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Abstract—The automatic segmentation of blood-cells for de-
tecting hematological disorders is a crucial job. It has a vital
role in diagnosis, treatment planning, and output evaluation.
The existing methods suffer from the issues like noise, improper
seed-point detection, and over-segmentation problems, which are
solved here using an LoG-based modified highboosting opera-
tion, BO-FRS based seed-point detection, and hybrid ellipse-
fitting, respectively. This paper proposes a novel hybrid ellipse-
fitting based blood-cell segmentation approach, which may be
used for detecting various hematological disorders. Our prime
contributions are: (1) More accurate seed-point detection based
on bounded opening followed by Fast Radial Symmetry (BO-
FRS), (2) A novel least squares (LS)- based geometric ellipse-
fitting approach, and (3) An improved segmentation perfor-
mance by employing a hybridized version of geometric and
algebraic ellipse-fitting techniques retaining the benefits of both
the approaches. It is a computationally efficient approach since
it hybridizes non-iterative- geometric and algebraic methods.
Moreover, we propose to estimate the minor and major axes
based on residue and residue offset factors. The residue offset
parameter, proposed here, yields more accurate segmentation
with proper ellipse-fitting. Our method is compared with the
state-of-the-art methods. It outperforms the existing ellipse-fitting
techniques in terms of dice similarity, Jaccard score, precision,
and F1 score. It may be useful for other medical and cybernetics
applications.

Index Terms—Acute Lymphoblastic Leukemia, Acute Myeloid
Leukemia, Ellipse-fitting, Hematological Disorder, Segmentation,
Sickle Cell Anemia.

I. INTRODUCTION

AUTOMATIC segmentation is a significant task in image
processing applications [1]–[19]. It has an important role

in the detection, classification, and diagnosis of hematological
disorders: Sickle cell anemia (SCA), Acute Lymphoblastic
Leukemia (ALL), and Acute Myeloid Leukemia (AML). SCA
causes significant morphological variations of red blood-cells
(RBCs) [1], [8]. However, AML and ALL affect white blood-
cells (WBCs) [20], [21]. Hence, analysis of cell morphology
has a vital role in the diagnosis of hematological disorders [1],
[22], [23].

Manual counting and segmentation of cells are time-
consuming and truely are a more challenging job [1], [8],
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[18]. The presence of noise, unwanted cells, overlapped cells,
and poor contrast make this task more difficult. On the other
hand, automatic segmentation enhances the robustness and
thus makes diagnosis and treatment planning more accurate
[1], [8]. Proper segmentation of overlapped or touched cells
enhances detection and classification performance.

Recently, ellipse-fitting has become a preferred approach
for the segmentation of overlapping objects/ cells [1], [4]–
[13]. Gonzalez-Hidalgo et al. [8] concentrate on concave point
identification, followed by an ellipse adjustment technique
to effectively segment overlapped RBCs. On the other hand,
Wang et al. [7] have suggested an efficient ellipse-fitting based
approach to estimate fetal head circumference in ultrasound
images automatically. In 2018, Panagiotakis and Argyros [13]
have employed a region-based ellipse-fitting approach to seg-
ment the cells.

Azhar and Tjahjadi [9] have presented an ellipse-fitting and
contour-movement based method to classify a human body-
posture. Here, the ellipse-fitting approach is employed on the
inverted-pendulum-human-body model to classify the body-
posture. Chen and Epps [11] have suggested a convex-hull and
ellipse-fitting based approach to extract the pupil boundary
of the eye more accurately. They have employed a least-
square-based ellipse-fitting approach to evaluate the pupil size
efficiently. However, this ellipse-fitting technique depicts poor
performance in some specific situations like a major part of
the pupil is occluded.

Prasad et al. [5] have presented an elegant LS based ellipse-
fitting technique. It is a non-iterative geometric ellipse fitting
approach. It is stable and computationally efficient also. It has
comparatively better selectivity to an elliptic curve than many
current techniques, as it is a geometric based ellipse-fitting
approach rather than algebraic based approach. The results
presented in [5] signify that it delivers better performance than
[27]–[29].

In 2015, Zafari et al. [4] have presented an efficient ellipse-
fitting method to segregate overlapping objects for silhouette
images. They [4] successfully extract seed points by applying
bounded erosion [4], [24] and FRS [25]. Then edge and seed
point information has been integrated to find out contour
evidence. At last, an ellipse-fitting technique [26] is applied
to estimate contour and segment overlapped objects as well
[4]. They focus on the estimation of the proper eigenvector.
Simplicity and computationally efficient are the salient features
of the algebraic ellipse-fitting approach.

