
Citation: Bajaj, A.; Abraham, A.;

Ratnoo S. and Gabralla, L.A. Test Case

Prioritization, Selection and

Minimization Using Improved

Quantum-behaved Particle Swarm

Optimization. Sensors 2022, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Sensors for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Test Case Prioritization, Selection, and Reduction Using
Improved Quantum-behaved Particle Swarm Optimization
Anu Bajaj 1* , Ajith Abraham 1 , Saroj Ratnoo 2 and Lubna Abdelkareim Gabralla 3

1 Machine Intelligence Research Labs (MIR Labs), Auburn, WA, USA
2 Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology,

Hisar, Haryana, India
3 Department of Computer Science and Information Technology, College of Applied, Princess Nourah bint

Abdulrahman University, Riyadh, Saudi Arabia
* Correspondence: anu.bajaj@mirlabs.org

Abstract: Emerging area of IoT and sensor networks brings lots of software applications on a 1

daily basis. To keep up with the ever-changing expectations of clients and the competitive market, 2

the software must be updated. The changes may cause unintended consequences, necessitating 3

retesting, i.e., regression testing, before being released out. The efficiency and efficacy of regression 4

testing techniques can be improved with the use of optimization approaches. This paper proposes 5

an improved quantum behave particle swarm optimization approach for regression testing. The 6

algorithm is improved by employing a fix-up mechanism to perform perturbation for combinatorial 7

TCP problem. Second, the dynamic contraction-expansion coefficient is used to accelerate the 8

convergence. It is followed by an adaptive test case selection strategy to choose the modification- 9

revealing test cases. Finally, the superfluous test cases are removed. Furthermore, the algorithm’s 10

robustness is analyzed for fault as well as statement coverage. The empirical results reveal that the 11

proposed algorithm performs better than the genetic algorithm, bat algorithm, grey wolf optimization, 12

particle swarm optimization and its variants for prioritizing test cases. The findings show that 13

inclusivity, test selection percentage and cost reduction percentages are higher in case of fault 14

coverage compared to statement coverage but at the cost of high fault detection loss (approx. 7%) at 15

test case reduction stage. 16

Keywords: regression testing; nature-inspired algorithms; test case prioritization; test case reduction; 17

test case selection; particle swarm optimization; QPSO 18

1. Introduction 19

With the advent of healthcare applications and tremendous amount of information 20

processing there is a need for fault handling [1]. Therefore, software testing is becoming 21

essential for safety critical systems, e.g., IoT devices and the sensor networks are connected 22

with it in one or other way and failure may lead to loss of money and life. In other 23

words, it is an important part of the software development lifecycle since it ensures that 24

the software is of high quality. It accounts for around half of the entire cost [2]. Testing 25

during the evolution and maintenance phases becomes more important to assure the 26

software’s dependability. All of the test cases must be re-implemented to guarantee that 27

the quality is not affected; this is known as regression testing [3]. In other words, software 28

is continually changing to sustain in a competitive market by updating and maintaining to 29

satisfy changing needs. Complete retesting accounts for around eighty percent of the entire 30

maintenance cost [4]. On the other hand, it is difficult to test each upgraded version of 31

software nowadays. Software becomes more complex with frequent upgrades, the amount 32

of time and effort required for regression testing may increase. Test case reduction, selection, 33

and priority strategies can help solve these bottleneck problems [5]. 34

Version May 16, 2022 submitted to Sensors https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0001-8563-6611
https://orcid.org/0000-0002-0169-6738
https://www.mdpi.com/journal/sensors

Version May 16, 2022 submitted to Sensors 2 of 19

1. Test Case Prioritization (TCP) 35

It ranks the test cases based on some predefined goals, such as maximum code 36

coverage, fault coverage, and requirements coverage. It finds Ti ∈ PT such that 37

(∀Tj) (Tj ∈ PT) (Tj ̸= Ti) [f (Ti) ≥ f (Tj)]; for a given test suite, T, its permutations 38

set PT, and f denotes a function from PT to real numbers [2]. In other words, it 39

claims to identify Ti from PT with a value of f (Ti) larger than any other test case (Tj) 40

in PT. The coverage rate is represented by f that calculates the performance of the 41

permutation series in terms of real number. 42

2. Test Case Selection (TCS) 43

It chooses essential test cases that are linked with the update of the software. In other 44

words, it finds a subset of T, Ti for testing the modified version of P, Pi. [5]. 45

3. Test Case Reduction (TCR) 46

It focuses on removing redundant test cases by finding a representative test cases set, 47

Ti, from T that satisfies test requirements set R r1, . . . , rn, for the defined coverage of 48

the program [2]. 49

TCP is the most commonly used out of these three strategies by researchers because 50

it doesn’t eliminate or pick test cases. Instead, it simply rearranges them such that the 51

most critical ones are checked first. The significance of these test cases is determined by 52

a number of factors. It might be code coverage, fault coverage, requirement priority, or 53

critical components [3]. TCS and TCR, on the other hand, may leave out certain crucial 54

test cases that can be useful for upcoming versions of the product [2]. On the other side, 55

finding the best order for the test cases, as well as the best way to limit or choose the test 56

cases makes it NP-hard problem [6]. 57

Optimization strategies can be used to successfully overcome these issues. The nature- 58

inspired algorithms have been successfully employed to solve difficult optimization prob- 59

lems in many domains [7]. Alternatively, they can improve the cost-effectiveness of re- 60

gression testing. Nature-inspired algorithms appeal to the researchers because of their 61

basic structure and ease of usage. The methods are theoretically built by modelling natural 62

events [3]. These algorithms are broadly classified into three classes: biology-inspired, 63

physics/chemistry inspired and social-phenomena inspired algorithms. These techniques 64

have also been applied in regression testing [2]. The most often used algorithms are evo- 65

lutionary algorithms and swarm intelligence-based algorithms from the biology-inspired 66

family of nature-inspired approaches [8]. 67

PSO algorithms have been used by researchers for solving regression testing problems. 68

We have also used similar approaches in our previous works. For Example, Dragonfly 69

was hybridized with PSO for prioritizing the test cases using fault coverage information. 70

It reduced the test suite to 87-96% which thereby removed some of the critical test cases. 71

Therefore, tri-level regression testing was performed by layering the test case selection in 72

between the test case prioritization and reduction. The promising results of the nature- 73

inspired algorithms on statement coverage motivated us to validate the results on fault 74

coverage as well. As a result, this work analyses the effect of fault and statement coverage 75

criteria on the performance of the technique. It also suggests a swarm-intelligence based 76

algorithm, Quantum-behaved particle swarm optimization (QPSO) and its improved 77

version, IQPSO for tri-level regression testing to improve the quality of results. The main 78

contributions of this research are: 79

• Improved QPSO algorithm to solve the TCP for fault and statement coverage criteria. 80

• Extended algorithm for selecting the modification revealing test cases using historical 81

information and further reduction of the test suite size. 82

• Performance analysis of the algorithms using different testing goals, i.e., code coverage 83

and fault coverage. 84

• Verified robustness of the proposed algorithm against Genetic Algorithm (GA), Bat 85

