
J Supercomput (2019) 75:197–227
https://doi.org/10.1007/s11227-017-1994-x

CHAOS: a parallelization scheme for training
convolutional neural networks on Intel Xeon Phi

André Viebke1 · Suejb Memeti1 · Sabri Pllana1 ·
Ajith Abraham2

Published online: 6 March 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Deep learning is an important component of Big Data analytic tools and
intelligent applications, such as self-driving cars, computer vision, speech recogni-
tion, or precisionmedicine. However, the training process is computationally intensive
and often requires a large amount of time if performed sequentially. Modern paral-
lel computing systems provide the capability to reduce the required training time of
deep neural networks. In this paper, we present our parallelization scheme for train-
ing convolutional neural networks (CNN) named Controlled Hogwild with Arbitrary
Order of Synchronization (CHAOS). Major features of CHAOS include the support
for thread and vector parallelism, non-instant updates of weight parameters during
back-propagation without a significant delay, and implicit synchronization in arbi-
trary order. CHAOS is tailored for parallel computing systems that are accelerated
with the Intel Xeon Phi. We evaluate our parallelization approach empirically using
measurement techniques and performance modeling for various numbers of threads
and CNN architectures. Experimental results for the MNIST dataset of handwritten
digits using the total number of threads on the Xeon Phi show speedups of up to

B Sabri Pllana
sabri.pllana@lnu.se

André Viebke
av22cj@student.lnu.se

Suejb Memeti
suejb.memeti@lnu.se

Ajith Abraham
ajith.abraham@ieee.org

1 Department of Computer Science, Linnaeus University, 351 95 Växjö, Sweden

2 Machine Intelligence Research Labs (MIR Labs), 1, 3rd Street NW, P.O. Box 2259,
Auburn, WA 98071, USA

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

198 A. Viebke et al.

103× compared to the execution on one thread of the Xeon Phi, 14× compared to the
sequential execution on Intel Xeon E5, and 58× compared to the sequential execution
on Intel Core i5.

Keywords Parallel programming · Deep learning · Convolutional neural networks ·
Intel Xeon Phi

1 Introduction

Traditionally engineers developed applications by specifying computer instructions
that determined the application behavior. Nowadays engineers focus on developing
and implementing sophisticated deep learning models that can learn to solve com-
plex problems. Moreover, deep learning algorithms [28] can learn from their own
experience rather than that of the engineer.

Many private and public organizations are collecting huge amounts of data that may
contain useful information from which valuable knowledge may be derived. With the
pervasiveness of the Internet of Things the amount of available data is getting much
larger [20]. Deep learning is a useful tool for analyzing and learning from massive
amounts of data (also known as Big Data) that may be unlabeled and unstructured
[37,45,48]. Deep learning algorithms can be found in many modern applications
[17,19,21,49,51,55,57,60], such as voice recognition, face recognition, autonomous
cars, classification of liver diseases and breast cancer, computer vision, or socialmedia.

A convolutional neural network (CNN) is a variant of a deep neural network (DNN)
[14]. Inspired by the visual cortex of animals, CNNs are applied to state-of-the-art
applications, including computer vision and speech recognition [15]. However, super-
vised training of CNNs is computationally demanding and time-consuming, and in
many cases, several weeks are required to complete a training session. Often appli-
cations are tested with different parameters, and each test requires a full session of
training.

Multi-core processors [56] and in particularmany-core [5] processing architectures,
such as the NVIDIA graphical processing unit (GPU) [38] or the Intel Xeon Phi [8]
coprocessor, provide processing capabilities that may be used to significantly speed
up the training of CNNs. While existing research [12,42,49,54,58] has addressed
extensively the training of CNNs using GPUs, so far not much attention is given to
the Intel Xeon Phi coprocessor. Besides the performance capabilities, the Xeon Phi
deserves our attention because of programmability [39] and portability [23].

In this paper, we present our parallelization scheme for training convolutional neu-
ral networks, named Controlled Hogwild with Arbitrary Order of Synchronization
(CHAOS). CHAOS is tailored for the Intel Xeon Phi coprocessor and exploits both
the thread- and SIMD-level parallelism. The thread-level parallelism is used to dis-
tribute the work across the available threads, whereas SIMD parallelism is used to
compute the partial derivatives and weight gradients in convolutional layer. Empiri-
cal evaluation of CHAOS is performed on an Intel Xeon Phi 7120 coprocessor. For
experimentation, we use various number of threads, different CNNs architectures, and
the MNIST dataset of handwritten digits [30]. Experimental evaluation results show

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 199

that using the total number of available threads on the Intel Xeon Phi we can achieve
speedups of up to 103× compared to the execution on one thread of the Xeon Phi,
14× compared to the sequential execution on Intel Xeon E5, and 58× compared to
the sequential execution on Intel Core i5. The error rates of the parallel execution
are comparable to the sequential one. Furthermore, we use performance prediction to
study the performance behavior of our parallel solution for training CNNs for numbers
of cores that go beyond the generation of the Intel Xeon Phi that was used in this paper.
The main contributions of this paper include:

– design and implementation of CHAOS parallelization scheme for training CNNs
on the Intel Xeon Phi,

– performancemodeling of our parallel solution for training CNNs on the Intel Xeon
Phi,

– measurement-based empirical evaluation of CHAOS parallelization scheme,
– model-based performance evaluation for future architectures of the Intel Xeon Phi.

The rest of the paper is organized as follows.We discuss the related work in Sect. 2.
Section 3 provides background information on CNNs and the Intel Xeon Phi many-
core architecture. Section 4 discusses the design and implementation aspects of our
parallelization scheme. The experimental evaluation of our approach is presented in
Sect. 5. We summarize the paper in Sect. 6.

2 Related work

In comparisonwith relatedwork that targetGPUs, thework related tomachine learning
for Intel Xeon Phi is sparse. In this section, we describe machine learning approaches
that target the Intel Xeon Phi coprocessor, and thereafter, we discuss CNN solutions
for GPUs and contrast them to our CHAOS implementation.

2.1 Machine learning targeting Intel Xeon Phi

In this section, we discuss existing work for support vector machines (SVMs),
restricted Boltzmann machines (RBMs), sparse auto encoders and the brain-state-
in-a-box (BSB) model.

You et al. [59] present a library for parallel support vector machines, MIC-SVM,
which facilitates the use of SVMs on many- and multi-core architectures including
Intel Xeon Phi. Experiments performed on several known datasets showed up to 84×
speedup on the Intel Xeon Phi compared to the sequential execution of LIBSVM [6].
In comparison with their work, we target deep learning.

Jin et al. [22] perform the training of sparse auto encoders and restricted Boltzmann
machines on the Intel Xeon Phi 5110p. The authors reported a speedup factor of
7−10× times compared to theXeon E5620CPU andmore than 300× times compared
to the un-optimized version executed on one thread on the coprocessor. Their work
targets unsupervised deep learning of restricted Boltzmann machines and sparse auto
encoders, whereas we target supervised deep learning of CNNs.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

200 A. Viebke et al.

The performance gain on Intel Xeon Phi 7110p for a model called brain-state-in-
a-box (BSB) used for text recognition is studied by Ahmed et al. in [2]. The authors
report about twofold speedup for the coprocessor compared to a CPU with 16 cores
when parallelizing the algorithm. While both approaches target Intel Xeon Phi, our
work addresses training of CNNs on the MNIST dataset.

2.2 Related work targeting CNNs

In this section, we will discuss CNNs solutions for GPUs in the context of computer
vision (image classification). Work related to MNIST [30] dataset is of most interest,
also NORB [31] and CIFAR 10 [25] is considered. Additionally, work done in speech
recognition and document processing is briefly addressed. We conclude this section
by contrasting the presented related work with our CHAOS parallelization scheme.

Work presented by Cireşan et al. [12] target a CNN implementation raising the bars
for the CIFAR10 (19.51% error rate), NORB (2.53% error rate) and MNIST (0.35%
error rate) datasets. The training was performed on GPUs (Nvidia GTX 480 and GTX
580) where the authors managed to decrease the training time severely—up to 60×
compared to sequential execution on a CPU—and decrease the error rates to an, at the
time, state-of-the-art accuracy level.

Later, Cireşan et al. [11] presented their multi-column deep neural network for
classification of traffic sings. The results show that themodel performed almost human-
like (humans’error rate about 0.20%) on the MNIST dataset, achieving a best error
rate of 0.23%. The authors trained the network on a GPU.