In 2020, Meng et al. [6] have presented a novel arc adja-
cency matrix-based ellipse-fitting technique. In this approach,
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diagram-based arc adjacency is estimated from the elliptic-
arcs. Then, curvature and region constraints are applied to
make it sparse. Finally, effective ellipse-fitting is achieved
depending on twice the eigendecomposition of cumulative
matrices based on the Jacobi approach.

The existing methods suffer from the problems of noise, in-
tensity inhomogeneity, unwanted cells, and over-segmentation.
Therefore, authors are motivated to propose a novel hybrid
ellipse-fitting based blood-cell segmentation technique to mit-
igate the above issues and to yield more precise segmentation
with proper ellipse-fitting. There is a strong need for a new
theoretical investigation in this context. In this paper, we
propose a new theoretical investigation on the estimation of
major and minor axes of an ellipse based on residue and
residue-offset.

This paper proposes a novel hybrid ellipse-fitting based
blood-cell segmentation technique for the detection of hema-
tological disorders. The proposed method emphasizes the
elimination of unwanted cells (WBCs and platelets in SCA
detection; RBCs and platelets in AML and ALL detection)
using k-means clustering-based color segmentation [30], [31]
and morphological operations. The work further emphasizes
more accurate segmentation of overlapping cells. It consists
of three crucial steps, including seed-point detection, contour
evidence extraction, and ellipse-fitting. We propose an efficient
geometric ellipse-fitting approach motivated by the ellipse-
fitting method of Prasad et al. [5].

A. Contribution

The major contributions of the proposed method are the
following:

1. Image quality improvement (edge enhancement, deblur-
ring, and noise removal) using an LoG [33], [34] based
modified highboosting operation;

2. Efficient seed-point detection by employing bounded
opening followed by Fast Radial Symmetry (BO-FRS);

3. A novel geometric ellipse-fitting approach (where major
and minor axes are accurately estimated based on residue
and residue-offset values);

4. Combining this geometric ellipse fitting with the alge-
braic ellipse-fitting, suggested by Zafari et al. [4], to
achieve better performance by retaining the advantages
of both the approaches.

The paper is organized as follows. Section II highlights
the proposed method for the segmentation of RBCs. The
performance evaluation is presented in Section III. Finally, the
paper is concluded in section IV.

II. PROPOSED METHOD

The schematic of the proposed method for the precise
segmentation of blood-cells is illustrated in Fig. 1. It is
composed of the following steps.

A. Preprocessing

The quality of the captured image suffers due to the pres-
ence of blur and unwanted noise, which may result a faulty
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Fig. 1. Schematic of the proposed method.

diagnosis [1]. Thus, pre-processing is required to improve
the image quality. Laplacian operator can be employed for
edge enhancement and deblurring. However, it is sensitive to
noise. Hence, to minimize the noise-effect, a 2D Gaussian
filter is employed prior to the Laplacian operator; making it
a Laplacian-of-Gaussian (LoG) filter [33]. It is also known
as ’Mexico hat’. Rotational symmetry is one of the salient
features of LoG [34]. Here, we employ an LoG based mod-
ified highboosting operation to produce a noise eliminated
deblurred image. This operation is represented as follows.

FI (x, y) = CI (x, y) + kLG (x, y) (1)

where CI (x, y) depicts input color image while FI (x, y)
represents the pre-processed image. k is a weight factor
(k > 1) . The weight factor k should be properly selected
to boost the image quality efficiently. Here, we take k = 1.5.
LG (x, y) denotes LoG on CI (x, y), which is represented as:

LG (x, y) =
−1

πσ4

(
1− x2 + y2

2σ2

)
exp

(
−x

2 + y2

2σ2

)
. (2)

where σ symbolizes standard deviation, which should be
properly selected to improve the image quality. Here, we
employ an LoG filter of 7× 7 with σ = 1.

B. Elimination of Unwanted Blood-cells

The image may have unwanted cells (WBCs and platelets in
SCA detection; RBCs and platelets in AML and ALL detec-
tion), which may cause a false diagnosis [1]. Our proposed
method emphasizes the elimation of unwanted cells using
k-means clustering-based color segmentation [30], [31] and
morphological operations to improve segmentation accuracy
and reliability. K-means clustering is an unsupervised machine
learning technique [30]–[32]. It is employed to extract WBCs
and platelets from an image, as highlighted in Pseudo Code 1.
The detection of WBCs is a binary-class color segmentation
problem, where each class is represented by three color-
channels. Hence, the number of clusters (n) in K-means
clustering is selected as 6. Moreover, n=6 is the optimal
number of clusters at which WBCs are detected efficiently.