Algorithm (BAT), Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), 86

Adaptive PSO (AdPSO) and hybrid of PSO with Gravitational Search Algorithm 87

(PSOGSA) and Dragonfly Algorithm (DAPSO). 88

Version May 16, 2022 submitted to Sensors 3 of 19

Alternatively, the nature-inspired algorithms prioritize test cases based on the most 89

extensively used criteria: statement and fault coverage. The modification revealing test 90

cases are included with the help of adaptive test case selection method. It takes into account 91

test case history and picks failed test cases based on probabilistic potentials. Since, test 92

selection percentage is large at the expense of high inclusiveness. So, the TCR is introduced 93

to minimize test suite size by removing duplicate test cases. The empirical results show 94

that the proposed technique works for both fault and statement coverage. Inclusivity, test 95

selection percentage and cost reduction percentages are higher in case of fault coverage 96

compared to statement coverage but at the cost of slight high fault detection loss at test 97

case reduction stage. 98

The organization of the paper is structured as follows: Section 2 describes the research 99

work done in the application of PSO algorithms for solving regression testing problems. 100

In succession, Section 3 presents the working mechanism of the basic PSO and QPSO. 101

The proposed algorithms are discussed in the Section 4. Sections 5 and 6 present the 102

experimental setup and results analysis. It is concluded in Section 7. 103

2. Literature Review 104

Review of literature in the applications of nature-inspired algorithms for regression 105

testing is presented in this section. For Example, Li et al. [4] compared search-based methods 106

to traditional algorithms. It was discovered that the search space is better explored with 107

GA. It prompted more research into the use of nature-inspired algorithms. For example, 108

Zhang et al. [9] used a distance-based and index-based implementation of ACO to prioritize 109

test cases, and the results were superior to GA, PSO, and RS. Using the Cuckoo Search 110

Algorithm (CSA), a new fixup mechanism for permutation encoding was developed to 111

address the TCP problem [3]. CSA was also used to reduce the test suite for configuration- 112

aware software testing [10]. 113

Mohapatra and Prasad [11] have employed ant colony optimization on Java programs, 114

and analyzed the performance for reduced suite and complexity to traditional techniques. 115

The quantum-inspired ACO approach for test suite reduction was developed by Zhang et 116

al. [12]. The suggested method outperformed previous ACOs in terms of % decrease in 117

size. NSGA-II was employed by Mondal et al. [13] for TCS by taking the test suite variety 118

and code coverage as a fitness metric. With a maximum time limitation of 20%, it was 119

discovered that diversity enhanced the defect detection rate by up to 16 percent. 120

Several researchers have employed PSO, such as Khatibsyarbini et al. [14], who used 121

string distances to arrange the test instances and validated on the real-world TSL dataset. 122

To choose test cases based on redundancy, binary constraint PSO and its hybrid variants 123

with local search algorithms were developed [15]. PSO was implemented with local search 124

to select test cases having goals to increase branch coverage and lower costs [16]. Because of 125

the positive findings, PSO was also combined with harmony search, which performed better 126

than NSGA-II [17]. Correia [18] developed a test suite diversity diagnosability measure 127

and results were improved by applying local search algorithms with PSO to maximise 128

requirement coverage while lowering associated costs. 129

Test case reduction was also implemented with TCP by hybridizing the PSO with 130

Dragonfly algorithm. Observations suggested that hybrid algorithms outperformed other 131

search algorithms [6]. Tri level regression tesing was proposed to prioritize, select and 132

minimize the test cases based on statement coverage. It was observed that hybrid of PSO 133

with gravitational search algorithm (PSOGSA) outperformed GA, PSO, and GSA [5]. The 134

test suite was minimized using hybrid PSO and firefly algorithm considering the fault 135

coverage [19]. Modified condition decision coverage criteria was employed as fitness 136

measures in PSO for prioritizing the test cases [20]. Deneke et al., [21] also proposed PSO 137

algorithm for reducing the test suite based on requirement coverage and cost. Samad et al., 138

[22] proposed multi-objective PSO for optimizing the code, fault coverage with cost. Table 139

1 briefs the application of PSO algorithms for regression testing techniques along with their 140

optimization criteria. 141

Version May 16, 2022 submitted to Sensors 4 of 19

Table 1. Summary of Nature-Inspired Algorithms used in regression Testing

Author (Year) Technique Nature-
Inspired
Algorithms

Criteria

De Souza et al., 2013, 2014 TCS Binary PSO Requirement Coverage with
Time

De Souza et al., 2015 TCS Binary PSO-
HS

Branch Requirement Coverage
with Cost

Khatibsyarbini et al., 2018 TCP PSO String Distances
Agrawal and Kaur 2018 TCS PSO Fault Coverage and Time
Correia, 2019 TCS PSO-LS Requirement Coverage
Nayak and Ray 2019 TCP PSO Modified Condition Decision

Coverage
Samad et al., 2021 TCP MOPSO Code and Fault Coverage with

Cost
Bajaj and Abraham, 2021 TCP and TCR DAPSO Fault Coverage
Bajaj and Sangwan, 2021 TCP, TCS, TCR PSOGSA Statement Coverage
Bharathi, 2022 TCR PSO-FFA Fault Coverage
Deneke et al., 2022 TCR PSO Requirement Coverage and cost

PSO algorithms become one of the state-of-the-art algorithms and show promising 142

results in various domains, e.g., reduction of CO2 emissions in air baggage systems [24]. 143

The original PSO, on the other hand, had issues such as getting trapped in local optima and 144

premature convergence [25]. According to the findings, upgraded and hybrid versions of 145

PSO outperformed PSO for complicated systems [15]. One of such algorithm is Quantum- 146

behaved PSO (QPSO). It is based on quantum mechanics in which particles can travel 147

through a large search space for global convergence [26]. The method has shown good 148

results in a variety of applications like cancer classification [27], feature extraction ([28]-[30]) 149

and constrained engineering problems [31] and others [32]. However, it has not been 150

investigated in the TCP domain, which might be due to the fact that it was originally 151

designed for continuous problems. So, to shift infeasible solutions into feasible ones, we 152

suggested a discrete QPSO method based on a adaptation strategy. It does, however, have 153

significant drawbacks, such as early convergence. As a result, we have improved it with 154

dynamic contraction-expansion coefficient to speed up the performance in the last iterations 155

[31]. 156

Besides this, we have extended the algorithm for selecting the modification-revealing 157

(MR) test cases from the current best solution of TCP. It is occasionally necessary to reduce 158

the test suite by reducing redundancy because of time limits, thus we employed the TCR 159

approach in the end. Our key focus in this research is on performing regression testing 160

in three steps, including TCP, TCS, and TCR process for fault and statement coverage. 161

Alternatively, the effect of different testing criteria on the overall performance of the 162

algorithms is analyzed. Observations suggest that the tri-level regression technique is 163

effective for both coverage criteria. The proposed algorithm IQPSO is statistically not 164

significant than PSOGSA, however, its variance and mean fitness values are better. 165

3. Preliminaries 166

This Section briefly explains the working mechanism of Particle Swarm Optimization 167

(PSO) and Quantum behaved PSO. 168

3.1. Particle Swarm Optimization 169

PSO is inspired by particle behaviour such as flocking, swarming, and herding. Each
particle changes its flight based on self or companion’s previous flight experience. Each
particle, based on its own experience, is aware of the location of food, which is referred to as
personal best position (P). Simultaneously, the particle has knowledge of the swarm’s best
discovered position, global best position (G). This phenomenon is reproduced in order to
solve real-world issues. In other words, the swarm is made up of particles that fly randomly