Vrtanoski et al. [54] use OpenCL for parallelization of the back-propagation algo-
rithm for pattern recognition. They showed a significant cost reduction; a maximum
speedup of 25.8× was achieved on an ATI 5870 GPU compared to a Xeon W3530
CPU when training the model on the MNIST dataset.

The ImageNet challenge aims to evaluate algorithms for large-scale object detection
and image classification based on the ImageNet dataset. Krizhevsky et al. [26] joined
the challenge and reduced the error rate of the test set to 15.3% from the second
best 26.2% using a CNN with 5 convolutional layers. For the experiments, two GPUs
(NvidiaGTX580)were used only communicating in certain layers. The training lasted
for 5 to 6 days.

In a later challenge, ILSVRC 2014, a team from Google entered the competition
with GoogleNet, a 22-layer deep CNN and won the classification challenge with a
6.67% error rate. The training was carried out on CPUs. The authors state that the
network could be trained on GPUs within a week, illuminating the limited amount of
memory to be one of the major concerns [49].

Yadan et al. [58] used multiple GPUs to train CNNs on the ImageNet dataset using
both data andmodel parallelism, i.e., either the input space is divided intomini-batches
where each GPU train its own batch (data parallelism) or the GPUs train one sample
together (model parallelism). There is no direct comparison with the training time
on CPU; however, using 4 GPUs (Nvidia Titan) and model and data parallelism, the
network was trained for 4.8 days.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 201

Song et al. [47] constructed a CNN to recognize face expressions and developed a
smartphone app in which the user can capture a picture and send it to a server hosting
the network. The network predicts a face expression and sends the result back to the
user. With the help of GPUs (Nvidia Titan), the network was trained in a couple of
hours on the ImageNet dataset.

Scherer et al. [43] accelerated the large-scale neural networks with parallel GPUs.
Experiments with the NORB dataset on an Nvidia GTX 285 GPU showed a maximal
speedup of 115× compared to a CPU implementation (Core i7 940). After training
the network for 360 epochs, an error rate of 8.6% was achieved.

Cireşan et al. [10] combined multiple CNNs to classify German traffic signs and
achieved a 99.15% recognition rate (0.85 % error rate). The training was performed
using an Intel Core i7 and 4 GPUs (2 × GTX 480 and 2 × GTX 580).

More recently, Abadi et al. [1] presented TensorFlow, a system for expressing and
executingmachine learning algorithms including training deep neural networkmodels.

Researchers have also found CNNs successful for speech tasks. Large vocabu-
lary continuous speech recognition deals with translation of continuous speech for
languages with large vocabularies. Sainath et al. [42] investigated the advantages of
CNNs performing speech recognition tasks and compared the results with previous
DNN approaches. Results indicated on a 12–14% relative improvement of word error
rates compared to a DNN trained on GPUs.

Chellapilla et al. [7] investigated GPUs (Nvidia Geforce 7800 Ultra) for document
processing on the MNIST dataset and achieved a 4.11× speedup compared to the
sequential execution a Intel Pentium 4 CPU running at 2.5 GHz clock frequency.

In contrast to CHAOS, these studies target training of CNNs using GPUs, whereas
our approach addresses training of CNNs on the MNIST dataset using the Intel Xeon
Phi coprocessor. While there are several review papers (such as, [4,46,50]) and online
articles (such as, [36]) that compare existing frameworks for parallelization of train-
ing CNN architectures, we focus on detailed analysis of our proposed parallelization
approach using measurement techniques and performance modeling. We compare
the performance improvement achieved with CHAOS parallelization scheme to the
sequential version executed on Intel Xeon Phi, Intel Xeon E5 and Intel Core i5 pro-
cessor.

3 Background

In this section, we first provide some background information related to the neural
networks focusing on convolutional neural networks, and thereafter, we provide some
information about the architecture of the Intel Xeon Phi.

3.1 Neural networks

A convolutional neural network is a variant of a deep neural network, which introduces
two additional layer types: convolutional layers and pooling layers. The mammal
visual processing system is hierarchical (deep) in nature. Higher level features are
abstractions of lower level ones. For example, to understand speech, waveforms are

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

202 A. Viebke et al.

translated through several layers until reaching a linguistic level. A similar analogy can
be drawn for images, where edges and corners are lower-level abstractions translated
into more spatial patterns on higher levels. Moreover, it is also known that the animal
cortex consists of both simple and complex cells firing on certain visual inputs in
their receptive fields. Simple cells detect edge-like patterns, whereas complex cells
are locally invariant, spanning larger receptive fields. These are the very fundamental
properties of the animal brain inspiring DNNs and CNNs.

In this section, we first describe the DNNs and the forward- and back-propagation
and thereafter we introduce the CNNs.

3.1.1 Deep neural networks

The architecture of a DNN consists of multiple layers of neurons. Neurons are con-
nected to each other through edges (weights). The network can simply be thought
of as a weighted graph; a directed acyclic graph represents a feed-forward network.
The depth and breadth of the network differ as may the layer types. Regardless of the
depth, a network has at least one input and one output layer. A neuron has a set of
incoming weights, which have corresponding outgoing edges attached to neurons in
the previous layer. Also, a bias term is used at each layer as an intercept term. The goal
of the learning process is to adjust the network weights and find a global minimum
by reducing the overall error, i.e., the deviation between the predicted and the desired
outcome of all the samples. The resulting weight parameters can thereafter be used to
make predictions of unseen inputs [3].

3.1.2 Forward propagation

DNNs can make predictions by forward propagating an input through the network.
Forward propagation proceeds by performing calculations at each layer until reaching
the output layer, which contains a vector representing the prediction. For example,
in image classification problems, the output layer contains the prediction score that
indicates the likelihood that an image belongs to a category [3,18].

The forward propagation starts from a given input layer, then at each layer the
activation for a neuron is activated using the equation yli = σ(xli) + I li where yli
is the output value of neuron i at layer l, xli is the input value of the same neuron,
and σ (sigmoid) is the activation function. I li is used for the input layer when there
is no previous layer. The goal of the activation function is to return a normalized
value (sigmoid return [0,1] and tanh is used in cases where the desired return val-
ues are [−1,1]). The input xli can be calculated as xli = ∑

j (w
l
j i y

l−1
j) where wl

j i
denotes the weight between neuron i in the current layer l, and j in the previous
layer, and yl−1

j the output of the j th neuron at the previous layer. This process is
repeated until reaching the output layer. At the output layer, it is common to apply
a soft max function, or similar, to squash the output vector and hence derive the
prediction.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 203

3.1.3 Back-propagation

Back-propagation is the process of propagating errors, i.e., the loss calculated as the
deviation between the predicted and the desired output, backward in the network, by
adjusting the weights at each layer. The error and partial derivatives δli are calculated
at the output layer based on the predicted values from forward propagation and the
labeled value (the correct value). At each layer, the relative error of each neuron is
calculated and the weight parameters are updated based on how much the neuron

participated in the faulty prediction. The equation:
δE

δyli
= ∑

wl
i j

δE

δxl+1
j

denotes that

the partial derivative of neuron i at the current layer l is the sum of the derivatives of
connected neurons at the next layer multiplied with the weights, assuming wl denotes
the weights between the maps. Additionally, a decay is commonly used to control the
impact of the updates, which is omitted in the above calculations. More concretely,
the algorithm can be thought of as updating the layer’s weights based on “how much
it was responsible for the errors in the output” [3,18].

3.1.4 Convolutional neural networks

A convolutional neural network is a multilayer model constructed to learn various
levels of representations where higher level representations are described based on the
lower level ones [44]. It is a variant of deep neural network that introduces two new
layer types: convolutional and pooling layers.

The convolutional layer consists of several feature maps where neurons in each
map connect to a grid of neurons in maps in the previous layer through overlapping
kernels. The kernels are tiled to cover the whole input space. The approach is inspired
by the receptive fields of the mammal visual cortex. All neurons of a map extract the
same features from a map in the previous layer as they share the same set of weights.

Pooling layers intervene convolutional layers and have shown to lead to faster
convergence. Each neuron in a pooling layer outputs the (maximum/average) value of
a partition of neurons in the previous layer and hence only activates if the underlying
grid contains the sought feature. Besides from lowering the computational load, it
also enables position invariance and down samples the input by a factor relative to the
kernel size [29].

Figure 1 shows LeNet-5 that is an example of a convolutional neural network. Each
layer of convolution and pooling (that is a specific method of subsampling used in
LeNet) comprise several feature maps. Neurons in the feature map cover different
subfields of the neurons from the previous layer. All neurons in a map share the same
weight parameters; therefore, they extract the same features from different parts of the
input from the previous layers.