For the detection of ALL and AML, morphological opera-
tions are employed on (W ) to eliminate the platelets like small
particles and get the desired WBCs. However, in SCA dataset
to get the desired RBCs, we have first to convert (FI) and
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Pseudo Code 1 Detection of WBCs and platelets.
Input: An RGB color image (FI)
Output: An RGB color image having only WBCs and platelets
Begin
1: Convert the input color image to L*a*b color space.
1: Initialize the number of clusters: n=6.
3: K-means clustering is employed to classify color in ’a*b*’ space.
4: Level each pixel based on its cluster index.
5: Find out the resultant RGB color-image (W ).
End

(W ) into HSV color space. Since the saturation component
(S) of RBCs and WBCs differ significantly, we subtract the S
component of (W ) from that of (FI) to eliminate the detected
WBCs and platelets. Then, apply morphological operations
to completely remove WBCs, and platelets and get the S
component of desired RBCs. Finally, the resultant RGB color
image containing only RBCs are extracted successfully.

C. Segmentation of overlapped cells

This paper presents a novel approach to efficiently segment
cells, especially when a few cells overlap over each other as
demonstrated in Pseudo Code 2. It consists of three crucial
steps: seed-point detection, contour-evidence extraction [4],
and contour-estimation. In the following, we highlight these
crucial steps for the segmentation of overlapped cells.

1) Seed-point Detection: Seed-point detection is a crucial
task in the segmentation of overlapping cells. It influences
the performance of the final segmentation outputs. The main
objective of seed-point detection is to identify each particle
in an image by seed point. It also gives information about the
total number of particles (cells) available in the image. Hence,
proper seed point detection boosts the performance of contour
evidence extraction as well as contour estimation.

Zafari et al. [4] have suggested an effective seed-points
detection approach based on bounded erosion (BE) followed
by FRS [25]. It can efficiently detect seed-points in silhouette
images. However, the minor axis length gradually decreases
due to BE. Hence, it is unable to properly detect the seed-
points of cells, which have a relatively large aspect ratio [1].
To mitigate this issue, we employ the bounded opening (BO) in
place of BE, which can efficiently separate convex-shape cells.
BO is simply an iterative opening process having a specific
number of iteration. Here, the number of opening operations
in BO is selected as four since it yields an optimal tread off
between the seed-point detection performance and the number
of iterations. FRS [25] is employed to detect seed regions
having high rotational symmetry. Moreover, the proposed BO-
FRS gives priority to both convexity and rotational symmetry
of cells.

A gray-scale image GI is represented as the union of convex
cells Cj . Mathematically, GI can be expressed as:

GI =

n⋃
j=1

Cj . (3)

The main motive of employing BO is to enhance the separabil-
ity of each convex cell Cj . In the kth iteration of BO, every
connected object Cj of GI(k − 1) is processed to produce

resultant cell Rj . Rj is represented as:

Rj = Ckj ◦D (0, 1) . (4)

Here, D(0, 1) represents closed disc structuring object hav-
ing unity radius and ◦ symbolizes morphological opening [24].

The resultant image in the kth iteration of BO is obtained
as a union of all Rj .

Gk+1
I =

⋃
j

Rj (5)

FRS is a computationally efficient feature extraction approach
[25]. It concentrates on local radial symmetry (LRS) to ex-
tract seed-points [4]. While LRS is employed with N × N
neighborhood over the image having M pixels, it yields the
complexity of order O(MN) [25]. FRS is usually employed
on the gradient of an image. Here, each edge-pixel of an
image delivers a vote to achieve the best LRS within a certain
distance from this pixel [4]. We have to select an appropriate
range of distance value d. Let d vary in [RMIN , RMAX ] for
each pixel of gradient image I.

FRS emphasizes the estimation of magnitude projection
image Md and orientation projection image Od. For this pur-
pose, it first estimates positively-affected A+ve and negatively-
affected A−ve pixels.

A+ve (x, y) = (x, y) + round

((
I (x, y)

‖I (x, y)‖

)
× d
)

(6)

A−ve (x, y) = (x, y)− round
((

I (x, y)

‖I (x, y)‖

)
× d
)

(7)

Od (A+ve (x, y))→ Od (A+ve (x, y)) + 1 (8)

Od (A−ve (x, y))→ Od (A−ve (x, y))− 1 (9)

Md (A+ve (x, y)) = Md (A+ve (x, y)) + ‖I (x, y)‖ (10)

Md (A−ve (x, y)) = Md (A−ve (x, y))− ‖I (x, y)‖ (11)

The contribution of radial symmetry Sd is estimated as:

Sd =
Md (x, y)

kd


∣∣∣Õd (x, y)

∣∣∣
kd

λ

∗Hd. (12)

Where, ∗ symbolizes convolution operation and Hd denotes
2D Gaussian. Here, λ is the radial strictness and kd is a
scaling-factor responsible for the normalization of Md and Od.
Õd is represented as:

Õd (x, y) =

{
Od (x, y) , if Od (x, y) < kd

kd, otherwise. (13)

The full FRS-transform is computed as the mean of the sym-
metry contributions over all the radii d ∈ [RMIN , RMAX ].