Version May 16, 2022 submitted to Sensors 5 of 19

in the solution space with velocity vi at position xi and change positions based on personal
experience, social behaviour, and cognitive behaviour ([33]). The position and velocity of
each particle i at tth generation are defined mathematically as:

vi(t + 1) = wvi + c1r1(Pi(t)− xi(t)) + c2r2(G(t)− xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

w is the inertia weight used to regulate the impact of prior velocity; c1 and c2 are 170

the constants used to adjust the attractiveness speeds among these social and cognitive 171

elements; and r1 and r2 are uniform random values in the range [0, 1]. 172

3.2. Quantum Behaved PSO 173

A more robust variant of PSO called QPSO is created [25] as PSO cannot ensure global
convergence [32]. It determines the quantum-behaved particles’ route by assuming that N
particles with delta potential and specified energy are well-centered in each dimension of
the n-dimensional Hilbert search space. The jth component of the particle’s position at tth

iteration is given by the Monte Carlo technique:

xij(t + 1) = aij(t)±
Lij(t)

2
ln

(
1

uij(t)

)
(3)

Lij(t) = 2θ|meanj(t)− xij(t)| and meanj(t) =
1
N

N

∑
i

xij(t) (4)

Where uij(t) is a uniformly distributed value between 0 and 1, aij(t) is the individual’s
local attractor, and theta is the contraction–expansion coefficient. As a result, the particle’s
location in the QPSO algorithm may be calculated as follows:

xi(t + 1) = { aij(t)− θ|Mbestj(t)− xij(t)| ln(1/uij(t)) : r(0, 1) > 0.5
aij(t) + θ|Mbestj(t)− xij(t)| ln(1/uij(t)) : otherwise

(5)

In each generation, the particles travel around the local attractor aij(t), which is formed
with the P and G optimal locations as follows:

aij(t) = ϕij(t)Pij(t) + (1 − ϕij(t))Gj(t), ϕij(t) ∼ (0, 1) (6)

The next generation’s particle position distribution is computed using the mean Mbest
of the P best locations of the particles.

Mbestj(t) =
1
N

N

∑
i

Pij(t) (7)

The fundamental difference between the PSO and the QPSO is twofold: 1) a large
search space owing to the exponential distribution of the particles; and 2) The particle’s
distance from its partners is considered, whereas in PSO, particles move freely to converge
to the global best. Another benefit is that it only has one parameter, theta, which must be
managed for convergence and whose value is reduced linearly using the equation:

θ = (θmax − θmin) ∗ (Maxit − t)/Maxit + θmin (8)

Because it is simple to use and has been tried and tested on a variety of applications, [32]. 174

As a result, we sought to apply the QPSO method to a discrete optimization problem in 175

this study and compare its performance to that of state-of-the-art techniques. 176

Version May 16, 2022 submitted to Sensors 6 of 19

4. Proposed Work 177

This section explains an improved QPSO algorithm. It is described in three stages. 178

First, it incorporates the asexual reproduction operator into the population (ARO). Second, 179

adaptive contraction-expansion coefficient is used to alleviate the issue of stagnation. 180

Finally, the adaptive TCS method is then used to choose MR test cases. It is followed by 181

the TCR technique for minimizing the size of the test suite as follows: 182

4.1. Population Update [3] 183

Appropriate mapping increases the algorithm’s speed and efficacy, so, the real num- 184

bers are being updated to permutation series by applying the asexual reproduction method. 185

The fix-up process creates a link between real numbers and test case sequences such that 186

the current solution acquires the parent solution’s properties [3]. When forming the bud 187

from the parent, it keeps the offspring’s possible values (larva). Alternatively, the algorithm 188

recalculates and rounds the output to natural values. Don’t care conditions (*) are used to 189

replace out of range and identical particles. 190

4.2. Dynamic Contraction-Expansion Coefficient (θ) [34] 191

The value of the contraction-expansion coefficient θ in QPSO indicates the population’s
search radius. The bigger the value, the wider the particle search range; on the other hand,
the smaller value narrow the search range. The evolution velocity coefficient α is introduced
to adaptively alter θ:

α =
G f it(t)

G f it(t − 1)
(9)

α ∈ (0, 1) since the global optimal solution is always replaced by the solution with superior
fitness as the iteration advances, specifically, G f it(t) >> G f it(t − 1) > 0. The fitness value
of global best varies significantly when the value of is α tiny. The evolution is speeding
up at small α due to significant changes in G f it as the particles are beyond ideal location.
As a result, θ needs to be increased for ensuring a quick optimization. The evolution gets
slow down with large α and the particle search range is reduced, so is the θ for better
optimization. The solution converges and the evolution stops at α = 1. So (8) is replaced
with:

θ = θmax − αθmin (10)

here θmin and θmax are the minimum and maximum values and α is evolution velocity 192

coefficient’s weight. Also, the difference between P(t)− G(t) approaches to zero as the 193

iterations proceed, so this value is replaced with the mutation operator xrj(t)− xsj(t), where 194

r and s are the particles selected randomly from the population [34]. It is mathematically 195

formulated as: 196

xij(t) = ϕij(t)(xrj(t)− xsj(t)) + (1 − ϕij(t))Gj(t)± θ|Mbestj(t)− xij(t)| ln(1/uij(t)) (11)

4.3. Adaptive Test Case Selection [5] 197

The test case selection approach was proposed [5] that takes into account the state- 198

ments they cover in the modified version and the impact of failed test cases. It’s a dynamic 199

algorithm that picks test cases depending on their pass or fail information after each itera- 200

tion of TCP step. During the selection process, it requires exact input information, which is 201

quite important in uncovering errors. It’s called adaptive as it revises the fault detection 202

capabilities (P(t)) of unallocated test cases and chooses test cases based on existing and 203

earlier historical data. The technique is described as: 204

Pot(s) = {
Pot′(s) : s is not run by t′

Pot′(s) ∗ q : s is run by t′ and t′ is f ailed
Pot′(s) ∗ p : s is run by t′ and t′ is passed

(12)

Version May 16, 2022 submitted to Sensors 7 of 19

Figure 1. ATCS Algorithm

Before picking the test case t′, Pot(s) is the chance of any statement s having additional
errors. p and q are constants with values between 0 and 1. such that p + q = 1. It measures
the influence of pass or fail status on the Pot(s) of any statement s. The values of p and q to
0.15 and 0.85, and q is set high since the goal is to acquire a larger proportion of failed test
cases than passed ones. It also uses (13) to update the P(t) of the unallocated test cases t:

P(t) = ∑
s is run by t

Pot(s) (13)

The test case t with the highest P(t) is chosen, and other test cases’ potentials are 205

updated using the chosen test case’s state. P(t) of unassigned test cases t is also updated 206

depending on their revised potentials. In other words, the unassigned test cases’ fault 207

detection capacity is recalculated. The shortlisting sequence is based on the most recent 208

data obtained, and it picks the test case t having highest rank in the modified P(t). If 209

the test cases are tied, the initial copy of the test case order is used to break the tie. ST 210

is created by removing the specified test case from PT. Continue the previous steps till 211

the stopping requirements are fulfilled, i.e., it creates a sufficient test cases to achieve 100 212

percent statement and fault coverage (mx) as presented in the Figure 1. As the algorithm 213

contains two loops that runs upto the size of test suite, so the time complexity of the 214

algorithm is O(n2). 215

4.4. Test Case Reduction (TCR) 216

To reduce suite size and cost, the current best solution of every generation is passed 217

for the duplicate verification, and the very first k test cases that cover the faults/statements 218

early are opted. This technique has the advantage of exposing how the test cases are ranked 219

precisely [6]. The pseudo code of TCR is given in Figure 2. Since it contains one loop for the 220

test cases (n) and another for finding the faults or statements (m) so the time complexity of 221

the algorithm can be calculated as O(nm). 222

Figure 3 presented an Improved IQPSO algorithm consists of two for loops Maxit and 223