CNNs are commonly constructed similarly to the LeNet-5, beginning with an input
layer, followed by several convolutional/pooling combinations, ending with a fully
connected layer and an output layer [29]. Recent networks are much deeper and/or
wider, for instance, the GoogleNet [49] consists of 22 layers.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

204 A. Viebke et al.

Fig. 1 LeNet-5 architecture

Fig. 2 An overview of our Emil system accelerated with the Intel Xeon Phi

Various implementations target the convolutional neural networks, such asEbLearn
at New York University and Caffe at Berkeley. As a basis for our work, we selected a
project developed by Cireşan [9]. This implementation targets the MNIST dataset of
handwritten digits and has the possibility to dynamically configure the definition of
layers, the activation function and the connection types using a configuration file.

3.2 Parallel systems accelerated with Intel®Xeon Phi™

Figure 2 depicts an overview of the Intel Xeon Phi (codenamed Knights Corner)
architecture. It is a many-core shared-memory coprocessor, which runs a lightweight

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 205

Linux operating system that offers the possibility to communicate with it over ssh.
The Xeon Phi offers two programming models:

1. offload parts of the applications running on the host are offloaded to the coprocessor
2. native the code is compiled specifically for running natively on the coprocessor.

The code and all the required libraries should be transferred on the device. In this
paper, we focus on the native mode.

The Intel Xeon Phi (type 7120P used in this paper) comprises 61 x86 cores, each
core runs at 1.2 GHz base frequency, and up to 1.3GHz on max turbo frequency [8].
Each core can switch between four hardware threads in a round robin manner, which
amounts to a total of 244 threads per coprocessor. Theoretically, the coprocessor can
deliver up to one teraFLOP/s of double-precision performance or two teraFLOP/s
of single-precision performance. Each core has its own L1 (32KB) and L2 (512KB)
cache. The L2 cache is kept fully coherent by a global distributed tag directory (TD).
The cores are connected through a bidirectional ring bus interconnect, which forms
a unified shared L2 cache of 30.5MB. In addition to the cores, there are 16 memory
channels that in theory offer a maximummemory bandwidth of 352GB/s. The GDDR
memory controllers provide direct interface to the GDDR5 memory, and the PCIe
Client Logic provides direct interface to the PCIe bus.

Efficient usage of the available vector processing units of the Intel Xeon Phi is
essential to fully utilize the performance of the coprocessor [53]. Through the 512-bit
wide SIMD registers, it can perform 16 (16 wide × 32 bit) single-precision or 8 (8
wide × 64 bit) double-precision operations per cycle.

The performance capabilities of the Intel Xeon Phi are discussed and investigated
empirically by different researches within several domain applications [16,32–35,52].

4 Our parallelization scheme for training convolutional neural networks
on Intel Xeon Phi

The parallelism can be either divided data-wise, i.e., threads process several inputs
concurrently, or model-wise, i.e., several threads share the computational burden of
one input. Whether one approach can be advantageous over the other mainly depends
on the synchronization overhead of the weight vectors and how well it scales with the
number of processing units.

In this section, we first discuss the design aspects of our parallelization scheme
for training convolutional neural networks. Thereafter, we discuss the implementation
aspects that allow full utilization of the Intel Xeon Phi coprocessor.

4.1 Design aspects

Online stochastic gradient descent has the advantage of instant updates of weights for
each sample. However, the sequential nature of the algorithm yields impediments as
the number of multi- and many-core platforms are emerging. We consider different
existing parallelization strategies for stochastic gradient descent:

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

206 A. Viebke et al.

Strategy A: Hybrid uses both data and model parallelism, such that data parallelism is
applied in convolutional layers, and themodel parallelism is applied in fully connected
layers [24].

Strategy B: Averaged stochastic gradient divides the input into batches and feeds each
batch to a node. This strategy proceeds as follows: (1) initialize the weights of the
learner by randomization; (2) split the training data into n equal chunks and send them
to the learners; (3) each learner process the data and calculates the weight gradients for
its batch; (4) send the calculated gradients back to the master; (5) the master computes
and updates the new weights; and (6) the master sends the new weights to the nodes
and a new iteration begins [13]. The convergence speed is slightly worse than for the
sequential approach; however, the training time is heavily reduced.

Strategy C: Delayed stochastic gradient suggests updating the weight parameters in
a round robin fashion by the workers. One solution is splitting the samples by the
number of threads, and let each thread work on its own distinct chunk of samples,
only sharing a common weight vector. Threads are only allowed to update the weight
vector in a round robin fashion, and hence, each update will be delayed [27].

Strategy D: HogWild! is a stochastic gradient descent without locks. The approach
is applicable for sparse optimization problems (threads/core updates do not conflict
much) [41].

In this paper, we introduce Controlled Hogwild with Arbitrary Order of Syn-
chronization (CHAOS), a parallelization scheme that can exploit both thread- and
SIMD-level parallelism available on Intel Xeon Phi. CHAOS is a data-parallel con-
trolled version of HogWild! with delayed updates, which combines parts of strategies
A–D. The key aspects of CHAOS are:

– Thread parallelism The overview of our parallelization scheme is depicted in
Fig. 3. Initially for as many threads as there are, available network instances are
created, which share weight parameters, whereas to support concurrent process-
ing of images some variables are private to each thread. After the initialization of
CNNs and images is done, the process of training starts. The major steps of an
epoch include: Training, Validation and Testing. The first step, Training, proceeds
with eachworker picking an image, forward propagates it through the network, cal-
culates the error, and back-propagates the partial derivatives, adjusting the weight
parameters. Since each worker picks a new image from the set, other workers
do not have to wait for significantly slow workers. After Training, each worker
participates in Validation and Testing evaluating the prediction accuracy of the
network by predicting images in the validation and test set accordingly. Adoption
of data parallelism was inspired by Krizhevsky [24], promoting data parallelism
for convolutional layers as they are computationally intensive.

– Controlled HogWild During the back-propagation, the shared weights are updated
after each layer’s computations (a technique inspired by [27]), whereas the local
weight parameters are updated instantly (a technique inspired by [41]), which
means that the gradients are calculated locally first then shared with other workers.
However, the update to the global gradients can be performed at any time, which
means that there is no need to wait for other workers to finish their updates.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 207

Initialize CNNs

Initialize Images

Train One Image

[more images]

Train One Image

[more images]

Test One Image

[more images]

Test One Image

[more images]

Test One Image

[more images]

Test One Image

[more images]

[more epochs]

NdaerhT1daerhTdaerhTretsaM . . .

Training

Validation

Testing

Fig. 3 Major activities of CHAOS parallelization scheme

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

208 A. Viebke et al.

This technique, which we refer to as non-instant updates of weight parameters
without significant delay, allows us to avoid unnecessary cache line invalidation
and memory writes.

– Arbitrary order of synchronization There is no need for explicit synchronization,
because all workers share weight parameter. However, an implicit synchronization
is performed in an arbitrary order becausewrites are controlled by a first-come-first
schedule and reads are performed on demand.

The main goal of CHAOS is to minimize the time spent in the convolutional layers,
which can be done through data parallelism, adapting the knowledge presented in
strategy A. In strategy B, the synchronization is performed because of averaging
worker’s gradient calculations. Since work is distributed, computations are performed
on stale parameters. The strategy can be applied in distributed and non-distributed
settings. The division ofwork over several distributedworkerswas adapted inCHAOS.
In strategy C, the updates are postponed using a round robin fashion where each thread
gets to updatewhen it is its turn. The difference compared to strategyB is that instances
train on the same set ofweights and no averaging is performed. The advantage is that all
instances train on the same weights. The disadvantage of this approach is the delayed
updates of the weight parameters as they are performed on stale data. Training on
shared weights and delaying the updates are adopted in CHAOS. Strategy D presents a
lock-free approach of updating the weight parameters; updates are performed instantly
without any locks. Our updates are not instant; however, after computing the gradients
there is nothing prohibiting a worker contributing to the shared weights, the notion of
instant inspired CHAOS.

4.2 Implementation aspects

The main goal is to utilize the many cores of the Intel Xeon Phi coprocessor efficiently
to lower the training time (execution time) of the selected CNN algorithm, at the same
time maintaining low deviation in error rates, especially on the test set. Moreover, the
quality of the implementation is verified using errors and error rates on the validation
and test set.