S =
1

|N |
∑

d∈
[
RMIN ,RMAX

]Sd (14)

Finally, the seed-points are predicted based on average
location, centroid, of the identified symmetry regions, in S.
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Fig. 2. Example of edge-to-seed-point association.

2) Contour Evidence Extraction: In this section, we em-
phasize the detection of contour-evidence based on the edge-
to-seed point association technique [35]. This technique can
successfully assign each edge-pixel to the corresponding seed-
point based on the Euclidean distance and the divergence
factor. For this purpose, we first extract the edge-points based
on the Sobel edge detection technique [22], which is focused
on high spatial frequency to identify the appropriate edge-
points. For example, let the set of detected seed-points be P =
{p1, p2,...., pn} . Each edge-point ej in E = {e1, e2,...., er}
is associated to the corresponding seed-points depending on a
relevance factor rel(ej , pk) given as:

rel (ej , pk) =
1− ω

1 + dist (ej , pk)
+ ω

div (ej , pk) + 1

2
. (15)

where ω is a constant taking on values [0, 1]. Here,
dist (ej , pk) is the normalized Euclidean distance between
ej and pk, and div (ej , pk) denotes the divergence function
between ej and pk. Both the terms lie within (0, 1]. The edge-
pixel ej is associated with a seed-point pk only when relevance
value between them is maximum.

It is considered that each pixel on the line joining the
edge-point-to-seed-point l(ej , pk) should lie in the image
foreground If :

g (x) =

{
|ej − pk| , if l (ej , pk) ⊂ If
∞, otherwise. (16)

The deviation between the direction of l(ej , pk) and the
gradient direction at ej is represented by div (ej , pk). It is
expressed as:

div (ej , pk) =
l (ej , pk) g (ej)

‖l (ej , pk)‖ ‖g (ej)‖
. (17)

The search space is adaptively determined through a circular
region around every edge-point. Hence, less number of seed-
points are processed, and erroneous edge-points are eliminated
successfully. Moreover, it makes the edge-to-seed-point asso-
ciation more robust and computationally more efficient.

Fig. 2 depicts the edge-to-seed-point association. Here, the
dashed arrow illustrates the line from seed-point to edge-point.
The solid arrow indicates the gradient direction at ej .

3) Contour Estimation: The prime objective of this section
is to segment overlapping cells using contour estimation
properly. Here, we propose a novel geometrical ellipse-fitting
approach inspired by the ellipse-fitting technique of Prasad
et al. [5]. It is a non-iterative, LS-based ellipse-fitting tech-
nique. Moreover, the major and minor axes are updated more

precisely based on residue and residue-offset factors. The
geometric equation of an ellipse is represented as:

((x−x0) cos θ0−(y−y0) sin θ0)2

m2 +
((x−x0) sin θ0+(y−y0) cos θ0)2

n2 = 1
(18)

where, m: Semi-major axis length
n: Semi-minor axis length
θ0: Angle of orientation (angle between x-axis and major axis)
C (x0, y0) : Center

Eq. (18) represents an ellipse, provided the following con-
ditions are satisfied.

C1 : m,n ∈ R+

C2 :
C3 :
C4 :

m ≥ n
θ0 ∈ [0, π)
x0, y0 ∈ R

(19)

Eq. (18) can be rewritten as:

α(x− x0)
2

+ β(y − y0)
2

+ γ (x− x0) (y − y0) = (mn)
2

(20)
where,

α = 0.5
((
m2 + n2

)
−
(
m2 − n2

)
cos (2θ0)

)
β = 0.5

((
m2 + n2

)
+
(
m2 − n2

)
cos (2θ0)

)
γ =

(
m2 − n2

)
sin (2θ0)

(21)

The mathematical model of ellipse-fitting is demonstrated
as follows.

Suppose Ē is a five-dimensional vector, which consists of
ellipse parameters: m, n, θ0, x0, y0, the vector utilizing the
sequence of pixels Pk′ (xk′, xk′) : k = 1 : N. The vector Ȳ
contains y-coordinates of the pixels.