Pop. It also contains ATCS and TCR algorithms so overall complexity of the algorithm is 224

O(Maxit ∗ Pop ∗ (n2 + nm)). 225

Version May 16, 2022 submitted to Sensors 8 of 19

Figure 2. TCR Algorithm

Figure 3. IQPSO Algorithm

Version May 16, 2022 submitted to Sensors 9 of 19

5. Experimental Setup 226

This Section outlines an empirical study, including research questions, datasets, evalu- 227

ation metrics, and the algorithms with which the proposed algorithm is compared. The 228

formulated research questions are: 229

RQ1. What is the performance of the proposed algorithm for TCP? 230

The objective is to see if the suggested algorithm outperforms others. It also identifies 231

which algorithm produces the best results, as well as the effect of various testing settings 232

on algorithm performance. 233

RQ2. What is the performance of the proposed algorithm for TCS? 234

The goal is to investigate the efficiency of the provided strategies for the ATCS method, 235

namely, test selection percentage, inclusivity of MR test cases, and reduction in cost per- 236

centage. 237

RQ3. What is the performance of the proposed algorithm for TCR? 238

The aim is to evaluate the effectiveness of the suggested algorithm to that of the other 239

methods. Furthermore, to figure out which testing criteria improve TCR. Alternatively, to 240

see how it impacts the coverage and fault detection capabilities of the test suite. 241

5.1. Experimental design 242

PSO, QPSO and latest variants of PSO, i.e., PSOGSA [5], DAPSO [6] and Adaptive 243

PSO (AdPSO) [35] are the algorithms considered for comparison. Apart from these, the 244

algorithm is also validated against the state-of-the-art algorithms like GA, BAT and recently 245

proposed Grey Wolf Optimization (GWO) [36]. These methods were developed using 246

MATLAB R2017 on a Dell laptop with an Intel i5 CPU, Windows 11, and 8GB of RAM. 247

Due to their stochastic nature, the algorithms are performed for 30 times. These are used 248

on 3 different Java applications (jtopas, ant, and jmeter) that are pulled from the software 249

infrastructure repository (SIR) [37]. We have applied the algorithm on different versions of 250

these programs. Table 2 provides more information. 251

Table 2. Subject Programs

Programs Versions KLOC Classes Methods Test Cases Type

ant 7 80.4 650 7524 878 JUnit
jmeter 5 43.4 389 3613 97 JUnit
jtopas 4 5.4 50 748 209 JUnit

The performance of the algorithms is influenced by parameter choices 2019b. As a 252

result, we carefully choose the parameters based on a comprehensive review of related 253

works as well as a trial-and-error process for determining optimal values. Table 3 also 254

contains the data retrieved using the Taguchi approach. 255

Table 3. Parameter Settings of the algorithms

Algorithms Parameters values

GA pcr = 0.8, pm = 0.1, tournament selection, ordered crossover
BA ro = 0.001, Ao = 1, fmin = 0, fmax = 1.5, α = 0.9, γ = 0.99
PSO, AdPSO c1 = 1.5, c2 = 2, wmin = 0.4, wmax = 0.9
QPSO θmin = 0.5, θmax = 1.7
IQPSO θmin = 0.5, θmax = 1.7, δ = 5
PSOGSA c1 = 1.5, c2 = 2, wmin = 0.4, wmax = 0.9, α = 15, G0 = 100, Sinemap
DAPSO s = 0.2, a = 0.25, c = 0.6, f = 0.8, e = 0.8, c1 = 1.5, c2 = 2, wmin = 0.4,

wmax = 0.9
Common Parameters Pop = 100, Maxit = 1000

5.2. Performance Measures 256

The following performance measures are used to validate the efficiency and efficacy 257

of these algorithms: 258

Version May 16, 2022 submitted to Sensors 10 of 19

5.2.1. Test Case Prioritization 259

To assess the robustness of the proposed technique, the test cases are selected using 260

two separate testing criteria: fault and statement coverage. As a result, the commonly used 261

fitness measurements and effectiveness measures are defined as follows: 262

Average Percentage of Fault Detection (APFD) is a measure of how well a system detects
faults. It finds a weighted average of the detected defects based on where they are in the
test suite [38]. It’s computed as follows:

APFD = 1 − ∑m
i=1 TF(i)
n ∗ m

+
1

2 ∗ n
(14)

The location of the test case that detects the ith fault is denoted by TF(i), and the faults 263

covered by n test cases is denoted by m. It’s value lies in between 0 and 100, with greater 264

being better. The Average Percentage of Statement Coverage (APSC) is calculated in the 265

same way as the APFD. 266

5.2.2. Test Case Selection and Reduction 267

Test selection percentage, cost reduction percentage, fault detection percentage and 268

coverage loss percentage are often used efficacy measures. In addition to these, Inclusivity 269

measure is also used for TCS as follows: 270

Test Selection Percentage (TSP): It’s the percentage selection in the size of the test suite.

TRP =
st
n
∗ 100 (15)

Here st indicates the test cases selected from n test cases. 271

Inclusivity (I): The extracted MR test cases emr divided by the total MR test cases totmr
gives the inclusivity measure.

I =
emr

totmr
∗ 100 (16)

Fault Detection Loss Percentage (FDLP): The ratio of the faults not covered by the
minimized test suite n f l to the total faults covered by the original test suite t f c:

FDLP =
n f l
t f c

∗ 100 (17)

Cost Reduction Percentage (CRP): It is a percentage of the test suite’s cost that is reduced
rcost when compared to the original suite’s cost tcost.

CRP =
rcost
tcost

∗ 100 (18)

6. Results and Analysis 272

This Section experimentally assesses the proposed algorithm for TCP using statement 273

and fault coverage criteria. TCS and TCR have been studied for their effects on fault cover- 274

age loss, statement coverage loss, and cost benefits. To determine the experimental results 275

of a software, the cumulative average of all its iterations is employed. The performance 276

metrics for each version are calculated using the average of 30 runs. For fitness metrics, 277

boxplots and convergence curves are also shown. A one-way ANOVA test with a p-value 278

= 0.05 is used to analyse the algorithms’ output statistically. If p < 0.05 the null hypothesis 279

is rejected, suggesting that the algorithms’ difference is statistically significant. Further, 280

Tukey simultaneous test is used to evaluate the pair - wise comparison of the methods. 281

6.1. Performance analysis of TCP (RQ 1) 282

Table 4 shows the mean fitness values and variance of the performance metrics as well 283

as their corresponding Tukey group ranks for all the programs. Observations state that 284