In the sequential version, only minor modifications of the original version were
performed.Mainly,we added aReporter class to serialize execution results. The instru-
mentation should not add any time penalties in practice. However, if these penalties
occur in the sequential version they are likely to imply corresponding penalties in the
parallel version; therefore, it should not impact the results.

The main goal of the parallel version is to lower the execution time of the sequen-
tial implementation and to scale well with the number of processing units on the
coprocessor. To facilitate this, it is essential to fully consider the characteristics of the
underlying hardware. From results derived in the sequential execution, we found the
hot spots of the application to be predominantly the convolutional layers. The time
spent in both forward- and back-propagation is about 94% of the total time of all layers
(up to 99% for the larger network), which is depicted in Table 1.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 209

Table 1 Execution times at each layer for the sequential version on the Xeon E5 using the small CNN
architecture

Layer type Forward propagation (s) Back-propagation (s) % of total

Fully connected 40.9 30.9 1.4

Convolutional 3241 1,438 93.7

Max pooling 188.3 8.2 3.9

(a) (b) (c)

Fig. 4 Detailed phase of training, testing and back-propagation of one image. a Training. b Testing. c
Back-propagation

In our proposed strategy, a set of N network instances are created and assigned to
T threads. We assume T == N , i.e., one thread per network instance. T threads are
spawned, each responsible for its own instance.

The overview of the algorithm is shown in Fig. 3. In Fig. 4, the training, testing and
back-propagation phase are shown in details. Training (see Fig. 4a) picks an image,
forward propagates it, determines the loss and back-propagates the partial derivatives
(deltas) in the network—this process is done simultaneously by all workers, each
worker processing one image. Each worker participating in testing (see Fig. 4b) picks
an image, forward propagates it and then collects errors and error rates. The results are
cumulated for all threads. Perhaps the most interesting part is the back-propagation
(see Fig. 4c). The shared weights are used when propagating the deltas; however,
before updating the weight gradients, the pointers are set to the local weights. There-
after, the algorithm proceeds by updating the local weights first. When a worker has
contributions to the global weights, it can update in a controlled manner, avoiding
data races. Updates immediately affect other workers in their training process. Hence,
the update is delayed slightly, to decrease the invalidation of cache lines, yet almost
instant and workers do not have to wait for a longer period before contributing with
their knowledge.

To see why delays are important, consider the following scenario: If training several
network instances concurrently, they share the sameweight vectors, and other variables

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

210 A. Viebke et al.

are thread private. The major consideration lies in the weight updates. Let W j
l be the

j-th weight on the l-th layer. In accordance with the current implementation, a weight
is updated several times since neurons in a map (on the same layer) share the same
weights, and the kernel is shifted over the neurons. Further, assume that several threads
work on the same weight W j

l at some point in time. Even if other threads only read
the weights, their local data, as saved in the Level 2 cache, will be invalidated and
a re-fetch is required to assert their integrity. This happens because cache lines are
shared between cores. The approach of slightly delaying the updates and forcing one
thread to update in atomicity leads to fewer invalidations. Still amajor disadvantages is
that the shared weights does not infer any data locality (data cannot retain completely
in Level 2 cache for a longer period).

remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 30
remark #15477: vector loop cost: 7.500
remark #15478: estimated potential speedup: 3.980
remark #15479: lightweight vector operations: 6
remark #15480: medium -overhead vector operations: 1
remark #15481: heavy -overhead vector operations: 1
remark #15488: --- end vector loop cost summary ---

Listing 1: An extract from the vectorization report for the partial derivative
updates in the convolutional layer.

To further decrease the time spent in convolutional layers, loops were vector-
ized to facilitate the vector processing unit of the coprocessor. Data were allocated
using _mm_malloc() with 64 byte alignment increasing the accuracy of mem-
ory requests. The vectorization was achieved by adding #pragma omp simd
instructions and explicitly informing the compiler of the memory alignment using
__assume_aligned(). Some unnecessary overhead is added through the lack of data
alignment of the deltas andweights. The computations of partial derivatives andweight
gradients in the convolutional layers are performed in a SIMDway, which allows effi-
cient utilization of the 512 bit wide vector processing units of the Intel Xeon Phi.
An extract from the vectorization report (see Listing 1), for the updates of partial
derivatives in the convolutional layer, shows an estimated potential speedup of 3.98×
compared to the scalar loop.

Further algorithmic optimizationswere performed. For example: (1) The images are
loaded into a pre-allocatedmemory instead of allocating newmemorywhen requesting
an image. (2) Hardware pre-fetching was applied to mitigate the shortcomings of the
in-order-execution scheme. Pre-fetching loads data to L2 cache to make it available
for future computations. (3) Letting workers pick images instead of assigning images
to workers allows for a smaller overhead at the end of a work-sharing construct. (4)
The number of locks is minimized as far as possible. (5)Wemademost of the variables
thread private to achieve data locality.

The training phase was distributed through thread parallelism, dividing the input
space over available workers. CHAOS uses the vector processing units to improve
performance and tries to retain local variables in local cache as far as possible. The
delayed updates decrease the invalidation of cache lines. Since weight parameters are

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 211

shared among threads, there is a possibility that data can be fetched from another core’s
cache instead of mainmemory, reducing the wait times. Also, the memory was aligned
to 64 bytes and unnecessary system calls were removed from the parallel work.

5 Evaluation

In this section, we first describe the experimentation environment used for evaluation
of our CHAOS parallelization scheme. Thereafter, we describe the development of a
performance model for CHAOS. Finally, we discuss the obtained results with respect
to scalability, speedup, and prediction accuracy.

5.1 Experimental setup

In this study, OpenMP was selected to facilitate the utilization of thread and SIMD
parallelism available in the Intel Xeon Phi coprocessor. C++ programming language
is used for algorithm implementation. The Intel Compiler 15.0.0 was used for native
compilation of the application for the coprocessor, whereas the O3 level was used for
optimization.

System Configuration To evaluate our approach, we use an Intel Xeon Phi accelera-
tor that comprises 61 cores that run at 1.2 GHz. For evaluation, 1, 15, 30, 60, 120, 180,
240, and 244 threads of the coprocessor were used. Each thread was responsible for
one network instance. For comparison, we use two general purpose CPUs, including
the Intel Xeon E5-s695v2 that runs at 2.4 GHz clock frequency, and the Intel Core i5
661 that runs at 3.33GHz clock frequency.

Data Set To evaluate our approach, the MNIST [30] dataset of handwritten digits is
used. In total the MNIST dataset comprises 70,000 images, 60,000 of which are used
for training/validation and the rest for testing.

CNN Architectures—Three different CNN architectures were used for evaluation,
small, medium and large. The small and medium architecture were trained for 70
epochs, and the large one for 15 epochs, using a starting decay (eta) of 0.001 and
factor of 0.9. The small and medium network consist of seven layers in total (one
input layer, two convolutional layers, two max-poling layers, one fully connected
layer and the output layer). The difference between these two networks is in the
number of feature maps per layer and the number of neurons per map. For example,
the first convolutional layer of the small network has five feature maps and 3380
neurons, whereas the first convolutional layer of the medium network has 20 feature
maps and 13520 neurons. The large network differs from the small and the medium
network in the number of layers as well. In total, there are nine layers, one input layer,
three convolutional layers, threemax-pooling layers, one fully connected layer and the
output layer. Detailed information (including the number and the size of feature maps,
neurons, the size of the kernels and the weights) about the considered architectures is
listed in Table 2.

To address the variability in performance measurements, we have repeated the
execution of each parallel configuration for three times.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

212 A. Viebke et al.

Table 2 CNN architectures for experimental evaluation of CHAOS

Layer type Maps Map size Neurons Kernel size Weights

Large Input – 29 × 29 841 – –

Convolutional 20 26 × 26 13520 4 × 4 340

Max-pooling 20 26 × 26 13520 1 × 1 –

Convolutional 60 22 × 22 29040 5 × 5 30060

Max-pooling 60 11 × 11 7260 2 × 2 –

Convolutional 100 6 × 6 3600 6 × 6 216100

Max-pooling 100 2 × 2 900 3 × 3 –

Fully connected – 150 150 – 135150

Output – 10 10 – 1510

Medium Input – 29 × 29 841 – –

Convolutional 20 26 × 26 13520 4 × 4 340

Max-pooling 20 13 × 13 3380 2 × 2 –

Convolutional 40 9 × 9 3240 5 × 5 20040

Max-pooling 40 3 × 3 360 3 × 3 –

Fully connected - 150 150 – 54150

Output – 10 10 – 1510

Small Input – 29 × 29 841 – –

Convolutional 5 26 × 26 3380 4 × 4 85

Max-pooling 5 13 × 13 845 2 × 2 –

Convolutional 10 9 × 9 810 5 × 5 1260

Max-pooling 10 3 × 3 90 3 × 3 –

Fully connected – 50 50 – 4550

Output – 10 10 – 510

5.2 Performance model

A performance model [40] enables us to reason about the behavior of an implementa-
tion in future execution contexts. Our performancemodel for CHAOS implementation
can predict the performance for numbers of threads that go beyond the number of
hardware threads supported in the Intel Xeon Phi model that we used for evalua-
tion. Additionally, it can predict the performance of different CNN architectures with
various number of images and epochs.