Ē = [m,n, θ0, x0, y0]
T (22)

Ȳ =
[
−y12 −y22 .... −yN 2

]T
, Ȳ ∈ ZN (23)

H̄ =
[
h1 h2 h3 h4 h5

]T
, H̄ ∈ R5 (24)

G : Ē → H̄; X : H̄ → Ȳ (25)

H̄ is a five-dimensional vector, which contains new real-
valued variables h1 to h5. It is employed to split the nonlinear
mapping F : Ē → Ȳ into two maps G and X as given by (25).
The variables h1 to h5 are estimated in such a manner that
it yields linear mapping between H̄ and Ȳ , represented by:

Ȳ = XH̄. (26)

G : Ē → H̄ is a nonlinear map whereas the mapping be-
tween H̄ and Ȳ is linear; and thus maintaining the mapping
of Ē to Ȳ is nonlinear. However, the parameters of H̄ and
Ē make G as a one-to-one mapping. Thus, m, n, θ0, x0, y0
can be evaluated distinctively from h1 to h5.

For evaluating the parameters h1 to h5 and constructing
the map X, we characterize residual distance as:

N∑
k=1

rk
2 =

∥∥Ȳ −XH̄∥∥2. (27)
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Fig. 3. The red-line represents the contour of an object. (a) The black-line
represents the ellipse-fitting without considering the terms Rn and R

′
n in Eq.

37 and 38. (b) The blue-line represents the ellipse-fitting by considering Rn

and R
′
n.

where, ‖.‖ symbolizes the Euclidean norm of a vector. This
residual distance is minimized to obtain the unique optimal-
solution of H̄. H̄ can be estimated as:

H̄ =
(
XTX

)−1
XT Ȳ . (28)

The ellipse formulation, given in (20), may be rewritten as:

−y2 = α
β

(
x2
)

+ γ
2β (2xy)− 2x

(
αxo+

γ
2 y0

β

)
−

2y
(
βy0+

γ
2 x0

β

)
−
(
m2n2−(αx2

0+βy
2
0+γx0y0)

β

) (29)

The parameters h1 to h5, and the map X can be evaluated
by solving (29) as follows.

h1 = α/β (30)

h2 = γ/2β (31)

h3 =
2αx0 + γy0

2β
= h1x0 + h2y0 (32)

h4 =
2βy0 + γx0

2β
= y0 + h2x0 (33)

h5 =
m2n2−(αx2

0+βy
2
0+γx0y0)

β

= m2n2

β −
(
h1x

2
0 + y20 + 2h2x0y0

) (34)

X =
[
x2 2xy −2x −2y −1

]
(35)

The normalized residue is estimated as:

Rn =

∥∥XH̄ − Ȳ ∥∥∥∥Ȳ ∥∥ . (36)

where ‖.‖ depicts the Euclidean norm of a vector. Perfect
ellipse-fitting can be achieved at a minimal normalized residue.
The normalized residue varies between 0 and 1.

The parameters of the ellipse: m,n, θ0, x0, y0 can be evalu-
ated from h1 to h5 as shown in Eq. (37)-Eq.(41), respectively.

θ0 = −0.5tan−1
(

2h2
1− h1

)
(39)

x0 =
h3 − h2h4
h1 − h22

(40)

Pseudo Code 2 Segmentation of Overlapping Cells
Input: The resultant color image after removal of unwanted cells
Output: Final segmented color image
Begin
1: Initialization of parameters

Set number of opening operations in BO as 4.
Set radial range:
[RMIN , RMAX ]= [12, 21] for SCA and ALL datasets

= [14, 31] for AML dataset.
2: Detect the seed-points by employing BO-FRS.
3: Extract the contour evidence using edge-to-seed-point association.
4: Construct the matrix X and Ȳ using Eq. (35) and (23), respectively.
5: Compute H̄ utilizing Eq. (28).
6: Evaluate the normalized residue (Rn) using Eq. (36).
7: Estimate m,n, θ0, x0, y0 employing Eq. (37)-(41), respectively.
8: To make the ellipse-fitting more efficient, employ the suggested

algebraic ellipse-fitting particularly when Rn > 0.5, m > ρ, n > ρ.
End

y0 =
h1h4 − h2h3
h1 − h22

(41)

where, the term R
′

n, the residueoffset in (37) and (38), is
estimated as:

R
′

n = mean
(
sign

(
XH̄ − Ȳ

))
Rn (42)

The terms Rn and R
′

n are responsible for fine-tunning
and precise fine-tunning (the ellipse-fitting), respectively. The
term Rn modifies the minor and major axes to provide
better ellipse-fitting. Furthermore, R

′

n optimizes the major and
minor axes depending upon the mean

(
sign

(
XH̄ − Ȳ

))
, as

shown in Fig. 3. In this example, mean
(
sign

(
XH̄ − Ȳ

))
is negative, which makes R

′

n negative. Hence, it optimizes
the ellipse-fitting by increasing major-axis length and decreas-
ing the minor-axis length based on R

′

n. Similarly, positive
mean

(
sign

(
XH̄ − Ȳ

))
enhances the minor-axis (n) and

reduces the major-axis (m); thus yielding a precise fine-
tunning of ellipse-fitting.

