual

reproduction. Appl Soft Comput 10(4):1284–1292

Fister Jr I, Yang XS, Fister I, Brest J, Fister D, (2013) A brief review

of nature-inspired algorithms for optimization. arXiv preprint
arXiv, pp 1307.4186.

Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci

5(2):224–232

Gautham S, Rajamohan J (2016) Economic load dispatch using novel

bat algorithm. In: 2016 IEEE 1st International Conference on

Power Electronics, Intelligent Control and Energy Systems

(ICPEICES), IEEE, pp 1–4

Hashim NL, Dawood YS (2018) Test case minimization applying

firefly algorithm. Int J Adv Sci Eng Inform Technol

8(4–2):1777–1783

Huang X, Li C, Pu Y, He B (2019) Gaussian quantum bat algorithm

with direction of mean best position for numerical function

optimization. Comput Intell Neurosci 2019:1–18

Kaur A, Agrawal AP (2017) A comparative study of bat and cuckoo

search algorithm for regression test case selection. In: 2017 7th

International Conference on Cloud Computing, Data Science &

Engineering-Confluence, IEEE, pp 164–170

Khatibsyarbini M, Isa MA, Jawawi DN, Hamed HNA, Suffian MDM

(2019) Test case prioritization using firefly algorithm for

software testing. IEEE Access 7:132360–132373

Li Z, Harman M, Hierons RM (2007) Search algorithms for

regression test case prioritization. IEEE Trans Softw Eng

33(4):225–237

Mahdi FP, Vasant P, Abdullah-Al-Wadud M, Kallimani V, Watada J

(2019) Quantum-behaved bat algorithm for many-objective

combined economic emission dispatch problem using cubic

criterion function. Neural Comput Appl 31(10):5857–5869

Malishevsky AG, Ruthruff JR, Rothermel G, Elbaum S (2006) Cost-

cognizant test case prioritization. Technical report TR-UNL-

CSE-2006–0004, University of Nebraska-Lincoln, pp 97–106

Mann M, Tomar P, Sangwan OP (2018) Bio-inspired metaheuristics:

evolving and prioritizing software test data. Appl Intell

48(3):687–702

Mansouri T, Farasat A, Menhaj MB, Moghadam MRS (2011) ARO: a

new model free optimization algorithm for real time applications

inspired by the asexual reproduction. Expert Syst Appl

38(5):4866–4874

Marchetto A, Islam MM, Asghar W, Susi A, Scanniello G (2015) A

multi-objective technique to prioritize test cases. IEEE Trans

Softw Eng 42(10):918–940

Mei H, Hao D, Zhang L, Zhang L, Zhou J, Rothermel G (2012) A

static approach to prioritizing junit test cases. IEEE Trans

Software Eng 38(6):1258–1275

Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired

algorithm: chicken swarm optimization. In International confer-

ence in swarm intelligence, Springer, Cham, pp 86–94

Meng XB, Gao XZ, Liu Y, Zhang H (2015) A novel bat algorithm

with habitat selection and Doppler Effect in echoes for

optimization. Expert Syst Appl 42(17–18):6350–6364

Meng X, Gao X, Lu L, Liu Y, Zhang H (2016) A new bio-inspired

optimisation algorithm: Bird Swarm Algorithm. J Exp Theor

Artif Intell 28(4):673–687. https://doi.org/10.1080/0952813X.

2015.1042530

Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv

Eng Softw 95:51–67

Mohapatra SK, Prasad S (2015) Test case reduction using ant colony

optimization for object oriented program. Int J Electr Comput

Eng 5(6):2088–8708

Nawi NM, Rehman MZ, Khan A, Chiroma H, Herawan T (2016) A

modified bat algorithm based on Gaussian distribution for

solving optimization problem. J Comput Theor Nanosci

13(1):706–714

Osaba E, Yang XS, Diaz F, Lopez-Garcia P, Carballedo R (2016) An

improved discrete bat algorithm for symmetric and asymmetric

traveling salesman problems. Eng Appl Artif Intell 48:59–71

Osaba E, Yang XS, Fister I Jr, Del Ser J, Lopez-Garcia P, Vazquez-

Pardavila AJ (2019) A discrete and improved bat algorithm for

solving a medical goods distribution problem with pharmaco-

logical waste collection. Swarm Evol Comput 44:273–286

Öztürk MM (2018) A bat-inspired algorithm for prioritizing test

cases. Vietnam J Computer Sci 5(2018):45–57

Riffi ME, Saji Y, Barkatou M (2017) Incorporating a modified

uniform crossover and 2-exchange neighborhood mechanism in

a discrete bat algorithm to solve the quadratic assignment

problem. Egypt Inform J 18(3):221–232

Rothermel G, Untch RH, Chu C, Harrold MJ, (1999) Test case

prioritization: An empirical study. In: Proceedings IEEE inter-

national conference on software maintenance-1999

(ICSM’99).’Software Maintenance for Business Change’(Cat.

No. 99CB36360). IEEE, pp 179–188.

Saji Y, Riffi ME (2016) A novel discrete bat algorithm for solving the

travelling salesman problem. Neural Comput Appl

27(7):1853–1866

Sugave SR, Patil SH, Reddy BE (2018) DIV-TBAT algorithm for test

suite reduction in software testing. IET Softw 12(3):271–279

Tang J, Zhang R, Yao Y, Zhao Z, Wang P, Li H, Yuan J (2018)

Maximizing the spread of influence via the collective intelli-

gence of discrete bat algorithm. Knowl-Based Syst 160:88–103

A. Bajaj et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Yang XS (2010) A new metaheuristic bat-inspired algorithm. Nature

inspired cooperative strategies for optimization. Springer, Berlin,

Heidelberg, pp 65–74

Yang XS, He X (2013) Bat algorithm: literature review and

applications. Int J Bio-Inspired Comput 5(3):141–149

Yoo S, Harman M (2012) regression testing minimization, selection

and prioritization: a survey. Softw Test Verif Reliab

22(2):67–120

Zhao D, He Y (2016) A novel binary bat algorithm with chaos and

Doppler Effect in echoes for analog fault diagnosis. Analog

Integr Circ Sig Process 87(3):437–450

Zhou Y, Luo Q, Xie J, Zheng H (2016) A hybrid bat algorithm with

path relinking for the capacitated vehicle routing problem. In:

Metaheuristics and Optimization in Civil Engineering, Springer,

Cham, pp 255–276

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Improved novel bat algorithm for test case prioritization and minimization

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