The goal is to construct a parametrizedmodelwith the following parameters ep, i, i t
and p, where ep stands for the number of epochs, i indicates the number of images
in the training/validation set, i t stands for the number of images in the test set, and
p is the number of processing units. Table 3 lists the full set of variables used in
our performance model, some of which are hardware dependent and some others are
independent of the underlying hardware. Each variable is either measured, calculated,
constant, or parameter in the model. Listing 2 shows the formula used for our perfor-
mance prediction model.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 213

T (i, it, ep, p, s) = Tcomp(i, it, ep, p, s) + Tmem(ep, i, p)

=

(
Prep+ 4 ∗ i+ 2 ∗ it+ 10 ∗ ep

s
(sequential work)

+

(((FProp+BProp

s

)
∗ i

pi
∗ ep

)
(training)

+
((FProp

s

)
∗ i

pi
∗ ep

)
(validation)

+
((FProp

s

)
∗ it

pit
∗ ep

))
(testing)

∗CPI

)
∗ OperationFactor + Tmem(ep, i, p)

Listing 2: The formula for our performance prediction model.

The total execution time (T) is the sum of computations time (Tcomp) and memory
operations (Tmem). T depends on several factors including: speed, number of process-
ing units, communication costs (such as network latency), and memory contention.
The Tcomp is sum of sequential work, training, validation, and testing.Most interesting
is contentions causing wait times, including memory latencies and synchronization
overhead. Tmem adds memory and synchronization overheads. The contention is mea-
sured through an experimental approach by executing a small script on the coprocessor
for different thread counts, weights, and layers.

We define Tmem(ep, i, p) = MemoryContention∗ep∗i
p where MemoryContention is

the measured memory contention when p threads are fighting for the I/O weights
concurrently. Table 4 depicts the measured and predicted memory contentions for the
Intel Xeon Phi.

Our performance prediction model is not concerned with any practical measure-
ments except for Tmem. Along with the CPI and OperationFactor, it is possible to
derive the number of instructions (theoretically) per cycle that each thread can per-
form.

We use Prep to be different for each CNN architecture (109, 1010 and 1011

for small, medium, and large architecture respectively). The OperationFactor
is adjusted to closely match the measured value for 15 threads, and mitigate the
approximations done for instructions in the first place, at the same time account for
vectorization.

When one hardware thread is present per core, one instruction per cycle can be
assumed. For 4 threads per core, only 0.5 instructions per cycle can be assumed,
which means that each thread gets to execute two instructions every fourth cycle
(CP I of 2) and hence we use the CP I factor to control the best theoretical amount of
instructions a thread can retire. The speed s is defined in Table 3. FProp and BProp
are placeholders for the actual number of operations.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

214 A. Viebke et al.

Table 3 Variables used in the performance model

Variable Values Explanation

Parameters

p 1-3,840 Number of processing units/threads

i 60,000 Number of training/validation images

it 10,000 Number of test images

ep 70 (small, medium), 15 (large) Number of epochs

Constants—hardware dependent

CPI 1–2 threads:1 Best theoretical CPI/thread

3 threads:1.5

4 threads:

s 1.238GHz Speed of processing unit

OperationFactor 15 Operation factor

Measured—hardware dependent

MemoryContention see Table 4 Memory contention

T+
Fprop Small: 1.45 Forward propagation / image (ms)

Medium: 12.55

Large: 148.88

T+
Bprop Small: 5.3 Back-propagation / image (ms)

Medium: 69.73

Large: 859.19

T+
Prep Small: 12.56 Time for preparations (s)

Medium: 12.7

Large: 13.5

Calculated—hardware independent

FProp∗ Small: 58,000 # FProp Operations / image

Medium: 559,000*

Large: 5,349,000

BProp∗ Small: 524,000 # BProp Operations / image

Medium: 6,119,000

Large: 73,178,000

Prep∗ Small: 109 # Operations carried out for preparations

Medium: 1010

Large: 1011

∗ The parameter is only used in prediction a)
+ The parameter is only used in prediction b)

5.3 Results

In this section, we analyze the collected data with regards to the execution time and
speedup for varying number of threads and CNN architectures. The errors and error

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 215

Table 4 Measured and
predicted memory contention for
the Intel Xeon Phi

Threads Small Medium Large

1 7.10 × 10−6 1.56 × 10−4 8.83 × 10−4

15 6.40 × 10−4 2.00 × 10−3 8.75 × 10−3

30 1.36 × 10−3 3.97 × 10−3 1.67 × 10−2

60 3.07 × 10−3 8.03 × 10−3 3.22 × 10−2

120 6.76 × 10−3 1.65 × 10−2 6.74 × 10−2

180 9.95 × 10−3 2.50 × 10−2 1.00 × 10−1

240 1.40 × 10−2 3.83 × 10−2 1.38 × 10−1

480∗ 2.78 × 10−2 7.31 × 10−2 2.73 × 10−1

960∗ 5.60 × 10−2 1.47 × 10−1 5.46 × 10−1

1920∗ 1.12 × 10−1 2.95 × 10−1 1.09

3840∗ 2.25 × 10−1 5.91 × 10−1 2.19∗ Predicted values

rates (incorrect predictions) are used to validate our implementation. Furthermore, we
discuss the deviation in number of incorrectly predicted images.

The execution time is the total time the algorithm executes, excluding the time
required to initialize the network instances and images (for both the sequential and
parallel version). The speedup is measured as the relativeness between two execution
times, with the sequential execution times of Intel Xeon E5, Intel Core i5, and Xeon
Phi as the base. The error rate is the fraction of images the network was unable to
predict and the error the cumulated loss from the loss function.

In the figures and tables in this section, we use the following notations: Par refers
to the parallel version, Seq is the sequential version, and T denotes threads, e.g., Phi
Par. 1 T is the parallel version and one thread on the Xeon Phi.

Result 1 The CHAOS parallelization scheme scales gracefully to large numbers of
threads.

Figure 5depicts the total execution timeof theparallel versionof the implementation
running on the Xeon Phi and the sequential version running on the Xeon E5 CPU.
We vary the number of threads on the Xeon Phi between 1, 15, 30, 60, 120, 180, 240,
and 244, and the CNN architectures between small, medium and large. We elide the
results of Xeon E5 Seq. and Phi Par. 1T for simplicity and clarity. The large CNN
architecture requires 31.1 hours to be completed sequentially on the Xeon E5 CPU,
whereas using one thread on the Xeon Phi requires 295.5 hours. By increasing the
number of threads to 15, 30, and 60, the execution time decreases to 19.7, 9.9, and
5.0 hours, respectively. Using the total number of threads (that is 244) on the Xeon
Phi, the training may be completed in only 2.9 hours. We may observe a promising
scalability while increasing the number of threads. Similar results may be observed
for the small and medium architecture.