Usually, the above proposed ellipse-fitting method demon-
strates excellent performance. However, sometimes it may
display relatively poor performance particularly, when Rn >
0.45, m > ρ, n > ρ. Specifically, in such situations, we
employ the LS-based non-iterative algebraic ellipse-fitting
method proposed by Zafari et al. [4] to improve the perfor-
mance and make the ellipse-fitting more accurate. We take
ρ = 30 for SCA and ALL datasets, whereas ρ = 60 for AML
dataset. Hence, the proposed method combines the benefits of
both geometric and algebraic ellipse-fitting techniques.

III. PERFORMANCE EVALUATION

In this section, we present the performance of proposed
method as well as various existing methods for the seg-
mentation of cells. Next, we discuss the datasets and the
performance measures used. Finally, the performance analysis
of the proposed method is presented.

A. Dataset

The proposed method is validated using the following pub-
licly available datasets: SCA dataset (ErythrocytesIDB [36]),
ALL dataset (ALLIDB1 [37]), and AML dataset [38].



6

m =

∣∣∣∣∣∣∣∣
√√√√√√ 2

(
(h2 + h5)

(
h22 − h1

)2
+ (h2h3 − h1h4)2 + h1(h2h4 − h3)2

)
(
h22 − h1

)2 (
1 + h1 + 1.5Rn −

√(
1 − h1 −R′

n

)2
+ 4

(
h2 − 0.5R′

n

)2)
∣∣∣∣∣∣∣∣ (37)

n =

∣∣∣∣∣∣∣∣
√√√√√√ 2

(
(h2 + h5)

(
h22 − h1

)2
+ (h2h3 − h1h4)2 + h1(h2h4 − h3)2

)
(
h22 − h1

)2 (
1 + h1 + 1.5Rn +

√(
1 − h1 −R′

n

)2
+ 4

(
h2 − 0.5R′

n

)2)
∣∣∣∣∣∣∣∣ (38)

Fig. 4. Confusion Matrix Venn Diagram.

B. Performance Measures

We emphasize various performance measures: precision [1],
recall [1], F1 score [1], Jaccard coefficient (Jc) [4], and Dice
similarity coefficient (DSC) [39] for quantitative performance
analysis.

Precision =
TP

TP + FP
(43)

Recall =
TP

TP + FN
(44)

F1 Score =
2× (Recall × Precision)

(Recall + Precision)
(45)

Jc =
|Is ∩ Ig|
|Is ∪ Ig|

. (46)

DSC =
2 |Is ∩ Ig|
|Is|+ |Ig|

. (47)

where Is represents segmented image and Ig symbolizes
ground truth image. True Positive (TP) characterizes the num-
ber of properly segmented pixels. False Negative illustrates the
number of undetected pixels. False Positive (FP) is the number
of falsely identified pixels, which truly are not so, as shown
in Fig. 4. The ideal value of DSC, (Jc), and (As) is 1.

C. Results

This section presents the performance of the proposed
segmentation method for accurate detection of hematological
disorders. We emphasize the performance evaluation of the
elimination of unwanted cells, seed-point detection, and seg-
mentation of overlapping cells. Moreover, the performance of
the proposed ellipse-fitting approach is compared with other
existing methods including ellipse-fitting methods of Zafari et
al. [4], Prasad et al. [5], and Meng et al. [6]. Moreover, we

a b c
Fig. 5. Segmentation of unwanted cell in sickle-cell dataset: (a) Original
image; (b) Extracted unwanted cells; (c) Resultant image having only RBCs

a b

c d
Fig. 6. Segmentation of unwanted cell in ALL and AML datasets: (a) and
(c) Original images; (b) and (d) Resultant images containing only WBCs.

apply the same pipeline structure as presented in the proposed
method to make the comparison more fair and effective.

1) Elimination of WBCs and Platelets: In this section, we
illustrate the qualitative performance of the elimination of
unwanted cells. Fig. 5(a) depicts the input image, which con-
tains RBCs along with WBCs and platelets. These unwanted
cells are extracted successfully by employing the k-means
clustering-based color segmentation technique, as shown in
Fig. 5(b). Fig. 5(c) illustrates the desired resultant image,
which contains only RBCs. From the figure, we visualize that
WBCs and platelets are eliminated perfectly, which will make
the segmentation more accurate. Moreover, from Fig. 6 (b) and
Fig. 6 (d), we observe that WBCs are extracted successfully
from ALL and AML dataset images, respectively.