Version May 16, 2022 submitted to Sensors 11 of 19

IQPSO is statistically different from all other nature-inspired algorithms, with a p-value 285

less than 0.05, for both statement and fault criteria except PSOGSA. Moreover, it suggests 286

that there is no significant difference between means of 1) PSOGSA and QPSO 2) AdPSO 287

and DAPSO 3) AdPSO and GWO 4) GA and PSO for both criteria. The convergence curves 288

for one of the versions of the subject programs are illustrated in Figure 4. It shows that the 289

proposed IQPSO algorithm possesses the high-quality solutions comparatively for both 290

criteria. 291

Table 4. Comparisons of the algorithms for TCP over fault and statement coverages

Program
Versions Algorithms Fitness functions wise TCP, Variance and Tukey Group Ranking (%)

APFD Variance TR APSC Variance TR

jtopas

IQPSO 96.702 0.879 A 98.559 0.494 A
PSOGSA 95.965 1.413 AB 98.229 0.842 AB

QPSO 95.621 1.966 B 97.998 0.806 BC
DAPSO 94.066 3.884 C 97.841 0.976 BCD
AdPSO 93.93 4.576 CD 97.795 0.817 BCD
GWO 93.118 4.299 D 97.706 1.895 DE

GA 91.918 4.555 E 97.463 1.809 DE
PSO 91.18 9.875 E 97.33 1.905 EF
BAT 89.951 9.152 F 96.863 4.034 F

ant

IQPSO 95.337 7.283 A 98.105 0.976 A
PSOGSA 94.344 10.394 AB 97.482 2.135 B

QPSO 93.937 9.935 B 97.403 2.241 B
DAPSO 93.292 14.327 BC 97.397 2.49 B
AdPSO 92.53 15.674 C 97.239 2.85 B
GWO 92.149 15.204 CD 96.586 4.991 C

GA 91.304 17.977 DE 96.657 4.476 C
PSO 90.577 19.975 EF 96.529 4.591 C
BAT 90.094 20.42 F 95.924 6.397 D

jmeter

IQPSO 95.402 3.498 A 99.218 0.193 A
PSOGSA 94.31 5.603 B 98.989 0.351 AB

QPSO 93.696 6.492 B 98.987 0.358 AB
DAPSO 92.137 10.134 C 98.916 0.359 B
AdPSO 92.12 9.617 C 98.819 0.592 BC
GWO 91.943 8.38 C 98.625 0.677 C

GA 90.672 8.894 D 98.331 0.747 D
PSO 89.396 10.309 E 98.22 0.703 D
BAT 89.145 12.483 E 97.748 1.914 E

It is also observed that the most of the algorithms have equivalent variance in case of 292

statement coverage. The boxplots in Figure 5 also depicts that the variation in algorithmic 293

performance for fault coverage is larger than for statement coverage. It’s because the faults 294

are dispersed across the entire software. In other words, most test cases cover almost same 295

statements, therefore, the boxplots of the statement coverage criteria are more compressed 296

than the fault coverage criteria. Overall, the proposed IQPSO is superior to all other 297

algorithms in terms of variance. 298

6.2. Performance analysis of TCS (RQ 2) 299

The performance of the test case selection is evaluated using test selection percentage, 300

inclusivity and cost reduction percentages as follows: 301

6.2.1. Test Selection Percentage (TSP) 302

The full version study revealed a random pattern, indicating that all of the algorithms 303

behave similarly. We are unable to determine which algorithm is superior to the others. 304

However, according to the program analysis, DAPSO produced the best TSP for two out of 305

three programs in both coverage (see Table 5). It can be observed that IQPSO, PSOGSA, 306

QPSO, and AdPSO are better than PSO, GWO, GA, and BAT for fault coverage. On the 307

Version May 16, 2022 submitted to Sensors 12 of 19

Figure 4. Convergence Curves of algorithms for fault and statement coverage criteria of TCP

Figure 5. Boxplots of algorithms for fault and statement coverages of TCP

Version May 16, 2022 submitted to Sensors 13 of 19

other side, GA, GWO, and PSO performed better than IQPSO, PSOGSA, AdPSO, QPSO 308

and BAT in case of statement coverage. IQPSO performed better for ant which includes a 309

significant number of test cases and statements. As a result, it can be said that the improved 310

approach may outperform for the large programs. It is also observed that the selection 311

percentage is less in case of fault coverage than the statement coverage. 312

6.2.2. Inclusivity (I) 313

All the algorithms are capable to incorporate over 78% and 76% MR test cases in 314

statement and fault coverage. The proposed algorithm worked well for statement coverage, 315

followed by PSOGSA, QPSO, DAPSO, AdPSO, PSO, GWO, GA, and BAT. However, IQPSO 316

and PSOGSA performed least in case of fault coverage and the performance wise algorithms 317

can be ranked as AdPSO, BAT, PSO, GA, QPSO, DAPSO, GWO, IQPSO, and PSOGSA. 318

Alternatively, ATCS method picks a large number of test instances in case of statement 319

coverage than the fault coverage criteria. Table 5 also showed that the fault coverage criteria 320

is better for inclusiveness of the MR test cases. The inclusivity of variable state test cases is 321

critical since they necessitate extra care because they do not produce same results for all 322

versions. In other words, the ATCS method is based on the modification coverage so the 323

fault coverage is more appropriate choice for inclusivity of the MR test cases over statement 324

coverage. 325

6.2.3. Cost Reduction Percentage (CRP) 326

TCS has witnessed a cost reduction of 6.93–30.26% and 18.78-48.73% for statement and 327

fault coverage criteria. In case of ant and jmeter, DAPSO delivers the best cost reduction % 328

in most of the cases, whereas IQPSO outperformed DAPSO for statement coverage in ant 329

and fault coverage in jtopas. In other words, DAPSO, GA, GWO and PSO performed better 330

than the PSO variants in statement coverage, whereas IQPSO is the first runner up for fault 331

coverage after DAPSO (see Table 5). It is also discovered that the TSP and the CRP have an 332

indirect link. In other words, the lower the number of tests in the suite, the higher the CRP. 333

Version May 16, 2022 submitted to Sensors 14 of 19

Table 5. Comparisons of the algorithms for TCS over fault and statement coverages

Program
Versions Algorithms TSP Inclusivity CRP

TSPAPSC TSPAPFD IAPSC IAPFD CRPAPSC CRPAPFD

jtopas

IQPSO 81.235 51.750 89.024 87.834 17.356 48.731
PSOGSA 81.567 53.567 88.457 86.238 18.986 48.001

QPSO 83.485 51.833 87.422 81.034 19.084 48.767
DAPSO 68.960 59 87.644 84.387 30.265 41.83
AdPSO 80.518 61.5 85.087 92.083 19.711 29.359
GWO 74.035 64.75 82.39 75.67 26.125 34.918

GA 77.926 77.867 84.263 85.544 21.829 23.966
PSO 71.593 65.5 86.672 89.792 26.897 34.695
BAT 83.368 73.858 81.536 90.424 17.451 32.993

ant

IQPSO 85.333 59.667 80.449 79.509 14.321 31.527
PSOGSA 86.468 62.879 79.298 80.687 12.686 30.878

QPSO 88.81 67.622 79.5 89.621 10.016 40.798
DAPSO 87.995 55.667 79.423 85.064 11.378 45.799
AdPSO 90.905 77 78.363 95.803 8.487 22.966
GWO 90.057 72.533 78.506 88.889 8.961 27.57