It should be considered that the selected CNN architectures were trained for dif-
ferent number of epochs and that larger networks tend to produce better predictions
(lower error rates). A fairer comparison would be to compare the execution times until
reaching a specific error rate on the test set. In Fig. 6, the total execution times for the

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

216 A. Viebke et al.

Fig. 5 Total execution time for the parallel version executed on the Intel Xeon Phi and the sequential
version executed on the Intel Xeon E5

Fig. 6 Total execution time for the parallel version executed on the Intel Xeon Phi by setting a stop criteria
as the error rate is ≤1.54%

different CNN architectures and threads on the Xeon Phi is shown. We have set the
stop criteria as the error rate ≤1.54%, which is the ending error rate of the test set
for the small architecture. The large network executes for a longer period even if it
converges in fewer epochs and that the medium network needs less time to reach an
equal (or better) ending error rate than the small and large network. Note that several

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 217

Table 5 Average time spent on each layer for the large CNN architecture

BPFa BPCb FPCc FPFd

Sec % Sec % Sec % Sec %

Phi Par. 244 T 7.8 1.36 506.2 88.48 54.7 9.56 0.23 0.04

Phi Par. 240 T 8.1 1.34 532.2 88.45 87.8 9.61 0.24 0.04

Phi Par. 180 T 9.0 1.41 557.9 87.78 64.8 10.20 0.26 0.04

Phi Par. 120 T 11.3 1.63 598.4 86.82 75.4 10.94 0.28 0.04

Phi Par. 60 T 19.5 1.91 877.7 86.19 114.4 11.23 0.47 0.05

Phi Par. 30 T 34.7 1.71 1,749 86.36 228.3 11.27 0.94 0.05

Phi Par. 15 T 60.8 1.50 3,495 86.52 456.9 11.31 1.90 0.05

Phi Par. 1 T 836.7 1.38 52,387 86.60 6,859 11.34 29.75 0.05

Xeon E5 Seq. 30.2 0.19 7,097 44.51 8714 54.66 17.04 0.11

a Back-propagation in fully connected layers
b Back-propagation of convolutional layers
c Forward propagation of convolutional layers
d Forward propagation in fully connected layers

other factors impact training, including the starting decay, the factor which the decay is
decreased, dataset, loss function, preparation of images, initial weight values. There-
fore, several combinations of parameters need to be tested before finding a balance. In
this study, we focus on the number of epochs as the stop criteria and draw conclusions
from this, considering the deviation of the error and error rates.

Result 2 The total execution time is strongly influenced by the forward propagation
and back-propagation in the network. The convolutional layers are the most compu-
tationally expensive.

Table 5 depicts the time spent per layer for the large CNN architecture. The results
were gathered as the total time spent for all network instances on all layers together.
Dividing the total time by the number of network instances and later the number
of epochs yields the number of seconds spent on each layer per network instance
and epoch. A lower time spent on each layer per epoch and instance indicates on a
speedup. We may observe that the large architecture spends almost all the time in
the convolutional layers and almost no time in the other layers. For Phi Par. 240 T
about 88% is spent in the back-propagation of convolutional layers and about 10% in
forward propagation. We have observed similar results for small and medium CNN
architecture; however, we elide these results for space.

We have observed that the more threads involved in training the more percentage of
the total time each thread spends in the back-propagation of the convolutional layer,
and less time in the others. Overall, the time spent at each layer is decreased per thread
when increasing the number of threads. Therefore, there is an interesting relationship
between the layer times and the speedup of the algorithm.

Table 6 presents the speedup relative to thePhiPar. 1 T for the different architectures
on the convolutional layer. The times are collected by each network instance (through

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

218 A. Viebke et al.

Table 6 Averaged layer speedup compared to the Phi Par. 1 T

BPC-Sa BPC-Ma BPC-La FPC-Sb FPC-Mb FPC-Lb

Phi Par. 244 T 102.0 99.3 103.5 122.3 124.2 125.4

Phi Par. 240 T 96.5 94.1 98.4 114.3 117.3 118.7

Phi Par. 180 T 91.8 89.5 93.9 106.3 107.0 105.8

Phi Par. 240 T 82.7 82.4 87.5 91.0 91.0 91.0

Phi Par. 60 T 56.9 58.9 59.7 58.6 60.1 60.0

Phi Par. 30 T 29.2 29.6 29.9 29.8 30.2 30.1

Phi Par. 15 T 14.7 14.8 15.0 14.9 15.1 15.0

a Back-propagation of convolutional layers—small, medium, large CNN
b Forward propagation of Convolutional layers—small, medium, large CNN

Fig. 7 Speedup of the three CNN architectures by varying the number of threads compared to the sequential
execution on Intel Xeon E5

instrumentation of the forward- and back-propagate function) and averaged over the
number of network instances and epochs. As can be seen, in almost all cases there is
an increase in speedup when increasing the network size, and more importantly, the
speedup does not decrease. Maybe the most interesting phenomena is that the speedup
per layer have an almost direct relationship to the speedup of the algorithm, especially
if compared to the back-propagation part. This emphasizes the importance of reducing
the time spent in the convolutional layers.

Result 3 Using CHAOS parallel implementation for training of CNNs on Intel Xeon
Phi, we achieved speedups of up to 103×, 14×, and 58× compared to the single-thread
performance on Intel Xeon Phi, Intel Xeon E5 CPU, and Intel Core i5, respectively.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 219

Fig. 8 Speedup of the three CNN architectures by varying the number of threads compared to one thread
on Intel Xeon Phi

Figures 7 and 8 emphasize the facts shown in Fig. 5 in terms of speedup. Figure 7
depicts the speedup compared to the sequential execution on Xeon E5 (Xeon E5 Seq.)
for various number of threads and CNN architectures. As can be seen, adding more
threads results in speedup increase in all cases. Using 240 threads on the Xeon Phi
infer a 13.26× speedup for the small CNN architecture. Utilizing the last core of the
Xeon Phi, which is used by the OS, shows even higher speedup (14.07×). We may
observe that doubling the number of threads from 15, to 30, and from 30 to 60 almost
doubles the speedup (2.03, 4.03, and 7.78). Increasing the number of threads further
results with significant speedup, but the double speedup trend breaks.

Figure 8 shows the speedup compared to the execution running in one thread of the
XeonPhi (PhiPar. 1T)while varying the number of threads and theCNNarchitectures.
We may observe that the speedup is close to linear for up to 60 threads for all CNN
architectures. Increasing the number of threads further resultswith significant speedup.
Moreover, it can be seen that when keeping the number of threads fixed and increasing
the architecture size, the speedup increases with a small factor as well, except for 244
threads. It seems like larger architectures are beneficial. However, it could also be
the case that Phi Par. 1 T executes relatively slower than Xeon E5 Seq. for larger
architectures than for smaller ones.

Figure 9 shows the speedup compared to the sequential version executed in Intel
Core i5 (Core i5 Seq.) while varying the number of threads and the CNN architectures.
We may observe that using 15 threads we gain 10× speedup. Doubling the number of
threads to 30, and then to 60 results with close to double speedup increase (19.8 and
38.3). By using 120 threads (that is two threads per core), the trend of double speedup
increase breaks (55.6×). Increasing the number of threads per core to three and four
results with modest speedup increase (62× and 65.3×).

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

220 A. Viebke et al.

Fig. 9 Speedup of the three CNN architectures by varying the number of threads compared to one thread
on Intel Core i5

Result 4 The image classification accuracy of parallel implementation using CHAOS
is comparable to the one running sequentially. The deviation error and the number of
incorrectly predicted images is not abundant.

We validate the implementation by comparing the error and error rates for each
epoch and configuration. Figure 10 depicts the ending errors for the three considered
CNN architectures for both validation and test set. The black dashed line delineates
the base line (that is a ratio of 1). Values below the line are considered better, whereas
those above the line are worse than for Xeon E5 Seq. As a base line, we use the Xeon
E5; however, identical results are derived executing the sequential version on any
platform. As can be seen in Fig. 10, the largest difference is encountered by Phi Par.
244 T, about 22 units (0.05%) worse than the base line. On the contrary, Phi Par. 15 T
has 9 units lower error compared to the base line for the large test set. The validation
sets are rather stable, whereas the test set fluctuates more heavily. Although one should
consider the deviation in error respectfully, they are not abundant in this case. Please
note that the diagram has a high zoom factor and hence the differences are magnified.

Table 7 lists the number of incorrectly classified images for each CNN architecture.
For each architecture, the total (Tot) number of images and the difference (Diff) com-
pared to the optimal numbers of Xeon E5 Seq. are shown. Negative values indicate that
the ending error rate was better than optimal (less images were incorrectly predicted),
whereas positive values indicate that more images than Xeon E5 Seq. were incorrectly
predicted. For each column in the table, best and worst values are annotated with
underline and bold fonts, respectively. No obvious pattern can be found; however,
increasing the number of threads does not lead to worse prediction in general. Phi Par.
180 T stands out as it was 17 images better than Xeon E5 Seq. for small architecture
on validation set. Phi Par. 15 T also performs worst on the small architecture on the
validation set. The overall worst performance is achieved by Phi par. 120 T on the
test set for small CNN architecture. Please note that the total number of images in the

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 221

Fig. 10 Relative cumulative error (loss) for the three considered CNN architectures (small, medium, and
large) for both validation and test set

Table 7 Number of incorrectly classified images for different CNN architectures

of Phi threads Validation Test

Small Medium Large Small Medium Large

Tot Diff Tot Diff Tot Diff Tot Diff Tot Diff Tot Diff

244 616 4 85 1 12 2 155 2 98 3 95 1

240 610 −2 86 2 11 1 154 1 95 0 91 −3

180 595 −17 87 3 12 2 158 5 98 3 95 1

120 607 −5 83 −1 11 1 159 6 95 0 94 0

60 615 3 81 −3 11 1 156 3 98 3 91 −3

30 612 0 83 −1 10 0 156 3 98 3 90 −5

15 617 5 84 0 10 0 153 0 100 5 84 −10

validation set is 60, 000 and 10, 000 for the test set. Overall, the number of incorrectly
predicted images and the deviation from the base line is not abundant.