2) Seed-point Detection: The prime objective of seed-point
detection is to identify the location of the cells properly. Fig. 7
demonstrates the qualitative performance of seed-point detec-
tion. BO-FRS can detect seed-points more precisely than BE-
FRS. From these figures, we observe that BE-FRS illustrates
comparatively poor-performance due to false detection of seed-
points, particularly the cells having a large aspect ratio. Table
I illustrates that BOFRS demonstrates superior performance in
terms of pecision, recall, and F1 score as compair to BEFRS.
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Experiment 1 Experiment 2 Experiment 3

Ground
Truth

Prasad et
al. [5]

DSC=0.8625 DSC=0.9200 DSC=0.8501

Meng et
al. [6]

DSC=0.8669 DSC=0.9174 DSC=0.8509

Zafari et
al. [4]

DSC=0.8748 DSC=0.9266 DSC=0.8724

Proposed

DSC=0.8980 DSC=0.9446 DSC=0.8879

Fig. 8. Segmentation of cells in SCA dataset [36].
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Experiment 4 Experiment 5 Experiment 6 Experiment 7

Ground
Truth

Prasad et
al. [5]

DSC=0.9442 DSC=0.9134 DSC=0.9580 DSC=0.9249

Meng et
al. [6]

DSC=0.9453 DSC=0.9143 DSC=0.9589 DSC=0.9256

Zafari et
al. [4]

DSC=0.9446 DSC=0.9307 DSC=0.9580 DSC=0.9478

Proposed

DSC=0.9522 DSC=0.9366 DSC=0.9681 DSC=0.9519

Fig. 9. Segmentation of cells in Leukemia datasets [37], [38].

TABLE I
PERFORMANCE COMPARISON OF SEED-POINT DETECTION

Dataset Method Precision (%) Recall (%) F1 Score (%)
Sickle
cell [36]

BEFRS 95.80 95.00 95.40
BOFRS 96.64 95.83 96.23

ALL [37] BEFRS 98.63 98.18 98.40
BOFRS 99.09 98.64 98.86

AML [38] BEFRS 99.00 98.5 98.75
BOFRS 99.33 99.00 99.16

3) Segmentation of Overlapping Cells: In this section, we
present both the qualitative and quantitative performance of
the segmentation of cells using ellipse-fitting approaches. The
proposed hybrid ellipse-fitting technique is compared with var-

TABLE II
PERFORMANCE COMPARISON USING SCA DATASET [36]

Ex. Ellipse-fitting Method Precision
(%)

F1 Score
(%) Jc DSC

1

Prasad et. al [5] 79.36 86.25 0.7582 0.8625
Meng et al. [6] 79.69 86.69 0.7651 0.8669
Zafari et al. [4] 80.47 87.48 0.7775 0.8748
Proposed 85.97 89.81 0.8150 0.8597

2

Prasad et. al [5] 86.63 92.00 0.8519 0.9200
Meng et al. [6] 86.19 91.74 0.8474 0.9174
Zafari et al. [4] 86.71 92.66 0.8632 0.9266
Proposed 91.67 94.46 0.8950 0.9446

3

Prasad et. al [5] 75.90 85.01 0.7393 0.8501
Meng et al. [6] 76.07 85.09 0.7405 0.8509
Zafari et al. [4] 78.86 87.24 0.7737 0.8724
Proposed 83.82 88.79 0.7984 0.8879
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a b

c d
Fig. 7. Seed point detection: (a) and (c) BE-FRS; (b) and (d) BOFRS.

TABLE III
PERFORMANCE COMPARISON USING ALL DATASET [37]

Ex. Ellipse-fitting Method Precision
(%)

F1 Score
(%) Jc DSC

4

Prasad et. al [5] 90.55 94.42 0.8943 0.9442
Meng et al. [6] 90.87 94.53 0.8963 0.9453
Zafari et al. [4] 90.54 94.46 0.8950 0.9446
Proposed 95.67 95.22 0.9088 0.9522

5

Prasad et. al [5] 88.40 91.34 0.8406 0.9134
Meng et al. [6] 88.61 91.43 0.8421 0.9143
Zafari et al. [4] 88.44 93.07 0.8704 0.9307
Proposed 94.02 93.66 0.8808 0.9366

ious existing methods including the ellipse-fitting techniques
suggested by Zafari et al. [4], Prasad et al. [5], and Meng et
al. [6].

Fig. 8 demonstrates the qualitative performance of the
segmentation of cells in the SCA dataset [36]. From these
figures, we visualize that the proposed ellipse-fitting technique
yields the best performance among all with proper detection
of cells. However, Zafari et al. [4] depict the second-best
performance.