GA 89.914 72.944 77.68 93.953 9.054 28.057
PSO 91.014 63.889 79.752 94.038 7.887 36.914
BAT 89.676 79.333 78.583 94.915 9.259 20.893

jmeter

IQPSO 86.483 62.4 96.940 78.305 12.518 35.895
PSOGSA 88.567 63.588 95.876 77.365 11.568 34.757

QPSO 91.476 66.15 94.828 84.463 6.934 31.637
DAPSO 82.016 61.540 94.149 83.014 15.728 36.501
AdPSO 90.843 71.89 96.02 96.367 7.656 26.219
GWO 82.903 74.19 91.695 87.447 15.025 23.725

GA 82.363 77.51 91.557 95.509 15.251 21.195
PSO 84.343 69.64 94.413 88.404 14.75 27.25
BAT 86.223 78.37 93.147 92.617 12.894 18.783

6.3. Performance analysis of TCR (RQ 3) 334

The performance of the test case reduction is analyzed by calculating test selection 335

percentage, cost reduction percentage and fault detection loss percentages as follows: 336

6.3.1. Test Selection Percentage (TSP) 337

Table 6 shows that all the methods perform almost equally well when it comes to 338

reducing the test suite. Nonetheless, the proposed algorithm performed better than the 339

other nature-inspired algorithms for both coverage. Comparatively, BAT has a higher 340

selection percentage. TSP is larger in the case of statement coverage criterion than in the 341

case of fault coverage. It is because there’s a lot of redundancy in statement coverage, and 342

the faults are spread over the whole program and to balance them APSC has slightly higher 343

TSP than APFD. 344

6.3.2. Fault Detection Loss Percentage (FDLP) 345

Incorporation of ATCS helped the TCR in reducing the suite size with complete 346

statement coverage and minimised the fault loss too. The findings reveal that direct 347

application of TCR gave quite high fault loss, i.e., in between 5% and 40% [5]. AdPSO 348

outperformed the other methods for statement (0-0.318%) as well as fault coverage (0- 349

2.887%). Table 6 shows that IQPSO has least loss in statement coverage as compared to 350

other algorithms except jtopas where DAPSO worked better. Observations also depict that 351

the fault loss in APFD (0-8.134%) is higher compared to that in APSC (0-1.121%). The 352

reason for this is that faults are spread over the software. Hence, the fault coverage loss by 353

removing certain statement redundancy. It may be deduced that the loss of coverage and 354

the reduction in test suite size are inversely proportionate. 355

Version May 16, 2022 submitted to Sensors 15 of 19

6.3.3. Cost Reduction Percentage (CRP) 356

The experimental findings show that the cost reduction in fault coverage is more 357

than the statement coverage as it reduces the test suite better too. It is also observed 358

that the cost reduction is inversely proportionate to the test selection percentage, i.e., the 359

larger the decrease in test suite size, the lower the test suite execution cost. TCM costs 360

are estimated to be roughly 60 and 40 percent lower than TCS for statement and fault 361

coverage. Table 6 clearly shows that the CRP of IQPSO outperformed all other algorithms 362

followed by PSOGSA, QPSO and DAPSO. GA, PSO, GWO and AdPSO have nearly identical 363

performance. Overall, IQPSO have demonstrated superior search capabilities to solve the 364

regression testing problem in all the three subject programs. 365

Table 6. Comparisons of the algorithms for TSR over fault and statement coverages

Program
Versions Algorithms TSP FDLP CRP

TSPAPSC TSPAPFD FDLPAPSC FDLPAPFD CRPAPSC CRPAPFD

jtopas

IQPSO 22.085 19.642 0.974 1.707 77.911 82.373
PSOGSA 22.138 19.711 0.902 1.909 77.656 81.876

QPSO 22.341 19.717 0.905 2.302 77.85 81.253
DAPSO 22.626 19.742 0.000 1.372 77.576 81.333
AdPSO 23.593 23.45 0.974 0.000 76.44 76.45
GWO 22.426 20.583 0.905 1.949 77.71 80.775

GA 23.718 21.783 1.112 0.000 76.569 78.67
PSO 22.626 21.842 0.835 1.064 77.505 79.164
BAT 24.518 24.642 0.399 0.764 75.446 75.894

ant

IQPSO 30.998 27.933 0.318 8.134 69.275 73.407
PSOGSA 31.755 28.234 0.412 6.689 68.587 73

QPSO 31.425 27.933 0.434 5.975 67.295 72.07
DAPSO 31.283 29 0.337 2.887 67.288 71.014
AdPSO 32.278 30 0.318 3.998 66.886 70.209
GWO 33.267 29.667 0.89 5.888 65.408 70.127

GA 33.891 27.780 0.359 7.982 65.028 73.513
PSO 32.61 28.333 1.121 4.572 65.855 72.17
BAT 35.291 30.333 0.446 3.696 64.574 70.274

jmeter

IQPSO 21.767 19.000 0.000 1.387 77.132 81.248
PSOGSA 22 19.354 0.000 1.076 76.453 80.653

QPSO 22.272 19.94 0.000 0.752 76.541 79.73
DAPSO 22.003 20 0.000 2.331 76.535 78.874
AdPSO 23.088 21.2 0.000 0.000 75.643 77.755
GWO 22.834 22.4 0.000 0.321 76.349 77.455

GA 22.684 21.47 0.000 0.000 76.193 78.171
PSO 22.044 21.4 0.000 0.752 76.859 77.102
BAT 23.75 23.16 0.000 0.357 74.837 77.237

7. Conclusions 366

In this paper, we have suggested an improved QPSO algorithm for regression testing 367

and validated it against GA, GWO, BAT, PSO, and its variants DAPSO, PSOGSA and 368

AdPSO. Empirical results show that the proposed algorithm IQPSO have comparatively 369

low variance than other variants for statement and fault coverage. Further, the adaptive test 370

selection approach was able to successfully identify 77-96% of the MR test cases in both fault 371

and statement coverage. The study also revealed that the adaptive test selection percentage 372

of fault coverage is 40-60% lesser than the statement coverage with high inclusivity. IQPSO 373

performed better than all other algorithms for test case reduction and cost reduction %. 374

The algorithms showed approximate 7% difference in the fault detection capability loss for 375

fault coverage over statement coverage. In the future, we will strive to reduce this fault 376

detection loss to almost zero and validate the algorithm’s results on a variety of large-scale 377

real-world applications. We intend to investigate alternative variants of QPSO algorithms 378

Version May 16, 2022 submitted to Sensors 16 of 19

by modification and hybridization to improve the inclusivity and algorithm’s performance 379

even further. 380

Author Contributions: “Data curation, Anu Bajaj; Formal analysis, Anu Bajaj and Ajith Abraham; 381

Funding acquisition, Lubna Abdelkareim Gabralla; Investigation, Anu Bajaj; Methodology, Anu 382

Bajaj; Project administration, Ajith Abraham and Lubna Abdelkareim Gabralla; Resources, Anu Bajaj; 383

Software, Anu Bajaj; Supervision, Ajith Abraham; Validation, Anu Bajaj; Visualization, Anu Bajaj, 384

Ajith Abraham and Saroj Ratnoo; Writing – original draft, Anu Bajaj; Writing – review editing, Anu 385

Bajaj, Ajith Abraham, Saroj Ratnoo and Lubna Abdelkareim Gabralla.” 386

Funding: “The APC was funded by the Princess Nourah bint Abdulrahman University Researchers 387