Result 5 The predicted execution times obtained from the performance model match
well the measured execution times.

Figures 11, 12, and 13 depict the predicted and measured execution times for
small, medium, and large CNN architecture. For the small network (see Fig. 11),
the predictions are close to the measured values with a slight deviation at the end. The
prediction model seems to overestimate the execution time with a small factor.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

222 A. Viebke et al.

Fig. 11 Comparison between the predicted execution time and the measured execution time on Intel Xeon
Phi for the small CNN architecture

Fig. 12 Comparison between the predicted execution time and the measured execution time on Intel Xeon
Phi for the medium CNN architecture

For the medium architecture (see Fig. 12), the prediction follow the measured
values closely, although it underestimates the execution time slightly. At 120 threads,
themeasured and predicted values starts to deviate, which are recovered at 240 threads.

The large architecture yields similar results as the medium. As can be seen, the
measured values are slightly higher than the predictions; however, the predictions

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 223

Fig. 13 Comparison between the predicted execution time and the measured execution time on Intel Xeon
Phi for the large CNN architecture

follow the measured values. As can be seen for 120 threads, there is a deviation which
is recovered for 240 threads. Also, the predictions increase between 120 and 180,
and 180 and 240 threads for both predictions, whereas the actual execution time is
lowered. This is most probably due to the CPI factor that is added when 3 or more

threads are present on the same core. We use the expression x = |m − p|
p

to calculate

the deviation in predictions for our prediction model and all considered architectures,
where m is the measured and p is the predicted value. The average deviations over
all measured thread counts are as follows: 14.57% for the small CNN, 14.76% for
medium, and 15.36% for large CNN.

Result 6 Prediction of execution time for number of threads that go beyond the 240
hardware threads of the model of Intel Xeon Phi used in this paper show that CHAOS
scales well up to several thousands of threads.

We used the prediction model to predict the execution times for 480, 960, 1920, and
3840 threads for different CNN architectures, using the same parameters. The results
in Table 8 show that if 3,840 threads were available, the small network should take
about 4.6 minutes to train, the medium 14.5 minutes, and the large 36.8 minutes. The
predictions for the large CNN architecture are not as well aligned when increasing to
larger thread counts as for small and medium.

Additionally,we evaluated the execution time for varying image counts, and epochs,
for 240 and 480 threads for the small CNN architecture. As can be seen in Table 9,
doubling the number of images or epochs, approximately doubles the execution time.
However, doubling the number of threads does not reduce the execution time in half.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

224 A. Viebke et al.

Table 8 Predicted execution
times (min) for 480, 960, 1,920,
and 3,840 threads using the
performance models

Threads 480 960 1920 3,840

Small CNN 6.6 5.4 4.9 4.6

Medium CNN 36.8 23.9 17.4 14.2

Large CNN 92.9 60.8 44.8 36.8

Table 9 Execution times in minutes when scaling epochs and images for 240 and 480 threads using the
performance model on the small CNN architecture

240 threads 480 threads

Images Epochs Epochs

ia i tb 70 140 280 560 70 140 280 560

60k 10k 8.9 17.6 35.0 69.7 6.6 12.9 25.6 51.1

120k 20k 17.6 35.0 69.7 139.3 12.9 25.6 51.1 101.9

240k 40k 35.0 69.7 139.3 278.3 25.6 51.1 101.9 203.6

a Number of images in the training/validation set
b Number of images in the test set

6 Summary and future work

Deep learning is important for many modern applications, such as voice recognition,
face recognition, autonomous cars, precision medicine, or computer vision. We have
presented CHAOS that is a parallelization scheme to speedup the training process
of convolutional neural networks. CHAOS can exploit both thread and SIMD paral-
lelism of Intel Xeon Phi coprocessor. Moreover, we have described our performance
prediction model, which we use to evaluate our parallelization solution and infer the
performance on future architectures of the Intel Xeon Phi. Major observations include,

– CHAOS parallel implementation scales well with the increase of the number of
threads;

– convolutional layers are the most computationally expensive part of the CNN
training effort; for instance, for 240 threads, 88% of the time is spent on the back-
propagation of convolutional layers;

– using CHAOS for training CNNs on Intel Xeon Phi, we achieved up to 103×,
14×, and 58× speedup compared to the single-thread performance on Intel Xeon
Phi, Intel Xeon E5 CPU, and Intel Core i5, respectively;

– image classification accuracy of CHAOS parallel implementation is comparable
to the one running sequentially;

– predicted execution times values obtained from our performance model match
well the measured execution times;

– results of the performance model indicate that CHAOS scales well beyond the 240
hardware threads of the IntelXeonPhi that is used in this paper for experimentation.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 225

Future work will extend CHAOS to enable the use of all cores of host CPUs and
the coprocessor(s).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abadi M et al (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software
http://tensorflow.org/

2. Ahmed K, Qiu Q, Malani P, Tamhankar M (2014) Accelerating pattern matching in neuromorphic
text recognition system using intel xeon phi coprocessor. In: International Joint Conference on Neural
Networks (IJCNN), 2014, IEEE, pp 4272–4279

3. Andrew N, Jiquan N, Chuan Yu F, Yifan M, Caroline S (2011) Ufldl tutorial on neural networks
4. Bahrampour S,RamakrishnanN, Schott L, ShahM (2015)Comparative study of deep learning software

frameworks. arXiv preprint arXiv:1511.06435
5. Benkner S, Pllana S, Traff J, Tsigas P, Dolinsky U, Augonnet C, Bachmayer B, Kessler C, Moloney

D, Osipov V (2011) PEPPHER: efficient and productive usage of hybrid computing systems. IEEE
Micro 31(5):28–41

6. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst
Technol (TIST) 2(3):27

7. Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for document
processing. Tenth international workshop on frontiers in handwriting recognition. Suvisoft

8. Chrysos G (2012) Intel Xeon Phi coprocessor-the architecture. IntelWhitepaper. https://software.intel.
com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

9. Cireşan D (2017) Simple C/C++ code for training and testing MLPs and CNNs. http://people.idsia.
ch/~ciresan/data/net.zip. Accessed 14 Feb 2017

10. Cireşan D, Meier U, Masci J, Schmidhuber J (2011) A committee of neural networks for traffic sign
classification. In: The 2011 International Joint Conference on Neural Networks (IJCNN), IEEE, pp
1918–1921

11. Cireşan D, Meier U, Masci J, Schmidhuber J (2012) Multi-column deep neural network for traffic sign
classification. Neural Netw 32:333–338

12. Cireşan DC, Meier U, Masci J, Gambardella LM, Schmidhuber J (2011) High-performance neural
networks for visual object classification. arXiv preprint arXiv:1102.0183

13. De Grazia MDF, Stoianov I, Zorzi M (2012) Parallelization of deep networks. In: ESANN 2012
proceedings, 20th European symposium on artificial neural networks, Computational intelligence and
machine learning. i6doc.com publication, pp 621–626

14. DeepLearning: convolutional neural networks (LeNet) - DeepLearning 0.1 documentation. http://
deeplearning.net/tutorial/lenet.html (2016). Accessed 17 March 2016

15. Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–
4):197–387

16. Dokulil J, Bajrovic E, Benkner S, Pllana S, Sandrieser M, Bachmayer B (2013) High-level support for
hybrid parallel execution of c++ applications targeting intel xeon phi coprocessors. Procedia Computer
Science. 2013 InternationalConference onComputational Science, vol 18, pp 2508–2511. doi:10.1016/
j.procs.2013.05.430

17. Fox GC, Jha S, Qiu J, Luckow A (2015) Towards an understanding of facets and exemplars of big data
applications. In: Proceedings of the 20 years of beowulf workshop on honor of thomas sterling’s 65th
birthday, Beowulf ’14, ACM, New York, NY, USA, pp 7–16. doi:10.1145/2737909.2737912