In Fig. 9, Experiment 4 and 5 represents the qualitative
performance of segmentation of cells in ALL dataset [37],

TABLE IV
PERFORMANCE COMPARISON USING AML DATASET [38]

Ex. Ellipse-fitting Method Precision
(%)

F1 Score
(%) Jc DSC

6

Prasad et. al [5] 92.40 95.80 0.9194 0.9580
Meng et al. [6] 92.61 95.89 0.9210 0.9589
Zafari et al. [4] 92.39 95.80 0.9194 0.9580
Proposed 95.84 96.81 0.9382 0.9681

7

Prasad et. al [5] 93.09 92.49 0.8603 0.9249
Meng et al. [6] 93.30 92.56 0.8615 0.9256
Zafari et al. [4] 92.67 94.78 0.9008 0.9478
Proposed 96.15 95.19 0.9082 0.9519

TABLE V
COMPUTATIONAL TIME FOR ELLIPSE-FITTING (S)

Dataset Prasad
et. al [5]

Meng
et al. [6]

Zafari
et al. [4] Proposed

SCA [36] (Ex. 1-3) 3.59 s 5.84 s 3.64 s 3.68 s
ALL [37] (Ex. 4-5) 1.02 s 2.93 s 1.06 s 1.11 s
AML [38] (Ex. 6-7) 1.09 s 3.12 s 1.10 s 1.14 s

whereas Experiment 6 and 7 demonstrate the performance in
AML dataset [38] . From the figure, we observe that the pro-
posed ellipse-fitting approach yields outstanding performance
in all these experiments.

In Experiment 4, the ellipse-fitting approach presented by
Meng et al. [6] yields the second-best performance, whereas
the ellipse-fitting technique suggested by Zafari et al. [4]
ranked second in Experiment 5. Experiments 6 and 7 illustrate
all these ellipse-fitting technique yields excellent performance.
Moreover, the proposed method outperforms with proper seg-
mentation of cells.

The quantitative performance of segmentation of cells in
SCA [36], ALL [37], and AML [38] datasets are shown in
Table II, III, and, IV, respectively. From these tables, we notice
that the proposed method yields superior performance with
the best DSC, Jaccard score, precision, and F1 score. In all
the experiments except Experiment 4 and 6, the ellipse-fitting
technique suggested by Zafari et al. [4] ranked second. On the
other hand, in Experiment 4 and 6, the ellipse-fitting approach
presented by Meng et al. [6] demonstrates the second-best
performance. Moreover, in all these seven experiments, the
proposed hybrid ellipse-fitting technique outperforms with
the best DSC, Jaccard score, precision, and F1 score since
it retains the benefits of both the geometric and algebraic
methods. Furthermore, the efficient estimation of minor and
major axes based on residue and residue-offset helps it to
achieve the best performance.

4) Computation Time: The simulation experiment is carried
out on a MATLAB R2019b platform operating on a hard-
ware computing device comprising an Intel Core i5 processor
clocked at 3.40 GHz and a 12GB RAM. Table V highlights
the computation time required for the ellipse-fitting. From
the table, we notice that the algorithms of Zafari et al.
[4], Prasad et al. [5], and the proposed hybrid ellipse-fitting
approach yields similar performance regarding computational
time. However, the proposed method is faster than the ellipse-
fitting method of Meng et al. [6]. Moreover, the proposed
hybrid-ellipse fitting is preferred over others since it yields
outstanding performance with comparable computation time.

IV. CONCLUSION

Unlike the general segmentation of blood-cells algorithms,
which are mostly based on watershed segmentation, the
segmentation algorithm discussed in this paper is based on
BO-FRS based seed-point detection and the hybrid ellipse-
fitting based contour estimation. The proposed methods have
the ability to extract the seed-points more accurately and to
segment the overlapping cells more precisely, even if from
the low-contrast inhomogeneous visual features. Therefore, the
method is suitable for solving complex blood cell segmentation
problems. The LS-based geometric ellipse fitting approach
adopted in this article helps in more localization, therefore
better accuracy. Usually, in algebraic ellipse-fitting methods,
the fitting parameters are biased, and the fitting errors are
unwillingly weighted, which leads to inaccurate boundaries,
leading to problems in the detection of hematological dis-
orders. On the other hand, our proposed method performs
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better than the existing methods because of the combined
benefits of geometric and algebraic ellipse-fitting methods.
Moreover, it detects the cells more accurately due to proper
ellipse-fitting. It is a computationally efficient technique since
it hybridizes non-iterative-geometric and algebraic methods.
Furthermore, the noise problem is solved by employing an
LoG based modified highboosting operation. Hence, it is
less sensitive to noise. Unlike other methods, our scheme
never faces over-segmentation problem. Finally, we believe
that it can also be employed for the segmentation of cells
in other medical applications like- MRI, CT, ultrasound, and
X-ray images, cybernetics applications, the segmentation of
overlapping objects, etc.
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