Supporting Project number (PNURSP2022R178), Princess Nourah bint Abdulrahman University, 388

Riyadh, Saudi Arabia”. 389

Institutional Review Board Statement: “Not applicable” 390

Informed Consent Statement: “Not applicable” 391

Data Availability Statement: “Not applicable” 392

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design 393

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or 394

in the decision to publish the results. 395

Abbreviations 396

397

ACO Ant Colony Optimization
AdPSO Adaptive Particle Swarm Optimization
ANOVA Analysis of Variance
APFD Average Percentage of Fault Detection
APSC Average Percentage of Statement Coverage
ARO Asexual Reproduction Operator
ATCS Adaptive Test Case Selection
BAT Bat Algorithm
CRP Cost Reduction Percentage
CSA Cuckoo Search Algorithm
DA Dragonfly Algorithm
FDLP Fault Detection Loss Percentage
FP Fault Position Array
GA Genetic Algorithm
GWO Grey Wolf Optimization
I Inclusivity
IQPSO Improved Quantum behaved Particle Swarm Optimization
MR Modification Revealing test cases
PSO Particle Swarm Optimization
QPSO Quantum behaved Particle Swarm Optimization
SIR Software Infrastructure Repository
TCP Test Case Prioritization
TCR Test Case Reduction
TCS Test Case Selection
TFP Test Fault Matrix
TRP Test Reduction Percentage

398

Nomenclature 399

α evolution velocity coefficient 400

ϕ random number 401

θ Contraction-expansion coefficient 402

A loudness of bat 403

Version May 16, 2022 submitted to Sensors 17 of 19

a local attractor 404

c1, c2 social and cognitive components 405

emr extracted modification revealing test cases 406

f () Fitness function 407

fmin, fmax minimum and maximum frequency of bats 408

G Global best particles 409

G f it() fitness value of global best particle 410

Gus(x) Gaussian distribution of x 411

m number of faults 412

max maximum capacity of test suite to be selected 413

Maxit Maximum number of iterations 414

Mbest mean best of personal best particles 415

n number of test cases 416

n f l number of faults not covered 417

P() Priority of test case 418

p, q potential coefficients 419

pcr crossover probability 420

Pi Personal best particles 421

pm mutation probability 422

Pop Maximum number of population 423

Pot(s) Potential of statement 424

PT Permuted Test Suite 425

R Requirement Set 426

ro pulse emission rate of bat 427

rcost reduced cost of test suite 428

RSInd Indices of reduced array 429

s statement covered by test case 430

ST Selected Test Suite 431

st Selected test cases 432

Ti Test case of the test suite 433

tcost total cost of test suite 434

t f c total faults covered 435

totmr total modification revealing test cases 436

u uniform random number 437

vi Velocity of a particle 438

w inertia weight 439

xi Position of a particle 440

Version May 16, 2022 submitted to Sensors 18 of 19

References 441

1. Webert, H.; Döß, T.; Kaupp, L.; Simons, S. Fault Handling in Industry 4.0: Definition, Process and Applications. Sensors 2022, 22, 442

2205. https://doi.org/10.3390/s22062205. 443

2. Yoo, S. and Harman, M. Regression testing minimization, selection and prioritization: a survey. Software Testing, Verification and 444

Reliability, vol. 22. no. 2, 2012, pp.67-120. https://doi.org/10.1002/stvr.430 445

3. Bajaj, A. and Sangwan, O.P. Discrete cuckoo search algorithms for test case prioritization. Applied Soft Computing, vol. 110, 2021, 446

p.107584. https://doi.org/10.1016/j.asoc.2021.107584 447

4. Li, Z.; Harman, M. and Hierons, R.M. Search algorithms for regression test case prioritization. IEEE Transactions on Software 448

Engineering, vol. 33, no. 4, 2007, pp.225-237. https://doi.org/10.1109/TSE.2007.38 449

5. Bajaj, A. and Sangwan, O.P., Tri-level regression testing using nature-inspired algorithms. Innovations in Systems and Software 450

Engineering, 17(1), pp.1-16. https://doi.org/10.1007/s11334-021-00384-9 451

6. Bajaj A. and Abraham A. Prioritizing and Minimizing Test Cases Using Dragonfly Algorithms. International Journal of Computer 452

information Systems and Industrial Management Applications, 13, 2021, pp. 062-071. ISSN 2150-7988. 453

7. Shaukat, N., Ahmad, A., Mohsin, B., Khan, R., Khan, S.U.D. and Khan, S.U.D., Multiobjective Core Reloading Pattern Optimization 454

of PARR-1 Using Modified Genetic Algorithm Coupled with Monte Carlo Methods. Science and Technology of Nuclear 455

Installations, 2021. https://doi.org/10.1155/2021/1802492 456

8. Fister, J.I., Yang, X.S., Fister, I., Brest, J., and Fister, D., A brief review of nature-inspired algorithms for optimization. arXiv 457

preprint arXiv:1307.4186, 2013, pp. 116-122. 458

9. Zhang, W., Qi, Y., Zhang, X., Wei, B., Zhang, M. and Dou, Z. On test case prioritization using ant colony optimization algorithm. 459

In 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International 460

Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2019, pp. 461

2767-2773. 10.1109/HPCC/SmartCity/DSS.2019.00388 462

10. Ahmed, B.S. Test case minimization approach using fault detection and combinatorial optimization techniques for configuration- 463

aware structural testing. Engineering Science and Technology, an International Journal, vol. 19, no. 2, 2016, pp.737-753. 464

https://doi.org/10.1016/j.jestch.2015.11.006 465

11. Mohapatra S.K., Prasad S., Test case reduction using ant colony optimization for object oriented program. Int J Electrical Comput 466

Eng, vol. 5, no. 6, 2015, pp.2088–8708. oai:ojs.www.iaescore.com:article/5766. 467

12. Zhang Y.N., Yang H., Lin Z.K., Dai Q., Li Y.F., A test suite reduction method based on novel quantum ant colony algo- 468

rithm. In: 2017 4th international conference on information science and control engineering (ICISCE). IEEE, 2017, pp 825-829. 469

https://doi.org/10.4018/IJAMC.2022010106 470

13. Mondal D, Hemmati H, Durocher S, Exploring test suite diversification and code coverage in multi-objective test case selec- 471

tion. In: 2015 IEEE 8th international conference on software testing, verification and validation (ICST). IEEE, 2015, pp 1-10. 472

https://doi.org/10.1109/ICST.2015.7102588 473

14. Khatibsyarbini, M., Isa, M.A. and Jawawi, D.N.A., Particle swarm optimization for test case prioritization using string distance. 474

Advanced Science Letters, vol. 24, no. 10, 2018, pp.7221-7226. https://doi.org/10.1166/asl.2018.12918 475

15. De Souza, L.S., Prudêncio, R.B., Barros, F.D.A. and Aranha, E.H.D.S. Search based constrained test case selection using execution 476

effort. Expert Systems with Applications, vol. 40, no. 12, 2013, pp.4887-4896. https://doi.org/10.1016/j.eswa.2013.02.018 477

16. De Souza L.S., Prudêncio R.B., Barros F.D.A., A hybrid binary multi-objective particle swarm optimization with local search for 478

test case selection. In: Brazilian conference on intelligent systems. IEEE, 2014, pp 414-419. 10.1109/BRACIS.2014.80 479