18. Gibansky A (2016) Fully connected neural network algorithms. http://andrew.gibiansky.com/blog/
machine-learning/fully-connected-neural-networks/ . Accessed 21 March 2016

19. Hadsell R, Sermanet P, Ben J, Erkan A, Scoffier M, Kavukcuoglu K, Muller U, LeCun Y (2009)
Learning long-range vision for autonomous off-road driving. J Field Robot 26(2):120–144

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

226 A. Viebke et al.

20. Hsu CH (2014) Editorial. Future Gener Comput Syst 36(Complete):16–18. doi:10.1016/j.future.2014.
02.003

21. Jiang P, Winkley J, Zhao C, Munnoch R, Min G, Yang LT (2016) An intelligent information forwarder
for healthcare big data systems with distributed wearable sensors. IEEE Syst J 10(3):1147–1159.
doi:10.1109/JSYST.2014.2308324

22. Jin L, Wang Z, Gu R, Yuan C, Huang Y (2014) Training large scale deep neural networks on the intel
xeon phi many-core coprocessor. In: IPDPS Workshops, IEEE Computer Society, pp 1622–1630

23. Kessler CW, Dastgeer U, Thibault S, Namyst R, Richards A, Dolinsky U, Benkner S, Trff JL, Pllana
S (2012) Programmability and performance portability aspects of heterogeneous multi-/manycore
systems. In: 2012 Design, Automation Test in Europe Conference Exhibition (DATE), IEEE, Dresden,
Germany, pp 1403–1408. doi:10.1109/DATE.2012.6176582

24. Krizhevsky A (2014) One weird trick for parallelizing convolutional neural networks. eprint
arXiv:1404.5997. https://arxiv.org/abs/1404.5997. Accessed 2 Mar 2017

25. Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Techni-
cal Report, University of Toronto. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.
Accessed 2 Mar 2017

26. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks. In: Advances in neural information processing systems, pp 1097–1105

27. Langford J, SmolaAJ, ZinkevichM (2009) Slow learners are fast. In: NIPS’09, Proceedings of the 22nd
International Conference on Neural Information Processing Systems. Curran Associates Inc, Vancou-
ver, British Columbia, Canada, pp 2331–2339. http://dl.acm.org/citation.cfm?id=2984093.2984354.
Accessed 2 Mar 2017

28. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. doi:10.1038/
nature14539

29. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recog-
nition. Proc IEEE 86(11):2278–2324

30. LeCun Y, Cortes C (2010) Mnist handwritten digit database. AT&T Labs [Online]. http://yann.lecun.
com/exdb/mnist

31. LeCun Y, Huang FJ, Bottou L (2004) Learning methods for generic object recognition with invariance
to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004, IEEE, vol 2, pp II–97

32. Leung KC, Eyers D, Tang X, Mills S, Huang Z (2013) Investigating large-scale feature matching using
the intel xeon phi coprocessor. In: 2013 28th International Conference of, Image andVision Computing
New Zealand (IVCNZ), IEEE, pp 148–153

33. Lu M, Zhang L, Huynh HP, Ong Z, Liang Y, He B, Goh RSM, Huynh R (2013) Optimizing the
mapreduce framework on intel xeon phi coprocessor. In: 2013 IEEE International Conference on Big
Data, IEEE, pp 125–130

34. Memeti S, Pllana S (2016) Combinatorial optimization of dna sequence analysis on heterogeneous
systems. Pract Exp Concurr Comput. doi:10.1002/cpe.4037

35. Memeti S, Pllana S (2016) A machine learning approach for accelerating dna sequence analysis. The
Int J High Perform Comput Appl. doi:10.1177/1094342016654214

36. Murphy J (2016) Deep learning frameworks: a survey of Tensorflow, Torch, Theano, Caffe, Neon,
And The IBM machine learning stack. https://www.microway.com/hpc-tech-tips/deep-learning-
frameworks-survey-tensorflow-torch-theano-caffe-neon-ibm-machine-learning-stack/. Accessed 17
Feb 2017

37. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E (2015) Deep
learning applications and challenges in big data analytics. J Big Data 2(1):1. doi:10.1186/s40537-014-
0007-7

38. NVIDIA: WhatisGPU-AcceleratedComputing?. http://www.nvidia.com/object/what-is-gpu-compu
ting.html (2016). Accessed 14 Nov 2016

39. Pllana S, Benkner S, Mehofer E, Natvig L, Xhafa F, (2009) Towards an intelligent environment for
programming multi-core computing systems. Euro-Par, 2008 workshops—parallel processing, vol
5415. Lecture Notes in Computer Science. Springer, Berlin, pp 141–151

40. Pllana S, Benkner S, Xhafa F, Barolli L (2008) Hybrid performance modeling and prediction of large-
scale computing systems. In: 2008 International Conference on Complex, Intelligent and Software
Intensive Systems, pp 132–138. doi:10.1109/CISIS.2008.20

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

CHAOS: a parallelization scheme for training... 227

41. Recht B, Re C, Wright S, Niu F (2011) Hogwild: a lock-free approach to parallelizing stochastic
gradient descent. Advances in Neural Information Processing Systems, pp 693–701

42. Sainath TN, Kingsbury B, Saon G, Soltau H, Mohamed Ar, Dahl G, B Ramabhadran (2015) Deep
convolutional neural networks for large-scale speech tasks. Neural Netw 64:39–48

43. Scherer D, Schulz H, Behnke S (2010) Accelerating large-scale convolutional neural networks with
parallel graphics multiprocessors. Artificial neural networks–ICANN 2010, Springer, pp 82–91

44. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
45. Sharma S, Tim US, Wong J, Gadia S, Sharma S (2014) A brief review on leading big data models.

Data Sci J 13:138–157. doi:10.2481/dsj.14-041
46. Shi S, Wang Q, Xu P, Chu X (2016) Benchmarking state-of-the-art deep learning software tools. arXiv

preprint arXiv:1608.07249
47. Song I, Kim HJ, Jeon PB (2014) Deep learning for real-time robust facial expression recognition on

a smartphone. In: 2014 IEEE International Conference on Consumer Electronics (ICCE), IEEE, pp
564–567

48. Strawn G (2016) Data scientist. IT Prof 18(3):55–57. doi:10.1109/MITP.2016.41
49. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A

(2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp 1–9

50. Tabik S, Peralta D, Herrera AHPF (2017) A snapshot of image pre-processing for convolutional neural
networks: case study of mnist. Int J Comput Intell Syst 10:555–568

51. Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level perfor-
mance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp 1701–1708

52. Teodoro G, Kurc T, Kong J, Cooper L, Saltz J (2013) Comparative performance analysis of intel xeon
phi, gpu, and cpu. arXiv preprint arXiv:1311.0378

53. Tian X, Saito H, Preis S, Garcia EN, Kozhukhov S, Masten M, Cherkasov AG, Panchenko N (2013)
Practical SIMD vectorization techniques for Intel Xeon Phi coprocessors. IPDPS workshops, IEEE,
pp. 1149–1158

54. Vrtanoski J, Stojanovski TD (2012) Pattern recognition with opencl heterogeneous platform. Telecom-
munications forum (TELFOR), 2012 20th, IEEE, pp 701–704

55. Washburn A (2014) Siri Will Soon Understand You a Whole Lot Better | Wired. http://www.wired.
com/2014/06/siri_ai/. Accessed 17 March 2016

56. Williams S, Waterman A, Patterson D (2009) Roofline:an insightful visual performance model for
multicore architectures. Commun ACM 52(4):65–76. doi:10.1145/1498765.1498785

57. Wu K, Chen X, Ding M (2014) Deep learning based classification of focal liver lesions with contrast-
enhanced ultrasound. Opt Int J Light Electron Opt 125(15):4057–4063

58. Yadan O, Adams K, Taigman Y, Ranzato M (2013) Multi-gpu training of convnets. arXiv preprint
arXiv:1312.5853 9

59. You Y, Song SL, Fu H, Marquez A, Dehnavi MM, Barker K, Cameron KW, Randles AP, Yang G
(2014) Mic-svm: designing a highly efficient support vector machine for advanced modern multi-core
and many-core architectures. In: 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, IEEE, pp 809–818

60. Zhang L, Wang L, Wang X, Liu K, Abraham A (2012) Research of neural network classifier based on
FCM and PSO for breast cancer classification. Springer, Berlin, pp 647–654

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