17. De Souza L.S., Prudêncio R.B.C., De Barros F.A., A hybrid particle swarm optimization and harmony search algorithm approach 480

for multi-objective test case selection. J Brazilian Comput Society 21(1), 2015, pp. 1-20, Springer. https://doi.org/10.1186/s13173- 481

015-0038-8 482

18. Correia D. An industrial application of test selection using test suite diagnosability. In: Proceedings of the 2019 27th ACM joint 483

meeting on european software engineering conference and symposium on the foundations of software engineering, 2019, pp. 484

1214-1216. https://doi.org/10.1145/3338906.3342493 485

19. Bharathi M. Hybrid particle swarm and ranked firefly metaheuristic optimization-based software test case minimization. Int J 486

Appl Metaheuristic Comput, 13(1), 2022, pp. 1-20. https://doi.org/10.4018/IJAMC.290534 487

20. Nayak, G. and Ray, M., Modified condition decision coverage criteria for test suite prioritization using particle swarm optimization. 488

International Journal of Intelligent Computing and Cybernetics. Vol. 12 No. 4, 2019, pp. 425-443. https://doi.org/10.1108/IJICC- 489

04-2019-0038 490

21. Deneke, A., Assefa, B.G. and Mohapatra, S.K., Test suite minimization using particle swarm optimization. Materials Today: 491

Proceedings, 2022, pp. 1-5. https://doi.org/10.1016/j.matpr.2021.12.472 492

22. Samad, A., Mahdin, H.B., Kazmi, R., Ibrahim, R. and Baharum, Z., Multiobjective Test Case Prioritization Using Test Case Effec- 493

tiveness: Multicriteria Scoring Method. Scientific Programming, vol. 2021, 2021, pp. 1-13. https://doi.org/10.1155/2021/9988987 494

23. Agrawal, A.P. and Kaur, A., A comprehensive comparison of ant colony and hybrid particle swarm optimization algo- 495

rithms through test case selection. In Data engineering and intelligent computing, 2018, pp. 397-405. Springer, Singapore. 496

https://doi.org/10.1007/978-981-10-3223-338. 497

24. Lodewijks, G., Cao, Y., Zhao, N. and Zhang, H., Reducing CO Emissions of an Airport Baggage Handling Transport System Using a 498

Particle Swarm Optimization Algorithm. IEEE Access, 9, 2021, pp.121894-121905. https://doi.org/10.1109/ACCESS.2021.3109286 499

Version May 16, 2022 submitted to Sensors 19 of 19

25. Sun, J., Xu, W. and Feng, B., A global search strategy of quantum-behaved particle swarm optimization. In IEEE Conference on 500

Cybernetics and Intelligent Systems, vol. 1, 2004, pp. 111-116. https://doi.org/10.1109/ICCIS.2004.1460396 501

26. Lukemire, J., Mandal, A. and Wong, W.K., d-qpso: a quantum-behaved particle swarm technique for finding d-optimal 502

designs with discrete and continuous factors and a binary response. Technometrics, vol. 61, no. 1, 2019, pp.77-87. 503

https://doi.org/10.1080/00401706.2018.1439405 504

27. Iliyasu, A.M.; Fatichah, C. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell 505

Classification in Cervical Cancer Detection. Sensors 2017, 17, 2935. https://doi.org/10.3390/s17122935. 506

28. Peng, C.; Yan, J.; Duan, S.; Wang, L.; Jia, P.; Zhang, S. Enhancing Electronic Nose Performance Based on a Novel QPSO-KELM 507

Model. Sensors 2016, 16, 520. https://doi.org/10.3390/s16040520. 508

29. Guo, X.; Peng, C.; Zhang, S.; Yan, J.; Duan, S.; Wang, L.; Jia, P.; Tian, F. A Novel Feature Extraction Approach Using 509

Window Function Capturing and QPSO-SVM for Enhancing Electronic Nose Performance. Sensors 2015, 15, 15198-15217. 510

https://doi.org/10.3390/s150715198. 511

30. Wen, T.; Yan, J.; Huang, D.; Lu, K.; Deng, C.; Zeng, T.; Yu, S.; He, Z. Feature Extraction of Electronic Nose Signals Using 512

QPSO-Based Multiple KFDA Signal Processing. Sensors 2018, 18, 388. https://doi.org/10.3390/s18020388. 513

31. Coelho, L. dos S., Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design 514

problems. Expert Systems with Applications, vol. 37, no. 2, 2010, 1676–1683. https://doi.org/10.1016/j.eswa.2009.06.044 515

32. Omkar, S.N., Khandelwal, R., Ananth, T.V.S., Naik, G.N. and Gopalakrishnan, S., Quantum behaved particle swarm optimization 516

(QPSO) for multi-objective design optimization of composite structures. Expert Systems with Applications, vol. 36, no. 8, 2009, 517

pp.11312-11322. https://doi.org/10.1016/j.eswa.2009.03.006 518

33. Kennedy, J. and Eberhart, R., Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural 519

networks, vol. 4, 1995, pp. 1942-1948. IEEE. https://doi.org/10.1109/ICNN.1995.488968 520

34. Guo, X., Song, X. and Zhou, J.T., A synergic quantum particle swarm optimisation for constrained combinatorial test generation. 521

IET Software, 2022, pp. 1-22. https://doi.org/10.1049/sfw2.12054 522

35. Nabi, S.; Ahmad, M.; Ibrahim, M.; Hamam, H. AdPSO: Adaptive PSO-Based Task Scheduling Approach for Cloud Computing. 523

Sensors 2022, 22, 920. https://doi.org/10.3390/s22030920 524

36. Gupta, D., Gupta, V. (2017). Test Suite Prioritization Using Nature Inspired Meta-Heuristic Algorithms. In: Madureira, A., 525

Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. Advances in Intelligent Systems and 526

Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-022 527

37. Do, H., Mirarab, S., Tahvildari, L. and Rothermel, G., The effects of time constraints on test case prioritization: A series of controlled 528

experiments. IEEE Transactions on Software Engineering, vol. 36, no. 5, 2010 pp.593-617. https://doi.org/10.1109/TSE.2010.58 529

38. Elbaum, S., Malishevsky, A.G., and Rothermel, G., Test case prioritization: A family of empirical studies. IEEE Transactions on 530

Software Engineering, vol. 28, no. 2, 2002, pp.159-182. https://doi.org/10.1109/32.988497. 531

	Introduction
	Literature Review
	Preliminaries
	Particle Swarm Optimization
	Quantum Behaved PSO

	Proposed Work
	Population Update bajaj2021
	Dynamic Contraction-Expansion Coefficient () guo2022
	Adaptive Test Case Selection bajaj2021b
	Test Case Reduction (TCR)

	Experimental Setup
	Experimental design
	Performance Measures
	Test Case Prioritization
	Test Case Selection and Reduction

	Results and Analysis
	Performance analysis of TCP (RQ 1)
	Performance analysis of TCS (RQ 2)
	Test Selection Percentage (TSP)
	Inclusivity (I)
	Cost Reduction Percentage (CRP)

	Performance analysis of TCR (RQ 3)
	Test Selection Percentage (TSP)
	Fault Detection Loss Percentage (FDLP)
	Cost Reduction Percentage (CRP)

	Conclusions
	References

